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Abstract

We consider a space-time variational formulation of a PDE-constrained optimal
control problem with box constraints on the control and a parabolic PDE with
Robin boundary conditions. In this setting, the optimal control problem reduces
to an optimization problem for which we derive necessary and sufficient opti-
mality conditions. We propose to utilize a well-posed inf-sup stable framework
of the PDE in appropriate Lebesgue-Bochner spaces.

Next, we introduce a conforming simultaneous space-time (tensorproduct)
discretization in these Lebesgue-Bochner spaces. Using finite elements in space
and piecewise linear functions in time, this setting is known to be equivalent to a
Crank-Nicolson time stepping scheme for parabolic problems. The optimization
problem is solved by a projected gradient method. We show numerical com-
parisons for problems in 1d, 2d and 3d in space. It is shown that the classical
semi-discrete primal-dual setting is more efficient for small problem sizes and
moderate accuracy. However, the simultaneous space-time discretization shows
good stability properties and even outperforms the classical approach as the
dimension in space and/or the desired accuracy increases.

Keywords: PDE-constrained optimization problems, space-time variational
formulation, finite elements
2008 MSC: 65J10, 65M12, 65Mxx

1. Introduction

PDE-constrained optimal control is an area of vast growing significance e.g.
in fluid flows, crystal growths or heart medicine, see, e.g. [1, 2]. This explains the
huge amount of literature concerning theoretical as well as numerical aspects.
There are several approaches for the numerical solution of PDE-constrained
optimal control problems. One of them is to first consider a variational for-
mulation of the instationary partial differential equation (PDE) in space only
and to discretize this e.g. by finite elements. In the second step, suitable time-
stepping schemes are introduced for the primal (forward) and adjoint (backward)
problem. This approach is often termed semi-discrete. A somewhat different
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approach is to keep the variational formulation of the optimal control problem
in a space-time setting and to consider the reduced problem in this infinite-
dimensional setting. The reduced space-time problem is then discretized and
can efficiently be solved, see e.g. [2–7]. This approach is typically termed space-
time in the literature and we stress that our approach is somewhat different.

In fact, our point of departure is a space-time variational formulation of
the PDE, in which both time and space variables are treated in a variational
manner. The corresponding theory dates back (at least) to the 1970s, see e.g.
[8–10]. This yields (well-posed) infinite-dimensional problems of the form:

find y ∈ Y ∶ b(y, z) = f(z) for all z ∈ Z, (1.1)

where f ∈ Z ′ is a given right-hand side and Y, Z are Bochner spaces depend-
ing on the particular problem, see (2.14) below. Existence, uniqueness and
stability of (1.1) can then be analyzed by the Banach-Nečas theorem; the inf-
sup-condition (2.16) plays an important role. In order to solve (1.1) numerically,
a straightforward manner is a Petrov-Galerkin approach by determining finite-
dimensional spaces Yδ ⊂ Y, Zδ ⊂ Z and to consider (1.1) on those spaces, which
need to be chosen carefully in the sense that the discrete inf-sup (also called
LBB) condition holds, i.e.,

inf
yδ∈Yδ

sup
zδ∈Zδ

b(yδ, zδ)
∥yδ∥Y ∥zδ∥Z

≥ β > 0 (1.2)

uniformly in δ (where β is independent of δ). The inf-sup constant β is particu-
larly relevant as the Xu-Zikatanov lemma [11] yields an error/residual-relation
with the multiplicative factor 1

β
. In some cases, one can realize optimally stable

discretizations, i.e., β = 1. This is the main motiviation for our approach.
Until recent it has been believed that such a simultaneous discretization

of time and space variables would be way too costly since problems in d + 1
dimension need to be solved, where d denotes the space dimension. This has
changed somehow since it is nowadays known that space-time discretizations
yield good stability properties, can efficiently be used for model reduction and
can also be treated by efficient numerical solvers, see [12–20], just to name
a few papers in that direction. Concerning PDE-constrained optimal control
problems it is known (see e.g. [21]) that such problems reduce to an optimization
problem when using a space-time variational formulation. However, the issues
of a suitable discretization and the question if the arising higher-dimensional
problem can efficiently be solved remain. This is the point of departure for this
paper. We consider the following control-constrained PDE-constrained optimal
control problem. For simplicity, we do not apply any additional constraints to
the state.

Problem 1.1 (Model problem in classical form). Let I = (0, T ) ⊂ R, 0 < T < ∞
and Ω ⊂ Rn be a bounded open Lipschitz domain. The normal vector of ∂Ω ∶= Γ
is denoted by ν(x) ∈ Rn for all x ∈ Γ.

The state space Y consists of mappings y ∶ I ×Ω→ R, the control space U of
functions u ∶ I ×Ω → R. We are interested in determining a control u∗ ∈ U and
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a corresponding state y∗ ∈ Y that solve the following optimization problem:

min
(y,u)∈Y×U

J(y, u) ∶= 1

2
∫
Ω

∣y(T,x) − yd(x)∣2 dx + λ
2
∫
I

∫
Ω

∣u(t, x)∣2 dxdt

s.t.: ∂ty(t, x) − ∆y(t, x) = u(t, x) in I ×Ω

∂νy(t, x) + µ(x) ⋅ y(t, x) = η(t, x) in I × Γ

y(0, x) = y0(x) in Ω

(1.3)

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in I ×Ω,

where the functions µ ∶ Γ→ R, η ∶ I ×Γ→ R, y0, yd ∶ Ω→ R and ua, ub ∶ I ×Ω→ R
with ua(t, x) < ub(t, x) for all (t, x) ∈ I ×Ω as well as a scalar λ > 0 are given.
We shall always assume that µ(x) > 0 for all x ∈ Ω a.e.

Remark 1.2. We could easily extend to a cost function of the form

J(y, u) = ω1

2
∥y − yd∥2

L2(I;L2(Ω)) +
ω2

2
∥y(T ) − yd(T )∥2

L2(Ω) +
ω3

2
∥u∥2

L2(I;L2(Ω)),

with real constants ω1, ω2 ≥ 0, ω1 + ω2 > 0, ω3 > 0 and yd ∶ I ×Ω→ R.

