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Abstract

We consider an optimal control problem constrained by a parabolic
partial differential equation (PDE) with Robin boundary condi-
tions. We use a well-posed space-time variational formulation in
Lebesgue—Bochner spaces with minimal regularity. The abstract for-
mulation of the optimal control problem yields the Lagrange func-
tion and Karush-Kuhn-Tucker (KKT) conditions in a natural man-
ner. This results in space-time variational formulations of the ad-
joint and gradient equation in Lebesgue-Bochner spaces with min-
imal regularity. Necessary and sufficient optimality conditions are
formulated and the optimality system is shown to be well-posed.
Next, we introduce a conforming uniformly stable simultaneous space-
time (tensorproduct) discretization of the optimality system in these
Lebesgue—Bochner spaces. Using finite elements of appropriate or-
ders in space and time for trial and test spaces, this setting is
known to be equivalent to a Crank—Nicolson time-stepping scheme
for parabolic problems. Differences to existing methods are detailed.
We show numerical comparisons with time-stepping methods. The
space-time method shows good stability properties and requires
fewer degrees of freedom in time to reach the same accuracy.
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1 Introduction

The optimal control of partial differential equations (PDE) is an area of vast
growing significance e.g. in fluid flows, crystal growths or medicine, see, e.g. [?
? ]. This explains the huge amount of literature concerning theoretical as well
as numerical aspects.

The abstract form of such problems relies on a cost function J: Y xU — R,
where ) and U are function spaces for the state y and the control u. The
constrained optimal control problem then takes the form

J(y,u) > min! s.t. e(y,u) =0, (1.1)

where the constraint e(y,u) = 0 is often termed as state equation. At this point,
there is a bifurcation concerning the subsequent approach. On the one hand,
the first-discretize-then-optimize approach seeks for an appropriate discretiza-
tion of (??) and then derives optimality conditions for the discretized optimal
control problem. On the other hand, first-optimize-then-discretize means that
optimality conditions are derived directly w.r.t. (??) and then the arising
optimality system is discretized. We shall follow the second approach.

First-optimize-then-discretize

Within this approach, the first step is a suitable interpretation of the state
equation. In case of a PDE-constrained optimal control problem, the state
equation is a PDE. Here, we are interested in the case where the PDE is
a parabolic problem in space and time. This offers a variety of different
formulations of the state equation, e.g.

e Strong form: e(y,u) = 0 is interpreted pointwise. This, however does often
not allow statements on the well-posedness of the state equation.

o Semi-variational: Using a method of lines yields either an inital value
problem of an ordinary differential equation or a system of elliptic
boundary value problems.

® Space-time variational: Space and time are both treated as variables in a
variational sense. In that case, the state equation is tested by space-time
test functions z € Z, where Z is an appropriate Lebesgue-Bochner space,
and takes the form, for a right-hand side f(; u) € Z’

findyeY: b(y,z)=f(z;u) forall zeZ. (1.2)

Space-time variational formulations and adjoint problem

We follow the last-mentioned method in the above list. In the literature, this
approach has already been studied, see e.g. [? ? 7 7 7 7|, but with some (partly
subtle) differences to our approach to be detailed below. The well-posedness
theory for (??) dates back (at least) to the 1970s, see e.g. [? 7 7 |. In order to
describe to which extent our approach differs from the mentioned papers, we
need to detail the choices of the bilinear form b(-,-) as well as the trial and test
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spaces )Y and Z. We shall see that our subsequent choice allows to show well-
posedness of (??) under minimal regularity assumptions, but this necessarily
implies that ) # Z and these spaces need to satisfy an inf-sup condition, which
is known to hold, [? ? |. We postpone a detailed comparison in Section ?? (in
particular Remark ??7) below.

Another difference of the known approaches from the literature and our
proposed framework is the derivation of an optimality system. For the details,
we refer to Section 7?7, Remark ?? below. We use the variational form (?7?) to
derive the reduced problem (w.r.t. the control), which allows us to prove the
existence of a unique optimal solution. In a next step, we define the Lagrange
function, again using the variational form (??), from which we then derive
the Karush—-Kuhn—Tucker (KKT) conditions. The adjoint problem arises in a
natural variational form by the KKT system, see Proposition 7?7 below.

Space-time discretization

In a final step, we propose a conforming space-time discretization, which
amounts to construct finite-dimensional spaces Vs ¢ Y and Z5 c Z for a
Petrov—Galerkin discretization of (??) and later also the control space Us c U.
Since )Y # Z, the discrete spaces V5 and Zs need to satisfy a discrete inf-sup
condition, also known as Ladyshenskaja—Babuska—Brezzi (LBB) condition, i.e.,

inf sup _bys. ) >B>0 (1.3)

vsVs z5e2s sy [25] 2
uniformly in § (where g is independent of ¢). The inf-sup constant £ is particu-
larly relevant as the Xu—Zikatanov lemma [? | yields an error/residual-relation
with the multiplicative factor % In some cases, one can realize optimally sta-
ble discretizations, i.e., 8 =1 (in particular, the constant is independent of the
final time, which is crucial for optimal control problems), [? ? 7 |. This is a key
motivation for our approach. However, there are different stable discretizations
described in the literature. For example, in [? ? ? | wavelet methods have been
used to derive an LBB-stable discretization, [? ? ? | propose tensorproduct
discretizations (some of them reducing to time-stepping schemes) and [? ? |
introduce unstructured finite element discretizations in space and time. Here,
we use a tensorproduct discretization since they allow for efficient numerical
solvers and admit optimal stability, [? ? |; of course, also other schemes could
be used instead. Our approach leads to a different discrete system as previous
approaches, see Section 7?7, Remark 7?7 below.

Until recent it has been believed that a simultaneous discretization of time
and space variables would be way too costly since problems in n+1 dimension
need to be solved, where n denotes the space dimension. This has changed
somehow since it is nowadays known that space-time discretizations yield good
stability properties, can efficiently be used for model reduction and can also

a few papers in that direction. However, the issues of a suitable discretization
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and the question if the arising higher-dimensional problem can efficiently be
solved remain. Of course, also for space-time approaches different from ours,
there are also efficient numerical solvers known, see e.g. [? 7 7 |.

Model problem
We consider the following PDE-constrained optimal control problem.

Problem 1.1 (Model problem in classical form) Let I = (0,7) cR, 0<T < oo and
Q cR" be a bounded open Lipschitz domain. The normal vector of O =T is denoted
by v(z) eR™ for all z eT.

The state space Y consists of mappings y : I x Q - R, the control space U of
functions u : I x Q — R. We are interested in determining a control w € U and a
corresponding state y € Y that solve the following optimization problem:

min  J(y,u) ::%/|y(T,x)fyd(:r)|2d:r+%ff|u(t,x)\2dxdt
Q

(y,u)eyxuU 74
st y(t,z) - Ay(t,x) = Ru(t,z) in I xQ,
oy(t,z) + p(x) - y(t,x) =n(t,x) in IxT, (1.4)
y(0,2) =0 in Q,

where the functions p: Q >R, n:IxT >R and yq: Q2 - R as well as a scalar X\ >0
are given. Moreover, R is a linear operator, whose role will be described below. We
shall always assume that u(z) > 0% for all z € Q a.e..

Remark 1.2 (a) We could easily extend to a cost function of the form

J(w) = G0y = val Tor: acey) + F (D) ~va(DE ) + 5 uli, ;Lo
with real constants wy, wo >0, w; +ws >0, wg >0 and y4: 1 xQ - R.
(b) The extension to inhomogeneous initial conditions y(0,z) = yp and other types
of boundary conditions follows standard lines, e.g. [? | and Remark ?7.
(¢) In the first preprint version of this paper, we considered box constraints for the
control. In order to discuss the analysis concerning well-posedness and convergence
in full detail, we decided to devote control constraints to future research.

Organization of the paper

The remainder of this paper is organized as follows. In Section 7?7, we recall and
collect some preliminaries on PDE-constrained optimization problems in re-
flexive Banach spaces and on space-time variational formulations of parabolic
PDEs. The space-time variational formulation of the optimal control prob-
lem under consideration is developed in Section ??. In particular, we derive
necessary and sufficient optimality conditions. Section 7?7 is devoted to the
space-time discretization of the PDE, the discretization of the control as well
as of the adjoint problem. The latter one turns out to be much simpler in our

#We note that we do not need strict positivity in order to ensure well-posedness. But it allows
us to use energy norms in the sequel.
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space-time context than in the semi-discrete setting as we obtain a linear sys-
tem whose matrix is just the transposed of the matrix appearing in the primal
problem. The fully discretized optimal control problem is then solved numeri-
cally. We report on our numerical experiments in Section ?? and conclude by
a summary, conclusions and an outlook in Section 77.

2 Preliminaries

Let us start by collecting some preliminaries that we will need in the sequel.

2.1 Optimal control problems

In this section, we recall the abstract functional analytic framework for optimal
control problems in reflexive Banach spaces” which we will later apply within
the space-time setting. The consideration of control and/or state constraints
is devoted to future research.

Problem 2.1 Let Y, U, Z be some real reflexive Banach spaces. Given an objective
function J : Y x U - R and the state operator e : ¥ x U — Z', we consider the
constrained optimization problem

min  J(y,u) subject to (s.t.) the constraint e(y,u) = 0.
(y,u)eYxU

Remark 2.2 Note, that e(y,u) = 0 is an equation in the dual space Z’ of Z. Since
we consider reflexive Banach spaces, it holds Z” = Z. Therefore, the constraint is
to be interpreted as (e(y,u),z)z/xz = 0 for all z € Z, where (-,-) z/x =z is the duality
pairing, and the adjoint state will be in Z.