As already indicated, the numerical solution of Problem 1.1 typically requires
a suitable discretization. In the semi-discretization, the spatial and the tempo-
ral variable are sequentially discretized (also known as method of lines). In this
case, we obtain the solution for each time step based on the corresponding pre-
vious time step. On the other hand, we consider an alternative approach and
apply a space-time discretization based upon a space-time variational formula-
tion, where both variables are treated in a variational sense. This means that the
treatment is different from the very beginning on. In fact, the concrete form of
necessary and sufficient optimality conditions depends on the weak formulation
in which the initial boundary value problem is incorporated into the optimal
control problem. Hence, we obtain a different system for the semi-discrete and
the space-time approach. In particular, special attention should be paid to
the adjoint problem that occurs within the optimality system and, in the case
of time-dependent optimal control problems, is again a time-dependent partial
differential equation (but typically backward in time). This circumstance gener-
ally leads the solution of the adjoint problem to be numerically challenging and
motivates the use of the space-time discretization as an alternative approach.

The remainder of this paper is organized as follows. In Section 2, we recall
and collect some preliminaries on constrained optimization problems in Ba-
nach spaces and on space-time variational formulations of parabolic PDEs. The
space-time variational formulation of the optimal control problem under consid-
eration is developed in Section 3. In particular, we derive necessary and sufficient
optimality conditions. Section 4 is devoted to the space-time discretization of
the PDE, the discretization of the control as well as of the adjoint problem. The
latter one turns out to be much simpler in the space-time context as we obtain a
linear system whose matrix is just the transposed of the matrix appearing in the
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primal problem. The fully discretized optimal control problem is then solved
by a projected gradient method. We report on our numerical experiments in
Section 5 and conclude by a summary, conclusions and an outlook in Section 6.

2. Preliminaries

Let us start by collecting some preliminaries that we will need in the sequel.

2.1. Optimal control problems

In this section, we recall the abstract framework for optimal control problems
which we will later apply within the space-time setting.

Problem 2.1. Let Y, U , Z be some real Banach spaces and Uad ⊂ U , Yad ⊂ Y
some subspaces of admissible states and controls. Given an objective function
J ∶ Y × U → R and the state operator e ∶ Y × U → Z ′, we consider the problem

min
(y,u)∈Y×U

J(y, u) subject to (s.t.) the constraint e(y, u) = 0.

Remark 2.2. Note, that e(y, u) = 0 is an equation in the dual space Z ′ of Z,
which means that the constraint is to be interpreted as

⟨e(y, u), z⟩Z′×Z′′ = 0 for all z ∈ Z ′′, (2.1)

where ⟨⋅, ⋅⟩Z′×Z′′ is the dual pairing. This is also the reason why we use Z ′ as
opposed to the standard notation – i.e., the adjoint state will be in Z ′′, which is
Z, if Z is reflexive, which is often the case.

A pair (y, u) ∈ Yad × Uad is called local optimum of problem (2.1) if

J(y, u) ≤ J(y, u) ∀(y, u) ∈ N(y, u) ∩ (Yad × Uad), (2.2)

for some neighborhood N(y, u) of (y, u); the pair is called global optimum of
problem (2.1) if equation (2.2) is satisfied for all (y, u) ∈ Yad × Uad. We will
be investigating the well-posedness of such optimal control problems in a space-
time variational setting. This requires to consider the well-posedness of the state
equation e(y, u) = 0, namely the question if a unique state can be assigned to
each admissible control. If so, one defines the control-to-state operator

G ∶ U → Y, u↦ y(u) = Gu, (2.3)

which allows one to consider the reduced objective functional

Ĵ ∶ U → R, Ĵ(u) ∶= J(Gu,u) (2.4)

and the corresponding reduced problem

min
u∈U

Ĵ(u) s.t.: u ∈ Uad. (2.5)

The following result is well-known, we recall it for later reference. For extensions
with state constraints, we refer e.g. to [8].
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Theorem 2.3. Let U ⊃ Uad ≠ ∅ be weakly sequentially compact and Ĵ ∶ U → R
be a weakly lower semi-continuous functional such that there exists a constant
c > −∞ so that Ĵ(u) ≥ c for all u ∈ Uad. Then, (2.5) has at least one solution u.
If Ĵ is in addition strictly convex, then the optimal solution is unique.

Necessary optimality conditions for optimal control problems are based upon
a variational inequality of the type ⟨Ĵ ′(u), u−u⟩U ′×U ≥ 0 for all u ∈ Uad, e.g. [1].
This, however, involves the derivative of Ĵ , which is often difficult to determine
exactly. The well-known way-out is through the adjoint problem. In fact, if
ey(Gu,u) ∶ Y → Z ′ (the partial derivative w.r.t. y) is a bijection, then,

Ĵ ′(u) = Ju(Gu,u) − eu(Gu,u)∗ (ey(Gu,u)∗)−1
Jy(Gu,u), (2.6)

for any u ∈ U , where ey(Gu,u)∗ and eu(Gu,u)∗ denote the adjoint operators of
ey(Gu,u) and eu(Gu,u), respectively. In order to avoid the determination of
the inverses of the adjoints, one considers the adjoint equation

ey(y, u)∗p = Jy(y, u), (2.7)

whose solution p ∈ Z is called adjoint state. Then,

Ĵ ′(u) = Ju(y(u), u) − eu(y(u), u)∗p = Ju(Gu,u) − eu(Gu,u)∗p. (2.8)

In order to detail first-order necessary optimality conditions, we need to specify
the constraints under consideration. As in Problem 1.1 we use box constraints,
which can be modeled by

Uad ∶= {u ∈ U ∶ ua(t, x) ≤ u(t, x) ≤ ub(t, x) a.e. in I ×Ω} (2.9)

with ua, ub such that ua(t, x) < ub(t, x) for (t, x) ∈ I ×Ω, a.e. This means that
we will always consider the case

U ∶= L2(I;H), where we abbreviate H ∶= L2(Ω). (2.10)

In this special case, the variational inequality can be replaced as follows.

Theorem 2.4. Let u be a solution of (2.5) and y ∶= y(u) the related state. Then,
there exist an adjoint state p ∈ Z and multipliers λa, λb ∈ U , such that the
following KKT system is satisfied: for all (t, x) ∈ I ×Ω a.e.:

e(y, u) = 0 (2.11a)

ey(y, u)∗p = Jy(y, u) (2.11b)

Ju(y, u) − eu(y, u)∗p = λb − λa (2.11c)

ua(t, x) ≤ u(t, x) ≤ ub(t, x) (2.11d)

λa(t, x) ≥ 0, λb(t, x) ≥ 0 (2.11e)

λa(t, x)(ua(t, x) − u(t, x)) = λb(t, x)(ub(t, x) − u(t, x)) = 0. (2.11f)

The Lagrange function L ∶ Y × U ×Z × U × U → R to Problem 2.1 reads

L(y, u, p, λa, λb) ∶= J(y, u) − ⟨p, e(y, u)⟩Z×Z′ − (λa, ua − u)U − (λb, u − ub)U .

Then, (2.11a-2.11c) can equivalently be written as Lp(y, u, p) = 0, Ly(y, u, p) = 0
and Lu(y, u, p) = 0.
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2.2. Space-time variational formulation of parabolic problems

We review a variational formulation of the initial boundary value problem
(1.3) in space and time, which yields the specific form of the state operator
e(⋅, ⋅). To this end, we start by testing the first equation in (1.3) with functions
z1(t) ∈ X ∶= H1(Ω), t ∈ I a.e., integrate over time, perform integration by parts
in space and insert the Robin boundary condition. Denoting by a ∶ X ×X → R
the bilinear form in space, i.e., a(φ,ψ) ∶= (∇φ,∇ψ)L2(Ω) + (µ,φ ⋅ψ)L2(Γ), we get

⟨∂ty(t), z1(t)⟩X′,X + a(y(t), z1(t)) = `(z1(t);u)(t), t ∈ I a.e., (2.12)

where we used the abbreviations ⟨z,w⟩X′,X ∶= ∫Ω z(x)w(x) dx, z ∈ X ′, w ∈ X
as well as `(φ;u)(t) ∶= (u(t), φ)L2(Ω) + (η(t), φ)L2(Γ) for φ ∈ X, i.e., ` ∈ X ′. To
obtain a variational formulation in space and time we integrate (2.12) in time:

∫
I

⟨∂ty(t), z1(t)⟩X′,X dt + ∫
I

a(y(t), z1(t))dt = ∫
I

`(z1(t);u)(t)dt,

which is well-defined in view of (2.10). Finally, in order to enforce the initial
condition (in a weak sense), we test the second equation by z2 ∈H = L2(Ω) and
add that term yielding the test space

Z ∶= L2(I;X) ×H, (2.13)

such that for all z = (z1, z2) ∈ Z

b(y, z) = f(z;u), where (2.14)

b(y, z) ∶= ∫
I

⟨∂ty(t), z1(t)⟩X′,X dt + ∫
I

a(y(t), z1(t))dt + (y(0), z2)H

f(z;u) ∶= ∫
I

`(z1(t);u)(t)dt + (y0, z2)H , and (φ,ψ)H ∶= ∫
Ω
φ(x)ψ(x)dx.

The trial space in which we seek y is a Bochner space defined as

Y ∶= {y ∈ L2(I;X) ∶ ∂ty ∈ L2(I;X ′)} = L2(I;X) ∩H1(I;X ′), (2.15)

where X ′ is the dual space of X induced by the inner product of H, i.e., the
Gelfand triple X ′ ↪ H ↪ X. Obviously, (2.14) is a variational problem, b ∶
Y × Z → R a bilinear and f ∶ Z → R a linear form.

It was proven in [10, 14] that (2.14) is well-posed, which can be shown by
verifying the conditions of the Banach-Nečas theorem. The key point also for
numerical purposes is the inf-sup condition

inf
y∈Y

sup
z∈Z

b(y, z)
∥y∥Y ∥z∥Z

≥ β > 0. (2.16)

In [22, 23], estimates for the inf-sup constant β have been derived allowing for
sharp error/residual relations for a posteriori error control.
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3. Space-Time Variational Optimal Control Problem

We adopt the above notation, in particular (2.10), (2.13), (2.15) for U , Y
as well as (2.14) for the space-time variational form of the constraint. We note
that the dual of Z defined in (2.13) reads Z ′ = L2(I;X ′) ×H. Moreover, being
a Hilbert space, Z is reflexive, i.e. we have Z ′′ ≅ Z.

3.1. Formulation

We are now going to derive a space-time variational formulation of Problem
1.1. Recall, that both state and control are functions of space and time and
that we are facing a problem with distributed control with box constraints

Uad ∶= {u ∈ U ∶ ua(t, x) ≤ u(t, x) ≤ ub(t, x) a.e. in I ×Ω} (3.1)

where ua, ub ∈ U , ua(t, x) < ub(t, x) for (t, x) ∈ I × Ω, a.e.. The state space is
determined by the PDE, i.e., we choose Y defined in (2.15). Since we do not
consider state constraints in Problem 1.1, we choose Yad = Y.