A pair (g,u) € Y xU is called local optimum of Problem ?7? if
J(@.w) < J(y,u)  V(y.u) e N(F,w)n (Y xU), (2.1)

for some neighborhood N (%, %) of (7,u); the pair is called global optimum of
Problem 77 if (?7?) is satisfied for all (y,u) € Y xU.

We will be investigating the well-posedness of such optimal control prob-
lems in a space-time variational setting. This requires first to study the
well-posedness of the state equation e(y,u) = 0, namely the question if a
unique state can be assigned to each admissible control. If so, one defines the
control-to-state operator

S:U->Y, ur y(u) = Su, (2.2)

bConcerning the chosen model problem we will deal with real Hilbert spaces. However, we will
not identify these Hilbert spaces with their dual spaces, which is the reason why we describe the
general optimal control framework for reflexive Banach spaces.
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which allows one to consider the reduced objective function J :U - R, J (u) =
J(Su,u) and the corresponding reduced problem

min J(u). (2.3)

We recall the following well-known result for later reference, [? , Thm. 5.1], [?
, Thm. 1.46].

Theorem 2.3 LetU +@ and J:U - R be a weakly lower semi-continuous function
such, that there exists a constant ¢ > —oo so that J(u) > ¢ for allu e U. Then, (??) has
at least one solution w. If J is in addition strictly convex, then the optimal solution
1S unique.

Necessary first order optimality conditions for optimal control problems
are based upon the Euler-Lagrange equation j’(ﬂ) = 0, e.g. [? ]. This,
however, involves the derivative of J, which is often difficult to determine
exactly. The well-known way-out is through the adjoint problem. In fact, if
ey(Su,u) : Y — Z' (the partial derivative of e(-,-) w.r.t. y) is a bijection,
then, J'(u) = J,(Su,u) - e, (Su,u)* (ey(Su,u)*)f1 Jy(Su,u), for any u e U,
where e, (Su,u)* and e, (Su,u)* denote the adjoint operators of e, (Su,w) and
e, (Su,u), respectively. In order to avoid the determination of the inverse of
the adjoint e, (Su,u)*, one considers the adjoint equation

ey(yvu)*z = _Jy(y7u)7 (24)
whose solution z € Z is called adjoint state. Then,

J'(w) = Ju (Su,u) + ey (Su,u)* 2. (2.5)

Theorem 2.4 (KKT system) Let u be a solution of (??7) and § = Su the related
state. Then, there exists an adjoint state z € Z, such that the following KKT system
is satisfied for all (t,x) e I xQ a.e.:

e(?: ﬂ) =0, (2.6&)
ey(?v ﬂ)*E = _Jy (y7 ﬂ)v (26b)
ew(y,1) "7 = = Ju(7, ). (2.6¢)

The Lagrange function £:Y xU x Z - R to Problem ?7? reads

L(y,u,2)=J(y,u)+(z,e(y,u)) zxz

Then, (??) can equivalently be written as VL(¥,%,%) = 0.
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2.2 Space-time variational formulation of parabolic
problems

In order to detail the setting in Section ?? for the specific Problem 7?7 at hand,
we review a variational formulation of the initial boundary value problem (?7)
in space and time, which yields the specific form of the state operator e(,-).
To this end, let H = Ly(2), G = Ly(T), V == H'(Q) and V' be the dual of
V induced by the H-inner product. Then, we denote the Lebesgue-Bochner
spaces by H = Lo(I; H), G = Lo(I; G), V= Lo(I; V) and V' = Lo(I; V').
Moreover, denoting by (-,-)v/xy the duality pairing in space only, we obtain
inner products and duality pairing in time and space as

(wo)x= [@®.o@)xdt,  (wohyy= [ (). 0O)vmvdt

for the respective u and v and X € {V', H,V}, X € {V',H,V}, respectively.
Then, we start by testing the first equation in (??) with functions z(t) € V,

t € I a.e., integrate over time, perform integration by parts in space and insert

the Robin boundary condition of (??). Denoting by a: V xV — R the bilinear

form in space, i.e., a(¢,¥) = (Vo, V) g + (1o, ), we get
(), 2(O))vrxv +ay(t), 2(t)) = (Ru(t), 2(t))vrxv + (n(t), 2(t))c,  (2.7)

for ¢t € I a.e. To obtain a variational formulation in space and time we integrate
(??) in time and obtain

(G 2hv + [a(y(®),2(0)dt = (Ru 2Dy + (0 2)g. (28)
I

The trial space for the the state y is a Lebesgue-Bochner space defined as
YVi={yeLa(l; V) g e Lo(I; V'),y(0) = 0} = Lo(I; V) 0 Higy (I; V'). (2.9)
Asin [? 7 |, we choose the norms
1913 = 1915 + 1yl + ly(D)[7 and  [¢]7 = a4, 9),
but other equivalent norms can also be considered. The test space reads
Z=V=L(LV), |-lz=]-lv. (2.10)

For the well-posedness of (?7?) (see [? ]), we need Ru € V' = Lo(I; V') = Z'.
However, the definition of the cost function J in Problem ?? requires