In view of Remark 2.2 and recalling that Z ′′ ≅ Z, we are now in position to
formulate the PDE constraint in space-time variational form as follows

⟨e(y, u), z⟩Z′×Z ∶= b(y, z) − f(z;u), z ∈ Z, (3.2)

i.e., e(y, u) ∶= f(⋅;u) − b(y, ⋅) ∈ Z ′. For later reference, it will be convenient to
reformulate the constraint in operator form. To this end, we define

B ∶ Y → Z ′, ⟨By, z⟩Z′×Z ∶= b(y, z),

F ∶ U → Z ′, ⟨Fu, z⟩Z′×Z ∶= ∫
I
∫

Ω
u(t, x) z1(t, x) dx dt,

C ∈ Z ′, ⟨C, z⟩Z′×Z ∶= ∫
I
∫

Γ
η(t, s) z1(t, s) ds dt + (y0, z2)H ,

so that e(y, u) = 0 is equivalent to By − Fu −C = 0. Note, that both operators
B and F are linear and that B is an isomorphism as long as the space-time
variational form of the PDE constraint is well-posed. This means that we can
detail the control-to-state operator G ∶ U → Y as follows Gu = B−1 (Fu +C),
where B−1 ∶ Z ′ → Y is the inverse. Finally, the objective function J ∶ Y × U → R
in Problem 1.1 can now be written as J(y, u) = 1

2
∥y(T ) − yd∥2

H + λ
2
∥u∥2

L2(I;H),
where λ > 0 is the regularization parameter.

3.2. Existence of an optimal solution

Problem 3.1 (Reduced form of Problem 1.1). Find a control u ∈ U such that

min
u∈U

Ĵ(u), Ĵ(u) ∶= 1

2
∥(Gu)(T ) − yd∥2

H + λ
2
∥u∥2

U s.t. u ∈ Uad. (3.3)

We are going to prove that Problem 3.1 admits a unique solution.

Lemma 3.2. The reduced objective function (3.3) is strictly convex.
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Proof. Let u, v ∈ U = L2(I;H), u ≠ v and α ∈ (0,1). Then, it is readily seen that
∥αu+(1−α)v∥2

U = α∥u∥2
U +(1−α)∥v∥2

U −(α−α2)∥u− v∥2
U < α∥u∥2

U +(1−α)∥v∥2
U ,

since U is a Hilbert space. In a similar way, the linearity of G yields

∥G(αu + (1 − α)v)(T ) − yd∥2
H < α∥Gu(T ) − yd∥2

H + (1 − α)∥Gv(T ) − yd∥2
H .

Then, we get

Ĵ(αu + (1 − α)v) = 1

2
∥G(αu + (1 − α)v)(T ) − yd∥2

H + λ
2
∥αu + (1 − α)v∥2

U

< 1

2
[α∥u∥2

U + (1 − α)∥v∥2
U] +

λ

2
[α∥Gu(T ) − yd∥2

H + (1 − α)∥Gv(T ) − yd∥2
H]

= 1

2
α∥Gu(T ) − yd∥2

H + λ
2
α∥u∥2

U +
1

2
(1 − α)∥Gv(T ) − yd∥2

H + λ
2
(1 − α)∥v∥2

U

= αĴ(u) + (1 − α)Ĵ(v)

which proves the claim.

Lemma 3.3. The set Uad in (3.1) of admissible controls is strictly convex.

Proof. Let u1, u2 ∈ Uad and α ∈ (0,1). Then, αu1+(1−α)u2 ≥ αua+(1−α)ua = ua
as well as αu1 + (1 − α)u2 ≤ αub + (1 − α)ub = ub, i.e., αu1 + (1 − α)u2 ∈ Uad.

Proposition 3.4. Problem 3.1 admits a unique solution.

Proof. In order to apply Theorem 2.3 we need to verify that Uad is weakly
sequentially compact. Since Uad ⊂ U and U is reflexive, it is sufficient to show
that Uad is bounded, closed and convex. The boundedness is obvious and the
convexity is given by Lemma 3.3.

Since Ĵ is non-negative there exists a constant c > −∞ so that Ĵ(u) ≥ c for
all u ∈ Uad. It remains to show that Ĵ is weakly lower semi-continuous. To
this end, we need convexity (strict convextiy guaranteed by Lemma 3.2) and
continuity of Ĵ (valid by continuity of G and the norms). Thus, Theorem 2.3
proves the claim.

3.3. First-order necessary optimality conditions

Adopting the previous notation, we start by detailing the Lagrange function
L ∶ Y × U ×Z × U × U → R for Problem 1.1, namely

L(y, u, p, λa, λb) =
1

2
∥y(T ) − yd∥2

H + λ
2
∥u∥2

L2(I;H) (3.4)

− ⟨p,By − Fu −C⟩Z×Z′ − (λa, ua − u)U − (λb, u − ub)U .

The partial derivatives can easily be derived as follows: Lp(y, u, p, λa, λb) =
−By + Fu + C, Ly(y, u, p, λa, λb) = y(T ) − yd − B∗p and Lu(y, u, p, λa, λb) =
F ∗p + λu + λa − λb. This yields the KKT conditions.
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Proposition 3.5 (KKT system). Let (y, u) ∈ Y × U be an optimal solution of
Problem 1.1. Then, there exist an adjoint state p ∈ Z and multipliers λa, λb ∈
L2(I;H) such that the following optimality system holds:

By = Fu in Z ′ (state equation), (3.5a)

B∗p = y(T ) − yd in Y ′T (adjoint problem), (3.5b)

F ∗p + λu = λb − λa in U ′ (optimality), (3.5c)

as well as the complementarity conditions a.e. in I ×Ω

ua(t, x) ≤ u(t, x) ≤ ub(t, x), (3.6a)

λa(t, x) ≥ 0, λb(t, x) ≥ 0, (3.6b)

λa(t, x)(ua(t, x) − u(t, x)) = λb(t, x)(ub(t, x) − u(t, x)) = 0. (3.6c)

In the space-time variational framework, the above equations read:

b(y, δp) = f(δp;u) ∀δp ∈ Z, (3.5a’)

b(δy, p) = (y(T ) − yd, δy(T ))H ∀δy ∈ Y, (3.5b’)

λ (u, δu)U + ∫
I

(δu(t), p1(t))H dt = (λb − λa, δu)U ∀δu ∈ U , (3.5c’)

where U = L2(I;H). From (3.5b’) we see that the adjont problem arises from
the primal one by exchanging the roles of trial and test spaces – and by a
different right-hand side, of course. We note that this is a major difference to a
standard approach for optimal control problems, where the adjoint problem is
backward in time. Moreover, the well-posedness of the adjoint problem follows
directly from the Banach-Nečas theorem, even with the same inf-sup constant
as in (2.16).

Remark 3.6. Due to the convexity of the objective functional and of the set of
admissible controls (see Lemma 3.2 and 3.3, resp.) as well as the linearity of
the state equation, the Problem 1.1 is convex. Hence, every control satisfying
(3.5) is an optimal solution of the problem, [1].

4. Space-Time Discretization

In this section, we are going to describe a conforming discretization of the
optimal control problem in space and time. We start by reviewing space-time
Petrov-Galerkin methods for parabolic problems from [16, 22, 23].

4.1. Petrov-Galerkin discretization of the PDE

We consider and construct finite-dimensional spaces Yδ ⊂ Y and Zδ ⊂ Z,
where – for simplicity – we assume that nδ ∶= dim(Yδ) = dim(Zδ). The Petrov-
Galerkin approximation to (2.14) then amounts determining yδ ∈ Yδ such that

b(yδ, zδ) = f(zδ;u) ∀zδ ∈ Zδ. (4.1)
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We may think of δ = (∆t, h), where ∆t is the temporal and h the spatial mesh
width. We recall, that there are several ways to select such discrete spaces so
that the arising discrete problem is well-posed and stable in the sense of (1.2).
An overview of conditionally and unconditionally stable variants can be found
in [15, 16, 24]. In [25] a finite element approach is described, [22, 23] show
that linear ansatz and constant test functions w.r.t. time lead to the Crank-
Nicolson time integration scheme for the special case of homogeneous Dirichlet
boundary conditions if the right-hand side is approximated with the trapezoidal
rule. A similar approach, but for the case of Robin boundary condition, is briefly
presented in the sequel, where we basically follow [16]. It is convenient (and also
efficient from the numerical point of view) to choose the approximation spaces
to be of tensor product form,

Yδ = V∆t ⊗Xh, Zδ = (Q∆t ⊗Xh) ×Xh

with the temporal subspaces V∆t ⊂H1(I) und Q∆t ⊂ L2(I) as well as the spatial
subspace Xh ⊂X =H1(Ω). Our particular choice is as follows: The time interval
I = (0, T ) is discretized according to

T∆t ∶= {0 =∶ t(0) < t(1) < ⋯ < t(K) ∶= T} ⊂ [0, T ], t(k) = k ⋅∆t,

where K ∈ N denotes the number of time steps, i.e., ∆t ∶= T /K is the time step
size. The temporal subspaces V∆t, Q∆t and the spatial subspace Xh read

V∆t ∶= span Θ∆t ⊂H1(I), Q∆t ∶= span Ξ∆t ⊂ L2(I), Xh ∶= span Φh ⊂H1(Ω)

with piecewise linear functions Θ∆t = {θk ∈ H1(I) ∶ k = 0, . . . ,K}, piecewise
constants Ξ∆t = {ξ` ∈ L2(I) ∶ ` = 0, . . . ,K − 1} in time and piecewise linear
basis functions in space Φh = {φi ∈ H1(Ω) ∶ i = 1, . . . , nh}. Doing so, we obtain
dim(Yδ) = dim(Zδ) = nδ = (K + 1)nh.

The linear system. Such a Petrov-Galerkin discretization for solving (4.1) amounts
determining

yδ =
K

∑
k=0

nh

∑
i=1

yki θ
k ⊗ φi ∈ Yδ, (4.2)

with the coefficient vector yδ ∶= (y0
1 , . . . , y

0
nh
, . . . , yK1 , . . . , y

K
nh

)⊺ ∈ Rnδ . The cor-
responding initial value is given by yδ(0) = ∑nhi=1 y

0
i ⊗ φi = ∑nhi=1 y

0
i ⋅ φi. We are

going to derive the arising linear system of equations for (4.1)

Bδ yδ = f δ(u), (4.3)

with the stiffness matrix Bδ ∈ Rnδ×nδ and the right-hand side f δ(u) ∈ Rnδ .
To this end, we use the basis functions for the test space and obtain for ` =
0, . . . ,K − 1, j = 1, . . . , nh and m = 1, . . . , nh

b(yδ, (ξ` ⊗ φj , φm))=∫
I

⟨ẏδ(t), ξ` ⊗ φj⟩X′×X + a(yδ(t), ξl ⊗ φj)dt + (yδ(0), φm)H
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=
K

∑
k=0

nh

∑
i=1

yki [⟨θ̇k ⊗ φi, ξ` ⊗ φj⟩X′×X + a(θk ⊗ φi, ξ` ⊗ φj)dt] +
nh

∑
i=1

y0
i (φi, φm)H

=
K

∑
k=0

nh

∑
i=1

yki [(θ̇k, ξ`)
L2(I) (φi, φj)H + (θk, ξ`)

L2(I) a(φi, φj)] +
nh

∑
i=1

y0
i (φi, φm)H ,

and f((ξ` ⊗ φj , φm);u) = f1
`,j(u) + f2

m, where f1
`,j(u) ∶= ∫

I

{(u(t), ξ` ⊗ φj)H +

(η(t), ξ` ⊗φj)L2(Γ)}dt and f2
m = (y0, φm)H . In order to derive a compact form,

we introduce a number of matrices

Ctime
∆t ∶= [ck,`]K,K−1

k=0,`=0 ∈ R(K+1)×K with ck,` ∶= (θ̇k, ξ`)L2(I)

N time
∆t ∶= [nk,`]K,K−1

k=0,`=0 ∈ R(K+1)×K with nk,` ∶= (θk, ξ`)L2(I)

M time
∆t ∶= [mk,`]K−1,K−1

k=0,`=0 ∈ RK×K with mk,` ∶= (ξk, ξ`)L2(I)

Aspace
h ∶= [ai,j]nhi,j=1 ∈ Rnh×nh with ai,j ∶= a(φi, φj)

M space
h ∶= [mi,j]nhi,j=1 ∈ Rnh×nh with mi,j ∶= (φi, φj)H

as well as a column vector etime ∶= [1,0, . . . ,0]⊺ ∈ RK+1. Based on this, we define

Bδ ∶= (C
time
∆t ⊗M space

h +N time
∆t ⊗Aspace

h

(etime
∆t )⊺ ⊗M space

h

) ∈ Rnδ×nδ , f δ(u) ∶= (f1
δ(u),f2

δ)⊺ ∈ Rnδ

with f1
δ(u) ∶= [f1

`,j(u)]
nh,K−1

j=1,`=0
∈ RK⋅nh and f2

δ ∶= [f2
j ]
nh

j=1
∈ Rnh defined above.