U=H=Ly(I; H), =1l (2.11)
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Thus, we can now detail the role of the linear mapping R, namely R:H — V'
(which could here also be just the identity). We introduce the bilinear form
b:Y x Z - R and the linear form h € Z’ by

b(y, 2) = (y,z)v'xv+fa(y(t),Z(t))dt, h(z) = (n,2)g,

I

so that (??) equivalently can be written as
b(y, z) = (Ru, z)yrxy + h(z) VzeZ. (2.12)

Obviously, (??) is a variational problem of the form (??), where the right-hand
side is a linear form in Z’ for all u € U. For later reference, it will be convenient
to reformulate (?7?) in operator form. To this end, we define

B:Y - Z/, (By>Z>Z’><Z = b(y,z), (213)

so that (?7?) reads By = Ru + h. If we define the differential operator in space
as Ay 1V = V' by (A0, ¢)vxy = a(¢,1) with its space-time extension
A:V - V' defined as (Ay,d6y)vxy = [;a(y(t),dy(t))dt, then we get the
representation By = ¢ + Ay.

Well-posedness of the parabolic problem

The proof of the well-posedness of the variational form (??) for any given
u € U basically follows the lines of [? ? ? |, namely by verifying the condi-
tions of the Banach-Necas theorem. For the Robin data we make the usual
assumptions p € Lo, (I xI') and n € G = Lo(I; G). The surjectivity is shown by
proving the convergence of a Faedo-Galerkin approximation, [? , App. A]. Inf-
sup-condition and boundedness can be derived by detailing primal and dual
supremizers.

Proposition 2.5 The problem (77) is well posed with

inf sup _b(y.2) = inf sup _b(y.2) (2.14)
veYzez ylyllzlz 22 yey lyly Izl 2
b b
= supsup ®.2) _ sup sup BLICIEI

yeY zeZ ”yHy ”ZHZ 2€Z yey Hy“y HZ”Z -

mn particular ”B”y_,zl = ”B*Hz_,yl = HBilnzl_,y = ”Bi*l‘yl_,z =1.

Proof The proof closely follows the lines of [? , Thm. 5.1], [? , Prop. 1] and [? , Prop.
2.6]. In fact, we can identify primal and dual supremizers for given z € Z and y € Y,
respectively, as follows

b(y,d - -
Z 3 sy = arg sup @, Z)=A 1By=A11'/+y,

sze2 02] 2
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b(d -
V35, :=arg sup b0y, z) =B Az
Syey ”&UH)J
cps 2 -1 2 -112 2 2 2
In addition, [sy[Z = A7y +yly = (915 + [yly + |y(T)5 = lyly and [sz]y =
|sz + Asz|yr = |Az|yr = ||| z, which completes the proof. O

Remark 2.6 Even though we have proven optimal stability and continuity, we will
later also need the general case, in which we have

-1 - 1
|Bly-z = [B"|z-3 =98, 1B |22y = [B7 [y-z = 5- (2.15)

Remark 2.7 (Inhomogeneous initial conditions) As already mentioned in Remark 77,
we restrict ourselves to homogeneous initial conditions only for convenience of the
presentation. In fact, for yg # 0, we would set Y := La(I; V) n Hl(I; V"), the test
space would be Z := Lo(I; V) x H and bilinear and linear forms read for y € Y,
z=(z1,22) € Z

by, (21, 22)) = (¥, 21 )y + f ay(t), z1(t)) dt + (y(0), 22)
I
f((z1,22); w) = (Ru, 21)yrxy + h(21) + (yo, 22) 1
yielding a state equation of the form (??). Hence, inhomogeneous initial conditions
can be treated analogously, just the notation becomes a bit more heavy, [? |.

Comparison with other space-time methods

As already mentioned in the introduction, our approach is somehow different
as existing ones in the literature. We are now going to describe the differences
concerning the formulation of the state equation in more detail.

Remark 2.8 (Differences to existing space-time methods)

(a) In [? ? ? |, Meidner, Neitzel and Vexler use (almost) the same trial space Y as
in (?7?), namely Y := Ly(I; V) n H'(I; V'), but impose the initial condition
y(0) = yo° in strong form. The arising problem is not of the form (??). In fact,
the well-posedness does not follow from the Banach—Necas theorem but with
techniques from semigroup theory, [? ]|. This requires yg € V (yo € H is the
minimal requirement) and additional regularity, [? , Prop. 2.1]. In fact, the right-
hand side is required to be in Ly (I; H) and the solution is in Lo (I; VAH?(£2))N
HY(I; H) > C(I; V), which is significantly stronger than ) defined in (?7?).
Moreover, treating the initial condition as in [? ? ? | allows to use Y also as test
space, which is another reason for the additional smoothness, but which yields
a Galerkin discretization instead of a Petrov—Galerkin one, see below.

(b) In [? 7], von Daniels, Hinze and Vierling use the same trial space Y for the state
equation as [? ? 7 |, but impose the initial condition in a weak sense, [? , (1.5)].
Moreover, Y is chosen also as test space (in a Galerkin spirit).