4.2. Discretization of the control

So far, we did not yet discretize the control u ∈ L2(I;H) = U . Keeping the
above discretizations in mind, it seems natural to choose Uδ ∶= Q∆t ⊗Sh, where
Sh ∶= span Σh ⊂ L2(Ω) and Σh = {σi ∈ L2(Ω) ∶ i = 1, ..., ñh} is a set of piecewise
constant basis functions in space. Then, we consider uδ = ∑K−1

k=0 ∑ñhi=1 uk,i ξ
k ⊗σi

with the coefficient vector uδ ∶= (uk,i)k=0,...,K−1;i=1,...,ñh ∈ RKñh .
The next step is to detail f1

δ(uδ) based upon this discretization. We start
with the first term, i.e.,

∫
I

(uδ(t), ξ` ⊗ φj)H =
K−1

∑
k=0

ñh

∑
i=1

uk,i (ξk, ξ`)L2(I) (σi, φj)H =
ñh

∑
i=1

u`,i (σi, φj)H

= [M time
∆t ⊗N space

h uδ]`,j ,

where M time
∆t is the (K ×K)-dimensional identity (for piecewise constants) and

N space
h ∶= [ni,j]nh,ñhi=1,j=1 with ni,j ∶= (φi, σj)H . For later reference, we note that

∥uδ∥2
L2(I;H) =

K−1

∑
k,`=0

ñh

∑
i,j=1

uk,i u`,j (ξk, ξ`)L2(I) (σi, σj)H = u⊺δ [M
time
∆t ⊗M control

h ]uδ,

11



where M control
h ∶= [mi,j]nh,ñhi=1,j=1 ∈ Rnh×ñh with mi,j ∶= (σi, σj)H . Using piecewise

constants for ξk and σi yields the identity, i.e., ∥uδ∥L2(I;H) = ∥uδ∥. Finally, we
detail the right-hand side of the primal problem as follows

f1
`,j(uδ) = (uδ, ξ` ⊗ φj)L2(I;H) + (η, ξ` ⊗ φj)L2(I;L2(Γ))

=
K−1

∑
k=0

ñh

∑
i=1

uk,i (ξk, ξ`)L2(I) (φj , σi)H + (η, ξ` ⊗ φj)L2(I;L2(Γ))

= ([M time
∆t ⊗N space

h ]uδ + ηδ)`,j ,

where ηδ ∶= [(η, ξ` ⊗ φj)L2(I;L2(Γ))]`=0,...,K−1;j=1,...,nh .

Remark 4.1. We stress the fact that we could use any other suitable discretiza-
tion of the control, both w.r.t. time and space, in particular including adaptive
techniques or a discretization arising from implicitly utilizing the optimality con-
ditions and the discretization of the state and adjoint equation, [26]. In our nu-
merical experiments, we consider the case Uδ ∶= Q∆t⊗Xh, i.e., the same spatial
discretization for state and control (which is of course not necessary here).

4.3. Petrov-Galerkin discretization of the adjoint problem

We are now going to derive the discrete form of the adjoint problem (3.5b)
or (3.5b’). Since this problem involves the adjoint operator, it seems reasonable
to use the same discretization, so that the discrete problem amounts finding
pδ ∈ Rnδ such that

B⊺
δpδ = gδ(yδ),

i.e., the stiffness matrix is the transposed of the stiffness matrix of the primal
problem. The unknown coefficient vector can be decomposed as pδ = (p1

δ ,p
2
δ)⊺,

where p1
δ = (p1

k,i)k=0,...,K−1,i=1,...,nh ∈ RKnh and p2
δ = (p2

i )i=1,...,nh such that

Zδ ∋ pδ = (p1
δ , p

2
δ) = (

K−1

∑
k=0

nh

∑
i=1

p1
k,i ξ

k ⊗ φi,
nh

∑
i=1

p2
i φi) .

Let us now detail the right-hand side. To this end, we abbreviate the coefficient
vector of yδ(T ) in terms of the basis Φh as yδ;K ∶= (yK1 , . . . , yKnh)

⊺. By (4.2) we
obtain

yδ(T ) = θK(T )
nh

∑
i=1

yKi φi. (4.4)

Moreover, we discretize (or approximate) yd in Problem 1.1 as yd ≈ yd,h =
∑nhi=1 yd,i φi and yd;h ∶= (yd,1, ..., yd,nh)⊺. With these notations at hand, the

right-hand side can be written as gδ(yδ) = (0,g2
δ(yδ))⊺, 0 ∈ RKnh and g2

δ(yδ) ∶=
M space

h (θK(T )yδ;K − yd;h) ∈ Rnh .

12



4.4. Optimal control problem

Next, we detail the specific form of the space-time discretization of the cost
function, i.e., Jδ(yδ, u)1. We have

Ĵδ(uδ) ∶= Jδ(yδ, uδ) ∶=
1

2
∫
Ω

∣yδ(T,x) − yd;h(x)∣2 dx + λ
2
∫
I

∫
Ω

∣uδ(t, x)∣2 dxdt

= 1

2
(θK(T )yδ;K − yd;h)⊺M space

h (θK(T )yδ;K − yd;h)+
λ

2
u⊺δ [M

time
∆t ⊗M control

h ]uδ.