(¢) In the more recent paper, Langer, Steinbach, Troltzsch and Yang use the same
variational formulation as we do, [? |. However, the initial condition is part of
the definition of the trial space, which will be relevant for the adjoint problem.

“Recall, that we have chosen homogeneous initial conditions yo = 0 only for simplicity of
exposition, see Remark 77.
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In all cases, there are differences to our approach in the derivation/formulation of
the adjoint equation and the adjoint state to be described in the next section.

3 Space-Time Variational Optimal Control
Problem

Next, we formulate the optimal control problem in the variational space-time
setting by specifying the above abstract framework. To do so, we are now
going to derive a space-time variational formulation of Problem ?7?. The state
space is determined by the PDE, i.e., we choose ) defined in (??). In view of
Remark ?? and recalling that Z” = Z, we are now in position to formulate the
constraint in space-time variational form as follows

(e(y,u), z)zixz = by, 2) — (Ru, 2)yrxy — h(z), z€Z, (3.1)

i.e., e(y,u) = By—Ru-h € Z'. Next, we can detail the control-to-state operator
S:U - Y as follows Su = B~ (Ru + h). Finally, the objective function .J : ) x
U - R in Problem ?? can now be written as J(y,u) = 1| y(T) - ya|3; + %Hu”i,
where A > 0 is the regularization parameter.

3.1 Existence of an optimal solution
Problem 3.1 (Reduced problem) Find a control @ elU such that
_ . % 2 2 2
a=argmin J(w), J(w) = J1(S0)(T) -~ yaldr + 3 lule (32)

Proposition 3.2 Problem ??7 admits a unique solution.

Proof Since J is non-negative there exists a constant ¢ > —oo so that J(u) > ¢ for
all u € Y. It remains to show that J is weakly lower semi-continuous. Since J is
easily seen to be strictly convex and continuous (by continuity of S and the norms),
Theorem ?? proves the claim. |

3.2 First order necessary optimality conditions

Adopting the previous notation, we start by detailing the Lagrange function
L:YxUxZ - R for Problem 7?7, namely

L(y.u,2) = 51y(T) ~yal7r + 3lul3; + (z, By~ Ru=h)vsr.  (3.3)

The partial derivatives can easily be derived as follows: £, (y,u,z) = By —
Ru-h, L,(y,u,z) = Dy — g+B*z, where we introduce the bilinear form d :
YxY - R, d(y,dy) = (y(T),0y(T)) g and the associated operatord D: Y — ),
(Dy, 6y)yrxy =d(y,dy) as well as the functional g € V', g(dy) = (ya,0y(T)) u.

9By the Cauchy-Schwarz inequality, we easily see that [Dlly_yr < 1.
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Finally, for du € U, we have L, (y,u,2)[du] = X (u, du)y — (2, Rou)pxyr. Hence,
we obtain the following first order optimality (KKT) system: Find (7,%,u) €
Y x Z xU such that

b(y,0z) — (Ru,0z)yrixy = h(02) Viz e Z, (3.4a)
d(y, dy) +b(dy,2) =9(0y) Yoy e, (3.4b)
M@, du)y — (Réu,Z)yrixy =0 Vouel. (3.4¢)

Let us further detail the gradient equation (?7). Denote by R* : V — H the
adjoint operator of R defined by (R*v,h)3 := (Rh,v)yrxy for veV and h e H.
Then, (??) reads A\(@, du)y — (R*Z,0u)3 = 0, which means that we can derive
a relation of the optimal control @ and the optimal adjoint state z, namely

i=\"'R'Z. (3.5)

Then, we can formulate the KKT conditions as follows.

Proposition 3.3 (Optimality (KKT) system) Let (y,u) € Y xU be an optimal
solution of Problem ?77. Then, there exists an adjoint state z € Z such that the
following optimality system holds:

By-Ru=h in Z' (state equation), (3.6a)
Dy+B'z=yg in)' (adjoint equation), (3.6b)
Na-R*Z =0 inU' (gradient equation), (3.6¢)

or, in operator form

IR

D B 0 g
B 0 -R =lh].
0 -R* X\ 0
Setting P := RR*:V — V', inserting (?7?) into (??) yields the reduced first

order optimality system for determining (7, z) € Y x Z such that

b(y,02) = X HPZ,02) vy = h(62) Véze Z, (3.7a)
d(y,6y) +b(dy, ) =g(dy) Yoy e, (3.7b)

or, in operator form
yY (9 (D B* Ay ’
L(z)_(h)’ L._(B _)\_IP).W._(JJXZ)QW. (3.8)

From (??) we see that the adjoint problem arises from the primal one by
exchanging the roles of trial and test spaces — and by a different right-hand
side, of course.
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Remark 3.4 (Well-posedness of the adjoint problem) We recall from Section 77 that
the primal problem (?7?) is well-posed, see e.g. [? 7 |. This is a consequence of the
Banach-Nec¢as theorem and the fact that the inf-sup condition (??) holds. Due to
its specific form, this immediately implies well-posedness also of the adjoint problem
(?7?), even with the same inf-sup constant as for (?7) .

Remark 8.5 Due to the convexity of the objective function as well as the linearity
of the state equation, the Problem ?? is convex. Hence, every solution of (?7) is a
global optimal solution of the problem, [? |.

Theorem 3.6 (Well-posedness of the optimality system) The first order optimality
system (?7?) is well-posed for all A >0 with

= Atptpet Bt oAt tPciDB!
- c! -c'pB7!
with C:= B* + \"'DB™YP: Z > Y'. For vp := |P|y_yr, we have

-1 AB+AB2
|2 vy < EEQEAS (3.9)

Proof The fact LL™' = L7'L = T can be verified by straightforward calculations, as
long as L' exists. This, in turn, boils down to the existence of C™!. In order to show
this, note that C' = B*(I + \*B™*DB 'P) = B*(I + A"'K) and B* is invertible.
The operator K : Z — Z is self-adjoint since

(Kz,02)z = (B *DB 'Pz,P62) 24z = (P2, B *DB ' P62)z1xz = (2, K02) z
since D* = D. Hence, the spectrum (K ) c R{ is contained in the non-negative reals.
This implies |(I+A" 1K) | z_z <1 forall A >0, so that |C™}|yroz < |[B™*|yroz =
%. In order to bound |L™Y |y, let (h,g)T € W. Then,

-1 T -1 p-1 -1 -1
L7 (h,9) <3[BT PC yny [h= DB glyr + B z-ylgl 2
YVxZ
-1 -1
+1C lyz[h - DB gly
-1 -1 -1 -1
<€ lysz(A B 2oy + DIh=DB glly + |B™ |z ylglz
-1
< 535 + D(Uhly + 1Ply-y 1B | z-ylglz) + 5lglz
1 1
35+ Dlkly + (7G5 + 1D+ 5)lglz
max(35 +1,3(35 + 1)+ 1}(lglz + [hly)
AB+AB>
= (&35 +1) + 1)(lalz + [hly) = 22825 (Jajy + [g] ),

which proves the claim. O

<

IA
== @l

Corollary 3.7 For the space-time variational formulation (77), we have
1L e <2+ 4, (3.10)

so that the inf-sup-constant of the reduced optimality system (?7) is at least ﬁ
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Proof Since =1 =||P|y_y the claim follows from (?7?). O

Remark 3.8 For the optimal control @, it holds that

_ - = — N\T -1 T
lal = 1Pzl < 3121y < 317, 2) lyxz < I wawl (B g) ' sz

Remark 3.9 (Differences to existing space-time methods, continued) We continue

Remark ?? with highlighting the differences to previous publications.

(a) In[? ? 7], the adjoint problem is derived directly from the variational formula-
tion, which means that the terminal condition is imposed in strong form. This
necessarily implies that Z = ) is the space for the adjoint state. Moreover, the
same high regularity requirements apply for the solution of the adjoint problem
as for the primal one, [? , Prop. 2.3].

(b) In [? ? ] the adjoint equation is derived by integration by parts in time, which is
possible since Z =Y. As in [? ? 7 |, this implies high (and the same) regularity
for y and z, [? , La. 3.2].

(¢) In [? ] the adjoint problem and also the gradient equation is derived in strong
form, which is then formulated in space-time variational form. This results in a
coupled space-time system where primal and adjoint state have the same regu-
larity. Moreover, since the initial condition is imposed in the primal trial space,
the terminal condition is part of the definition of the adjoint trial space. In our
case, it holds Z € Z, which allows weaker regularity for the adjoint state.

The differences concerning discretization will be described in the next section.

4 Space-Time Discretization

In this section, we are going to describe a conforming discretization of the op-
timal control problem in space and time. We start by reviewing space-time
Petrov—Galerkin methods for parabolic problems from [? ? ? | and will extend
this to a full space-time discretization of the optimal control problem at hand.
This leads us to a tensorproduct-type discretization w.r.t. time and space vari-
ables. Of course, the approach is not restricted to tensorproducts; for example,
one could also use unstructured space-time finite elements as in [? |. How-
ever, w.r.t. stability and efficient solution of the fully discretized problems, the
tensporproduct approach turned out to be very promising, see also [? ? |.