We solve the optimal control problem using a standard approach, namely the
projected gradient method.2 To this end, we need to detail the search direction.

Given some current iteration u
(`)
δ for the control and the corresponding adjoint

p
(`)
δ , by (2.7) and recalling that e(yδ, uδ) = Byδ − Fuδ − C we get Ĵ ′(u(`)δ ) =
Ju(Gu(`)δ , u(`)δ ) − eu(Gu(`)δ , u

(`)
δ )∗ p(`)δ = λu(`)δ + F ∗p(`)δ and set s

(`)
δ ∶= −Ĵ(u(`)δ ).

It remains to detail F ∗p(`)δ . Recalling that ⟨Fu, z⟩Z′×Z = (u, z1)L2(I;H), we
obtain that ⟨F ∗p, ũ⟩U ′×U = (p1, ũ)L2(I;H) for all ũ ∈ U ′ ≅ U = L2(I;H) by (2.10)
and p = (p1, p2) ∈ Z. i.e., p1 ∈ L2(I;X). This means that F ∗p = p1. For the

discrete version, we obtain Ĵ
′(u(`)δ ) = λu(`)δ + p1

δ ∈ RKnh .

Algorithm 4.1 Projected gradient algorithm for Problem 1.1 in space-time

Input: Uad in (3.1), Bδ, f δ(uδ) as in §4.1, λ > 0, yd;h, Pad ∶ U → Uad and its

discrete version Pad, u
(0)
δ ∈ RKnh such that u(0) ∈ Uad

1: for ` = 0,1,2, . . . do

2: solve Bδy
(`)
δ = f δ(u

(`)
δ ) // state equation

3: solve BT
δ p
(`) = (0, M space

h (θK(T )yδ;K − yd;h))⊺ // adjoint equation

4: v
(`)
δ ∶= −λu(`)δ − p1

δ // search direction

5: determine admissible step size s(`) // step size

6: u
(`+1)
δ ∶= Pad(u(`)δ + s(`) v(`)δ ) // update

7: if stopping criterion satisfied stop; return (u(`+1)
δ ,y

(`+1)
δ ,p

(`+1)
δ )

8: end for

Remark 4.2. Some remarks concerning our choices in Algorithm 4.1 are in or-
der. We stress the fact that other choices are of course also possible.

(a) We choose the step size in line 5 by a standard resetting algorithm.
(b) The projection in line 6 was realized by computing the point values and

then performing a cut-off w.r.t. the given box constraints.
(c) As stopping criterion in line 7 we used two conditions and stopped as soon

as one of the two is satisfied:

1We use the notation Jδ since ud needs to be discretized.
2Of course, other methods could be used as well, which is not the topic of this paper.

13



(1) ∥u(`−1)
δ −u(`)δ;0∥U ≤ τrel∥u(0)δ −u(`)δ;0∥U +τabs with tolerances 0 < τrel ≤ τabs

where u
(`)
δ;0 denotes the control computed in the `-th step using the

initial step size s
(`)
0 .

(2) J(`−1) − J(`) ≤ τstagnation with some tolerance τstagnation > 0, which
ensures a proper reduction of the objective functional.

4.5. Numerically solving primal and dual problems

To finalize the realization of Algorithm 4.1, it remains to numerically solve
primal and dual problems in lines 2 and 3. Since the adjoint system matrix is
the transposed of the primal one, it suffices to detail the primal problem. Recall,
that Bδ is a block matrix of sums of tensor products of sparse matrices. Also
the right-hand sides in lines 2 and 3 are of tensor product structure. This allows
us to use specific numerical solvers for such linear systems, see e.g. [19, 20]

5. Numerical Results

In this section, we present some results of our numerical experiments. Our
main goal is to compare the above presented space-time variational approach
with the standard semi-discretization (see also [27] for such comparisons for
parabolic problems). We do not compare with other state-of-the-art methods
as we are mainly interested in investigating the effect of simultaneous space-time
discretization. In order to make the comparison fair, we used the Crank-Nicolson
scheme for the semi-discrete problem since our choice for trial and test spaces for
the primal problem is equivalent to this time-stepping scheme, [22, 23]. Thus,
in the semi-discrete setting, primal and dual problems amount for a comparable
number of operations, with a stability issue for the dual problem, of course. All
results were obtained with Matlab R2018b on a machine with a quad core with
2.3 GHz and 8 GB of RAM.

5.1. One-dimensional examples

We consider Problem 1.1 on I = (0,1) with the data shown in Table 1.
The tolerances are chosen as τstagnation = 10−8, τabs = 10−8 and τrel = 10−4.

Table 2 shows the value of the objective function and the number of iterations
in Algorithm 4.1 with regard to the discretization sizes for case 1. It can be
observed that both approaches yield similar results. The results for case 2 were
similar.

In Figure 1, we show the convergence history of the objective function, its
summands and the step size. We see no significant differences between the
space-time and the semi-discrete approach. This is similar for all cases.
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case 1 case 2
Ω (0,1) (−1,1)
Dirichlet BC y0 0 0
Robin BC µ 1 x2

η 0.2 −xt

Desired state yd 0.2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, x ≤ −ε
− 1
ε
x, −ε < x < ε

−1, x ≥ ε
Regularization λ 0.01 0.01
Constr. ua, ub −0.1,0.1 −30,30

Initial value u(0) −0.1 0

Table 1: Data for the 1d example.

semi-discrete space-time
nh K #its. J(y, u) #its. J(y, u)
11 40 25 2.2828 ⋅ 10−5 25 2.2823 ⋅ 10−5

26 100 25 2.2904 ⋅ 10−5 25 2.2903 ⋅ 10−5

51 200 25 2.2914 ⋅ 10−5 25 2.2914 ⋅ 10−5

101 400 25 2.2917 ⋅ 10−5 25 2.2917 ⋅ 10−5

Table 2: Objective functional for different discretizations, case 1, 1d.