4.1 Petrov—Galerkin discretization of the PDE

We consider and construct finite-dimensional spaces Vs ¢ Y and Z5 ¢ Z, where
— for simplicity — we assume that ns = dim()s) = dim(Zs). The Petrov—
Galerkin approximation to (??) amounts finding ys € Vs such that (for given
u €U to be discretized below)

b(ys, z5) = (Ru, z5)yrwy + h(z5) Va5 € Z5. (4.1)

We may think of § = (At, h), where At is the temporal and h the spatial mesh
width. We recall, that there are several ways to select such discrete spaces so
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that the arising discrete problem is well-posed and stable in the sense of (77).
An overview of conditionally and unconditionally stable variants can be found
in [??7]. In[?] a finite element approach is described. Moreover, the authors
of [? ? ] show that linear ansatz and constant test functions w.r.t. time lead
to the Crank—Nicolson time integration scheme for the special case of homo-
geneous Dirichlet boundary conditions if the right-hand side is approximated
with the trapezoidal rule. A similar approach, but for the case of Robin bound-
ary conditions, is briefly presented in the sequel, where we basically follow [? |.
It is convenient (and, as we explained above, also efficient from the numerical
point of view) to choose the approximation spaces to be of tensorproduct form,

Vs=Var®Vh, Zs=Qr;®V, (4.2)

with the temporal subspaces Va; ¢ H'(I) und Qa; ¢ Lo(I) as well as the
spatial subspace V}, ¢ V = H'(Q). Our particular choice is as follows: The time
interval T = (0,T) is discretized according to

Tar={0=t© <t .t =y c[0,7], t*) =k-At,

where K € N denotes the number of time steps, i.e., At := T/K is the time step
size. The temporal subspaces Va;, Qa; and the spatial subspace V}, read

Vag =span O, ¢ H (1), Q¢ =span Ea; ¢ Ly(I), Vi, =span &, c H(Q)

with piecewise linear functions ©a; = {#* € HY(I) : k = 1,..., K}, piecewise
constants Eay = {€f € Ly(I) : £ = 0,...,K — 1} in time and piecewise linear
basis functions in space ®, = {¢; € H*(Q) :i =1,...,n;}. Doing so, we obtain
dim(Ys) = dim(Zs) = ns = Knyp. Such a Petrov-Galerkin discretization for
solving (??) amounts determining

K np

Vsays=>. > yroF e ¢y, (4.3)

k=11i=1

with the coefficient vector y; = [y1, ..., y}zh, oyl yffh]T € R™. We are going
to derive the arising linear system of equations for (?7)

Bsys = (Ru);+hs, (4.4)
with the stiffness matrix By € R™*™ and the vectors (Ru)s € R™, hs ¢ R™

to be detailed next. To this end, we use the basis functions for the test space
and obtain for £=0,..., K -1 and j=1,...,ny

b(y57§£®¢j):f(y5(t);££®¢j>X’xX +a(y5(t)7§l ®¢])dt

I
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& U ¢ k ¢
‘ZZZ/Z [(6" ® ¢5,6" ® ¢j) xrwx +a(0" ® ¢y, 6" ® ¢;) dt]
&L é k ¢£
Z; [( )L2(1) (¢17¢])H+(97£ )LZ(I) a(¢u¢]):|

Moreover, it holds (Ru)s := [rf(u)k:O,...,K—l;j=1,..‘,nh e R" and
hs = [hf]ezo,...,K-hj:1,...,nh € R™, where rf(u) = (Ru,&" ® ¢;)vxy and
hf =h(¢'®p;) = (1,°®¢;)g. The control u will be discretized below. In order
to derive a compact form, we introduce a number of matrices

C“mc = [Ck’g]ﬁfgzlo e REK with Chy = (9%75[)@(1)7
NEme = [y, ] 1K£ o eRIOK with ke = (0,6 Ly,
Mtlme = [, f]kKolZKO L e REXK with M0 = (fkagz)Lz(I)’
Azpace = [a; )]]:L; ) € R X7k with a;j = a(i, ¢j)7
szace [mw]?;ﬂ ¢ RMHXTR with mi ;= (i, &) -

Based upon this, we obtain Bj = C%\"® ® M3 + + Nime g ® AP e R M5,

Remark 4.1 There are several uniformly inf-sup stable discretizations available, see
e.g. |[? ]. For the above case, there is even an optimal discretization, i.e., where the
inf-sup constant is unity, [? ? |. In any case, we have (and shall assume in the sequel)
that (??) holds uniformly in 6 — 0, possibly with discrete norms | - |y,, | - || z;-

4.2 Discretization of the control

So far, we did not yet discretize the control uw e i = Ly(I; H). A natural choice
seems to be Us = Qa; ® V}, = Z5, but other choices are possible as well. Thus,
we consider

K-1 nhp

us= . Y ub e e ¢y, ws = (Ul ]kco,... K-1; i=1,....n, € RE™ (4.5)
k=0 i=1

The next step is to detail (Ru)s based upon this discretization. We obtain for
{=0,...,K-1and j=1,....,ny

K-1ny

ré(us) = (Rus, & ® dj)vrxy = 2. >ouy (65,6 1, (1) (R b)) viwy

k=0 i=1
[(Mtlmc ®Ezpace)uz§]f,j:: [Méud]l,ja (46)
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where M tAirtne e RE*E ig the identity (for piecewise constants) as introduced

above and N3P = [n”]?:hl?il with n; ; = (R, ¢;)v«xv°. Putting everything

together, the discretized version of the primal problem (?7?) reads
Bsys — Msus = hs. (4.7)

For later reference, we note that

K-1 nhp

luslie = D0 3 ufus (€, nary (90,85 = uf (MATC ® MGP*) s
k,0=01i,j=1

= u; M,; us.