10 20
10−8

10−3

102

# iterations

10 20
10−8

10−3

102

# iterations

s J(y, u) ∣∣y(T ) − yd∣∣L2(Ω) ∣∣u∣∣L2(I;L2(Ω))

Figure 1: Case 1, 1d: Convergence, nh = 51, K = 200, left: semi-discrete, right: space-time.

We are now going to indicate some differences between the schemes that
we observed. Figures 2 (semi-discretization) and 3 (space-time) show the final
control for different numbers of time steps. We observe a better stability for the
space-time approach.

Finally, in Figure 4, we monitor the value of the objective function at the
final time for different mesh sizes in space. We show the results for case 2,
where yd is close to a jump function and ε = 10−3. We see that the space-time
discretization reaches small values for J almost independent of the temporal
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Figure 2: Final control (semi-discrete), nh = 128, left: K = 64, right: K = 256, case 2, 1d.
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Figure 3: Final control (space-time), nh = 128, left: K = 64, right: K = 256, case 2, 1d.
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Figure 4: Case 3, ε = 10−3: Value of objective function at final time over number of time steps.

discretization, whereas in the semi-discrete case we need many time steps to
reach the same accuracy. Hence, we compare the CPU times in that light. In
Table 3, we compare the CPU times to reach (almost) the same values for the
objective function. We see that the semi-discrete discretization outperforms the
space-time setting, but the difference is not that severe.
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semi-discrete space-time
nh K obj. fct. CPU [sec] K obj. fct. CPU [sec]

129 1025 1.295e-01 0.44 9 1.294e-01 1.94
1025 1025 1.403e-01 1.76 5 1.421e-01 4.66

Table 3: Case 2, 1d, ε = 10−3: CPU-times for comparable values of the objective function.

5.2. Two-dimensional example

Next, we consider Ω = (0,1)2
, I = (0,1) and choose different data for the

boundary conditions and the desired state. In particular, we investigated smooth
and non-smooth functions for those data. The qualitative results, however,
showed a quite similar trend.

We start by comparing the CPU times for the same number of unknowns
in space and time. As we see in Figure 5, semi-discrete scales linearly with
the number of time-steps, as expected. For coarse meshes in space, the space-
time approach (which also scales linearly) is way too expensive, see the left
part of Figure 5. The situation changes with increasing spatial resolution. For
nh = 4821, we see a break even point for about K = 250. From that point on,
as the number of time steps increases, space-time outperforms the semi-discrete
discretization. This makes the comparison of the values of the objective function
at the final time even more interesting, see Figure 6. Again, as in the 1d-case,
space-time reaches the same value for the objective function with much fewer
time steps. In Table 4, we fix the value of the objective function and see that
space-time is more efficient by a factor of more than 4.
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Figure 5: 2d-case, CPU-timings: coarse and fine space discretizations: nh = 29 (left) and
nh = 4821 (right). Semi-discrete in blue, space-time in red.

semi-discrete space-time
nh K obj. fct. CPU [sec] K obj. fct. CPU [sec]

4821 33 1.44e-02 46.28 5 1.44e-02 10.19
Table 4: 2d: CPU-time comparisons for comparable values of the objective function.
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Figure 6: 2d-case, value of objective function for nh = 4821. Semi-discrete in blue, space-time
in red.

5.3. Three-dimensional example

Finally, we consider a spatially three-dimensional setting Ω = (0,1)3
, I =

(0,1) and choose different smooth data for the boundary conditions and the
desired state. Again, we compare runtime and the value of the objective func-
tion. As we can see from Figure 7 space-time and semi-discrete discretization
are already comparable concerning runtime for a coarse mesh in space (nh = 93),
whereas for fine discretizations, we see a break-even point for about K = 170.
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Figure 7: 3d-case, CPU-timings: coarse and fine space discretizations: nh = 93 (left) and
nh = 3734 (right). Semi-discrete in blue, space-time in red.

The behavior of the values of the objective function in Figure 8 is similar to
the previous cases, the space-time approach yields good results for much smaller
number of time steps as also the comparison of CPU-times for comparable values
of the objective function in Table 5 shows.

6. Summary, conclusions and outlook

We have considered a space-time variational formulation for a PDE-cons-
trained optimal control problem with box constraints. Necessary and sufficient
optimality conditions have been derived. Primal and dual problem are linear
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Figure 8: 3d-case, value of objective function. Semi-discrete in blue, space-time in red; nh = 93
(dash-dotted), nh = 3734 (solid).

semi-discrete space-time
nh K obj. fct. CPU [sec] K obj. fct. CPU [sec]
93 129 1.492e-02 2.04 9 1.252e-02 3.24

4821 513 1.017e-02 1032.59 33 1.005e-02 196.08
Table 5: 3d: CPU-time comparisons for comparable values of the objective function.

systems with the transposed system matrix. A simple projected gradient method
has been used for solving the optimal control problem. Next, we introduced a
space-time discretization which is equivalent to a Crank-Nicolson semi-discrete
discretization, which allows us to perform numerical comparisons. We reported
on such experiments in 1d, 2d and 3d.

In 1d, the semi-discrete discretization is much more efficient concerning run-
time, most likely since the stiffness matrix is tridiagonal. However, we could
already see the good stability properties of the space-time setting in the sense
that we obtained stable solutions with much fewer time steps. Also the reach-
able value of the objective function was lower for the space-time approach. This
trend is more pronounced in the 2d case and even more in the 3d example. De-
pending on the desired accuracy, the space-time discretization can outperform
the classical semi-discrete approach significantly.

We conclude that it might in fact pay off to further investigate space-time
formulations and discretizations for PDE-constrained optimal control problems.
This might involve a number of topics such as state constraints, other types of
PDEs for the constraints, improved schemes for solving the optimality system,
adaptive discretization of the control, etc. Finally, the above setting seems to
be a very good starting point for investigating model reduction [23]. We will
address these issues in the future.
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