Remark 4.2 We stress the fact that we could use any other suitable discretization of
the control, both w.r.t. time and space, in particular including adaptive techniques
or a discretization arising from implicitly utilizing the optimality conditions and the
discretization of the state and adjoint equation, see e.g. [? ].

4.3 Petrov—Galerkin discretization of the adjoint problem

We are now going to derive the discrete form of the adjoint problem (??) or
(??). Since this problem involves the adjoint operator, it seems reasonable to
use the same discretization, so that the (matrix-vector form of the) discrete
problem amounts finding z5 € R™ such that (for given ys € Vs)

Bjzs+ds(ys) = 95, (4.8)

with ds(ys) e R™, gs € R™ ie., d(ys,dys) +b(dys, z5) = g(dys) for all dys € Vs.
Note, that the stiffness matrix is the transposed of the stiffness matrix of the
primal problem. The unknown coefficient vector zs € RE™ reads

K-1 Nh
Zs326= Y. ). PRS- TR 25 = [2F keo... K1: iz1,..my € RE™(4.9)
k=0 i=1

Let us now detail the remaining terms ds(ys) = [dﬁ(y(s)]gzlpr; j=1,...m, ER™,
gs = [gf]g=1““}]{; j=1,..mn €ER™ . For £=1,..,K and j =1,...,np, we get

95=9(0° ®¢;) = (ya,0" (T) ® $;) i = 0% (T) - (ya, ;).

Further, we abbreviate the coeflicient vector of y5(7") in terms of the basis @,
as yk = [y, ...,y,ﬁ]T so that by (??) we obtainfor £=1,..., K and j = 1,...,ny

i (ys) = d(ys,0° ® ¢;) = (ys(T),0" (T) ® $;) 1

€ = - . . . space _ space
For the common case R = I, we get n; ; = (i, ¢;)m, i.e., N} =M, .
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Nh
=0T - 0%(T) - Yyl (¢i, ) b = Ouic - [M5P*y 1 = [Dsys)e
i=1

where d; x denotes the discrete Kronecker delta and we introduce

0 o0 nsxn
D§ = (O M?Lpace) € R sxms

We note that it holds 6%(T) = 6k, ie., 0°(T) =0 for £ = 1,...,K - 1 and
6% (T) = 1. With this notation at hand, the fully discretized version of the
adjoint problem (?7?) reads

Bizs+ Dsys = gs- (4.10)

4.4 Petrov—Galerkin discretization of the gradient
equation

In order to obtain a discrete version of the gradient equation we test (77?)

with the basis functions of Us, namely A (us, dus)4, — (Rous, 25)yrxy = 0 for all

dugs € Us. Recalling the discretizations (?7?) and (??) of us and zs, respectively,
we obtain for £=0,...., K -1 and j=1,....,ny

0= (us,€" ®65);, —{25,€" & Roj)vrr

K-1ny K-1ny
=A uf (85 @i, @)~ Y. > 2 (€ @i, & ® Ry
k=0 i=1 k=0 i=1
K-1np K-1np
=AY S ul () i (B d)u - X D2 (€5, ) oy (Roj, didviey
k=0 i=1 k=0 =1
= M(MATC ® MyP*Yus]e ;- [(MA7C ® (N3P ) ) 25105

A
~ T
= AlMsuslej —[Mszs]es-
Then, the discrete version of the gradient equation (??) reads
AM sus — Myzs = 0. (4.11)

We note, that M is a square mass matrix, i.e., invertible. For R = I, we have
M; = M3, so that us = A\ 'z;.
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4.5 The discrete optimality system

We can now put all pieces together and detail the discrete version of the first
order optimality system (?7), namely

b(Ys,dzs) — (Ris, dzs)vrxy = h(dzs) Vozs € 25, (4.12a)
d(y(;, 5y5) + b((syg,fg) = g(5y5) Voys € Vs, (4.12b)
Ms, dus)y — (ROus, Zs)yrxy =0 Yougs € Us. (4.12¢)

Recalling (??), (??) and (?7), the discrete first order optimality system
??) can be written in matrix form as
77 b itten i trix f

D; B 0 Ys gs

Bs 0 -Ms||lz|=|fs5],
~ T

0 —M(; )\M(S 'U,5 0

where all involved matrices have tensorproduct structure. In view of (77),

ie, \Msus = M;z(;, we can easily eliminate the variable us and obtain the
reduced system

Ys)_[9s _[Ds ~ BéT B
L()( fé), Ly (Bé _;MJM;M(;) (4.13)

which is a discretized version of (7). All involved matrices are tensorproducts
and for our choice, we have M5 = M. Set v := |[MsM ' Mj|| = | M|, which
is bounded uniformly in § — 0.

Theorem 4.3 (Well-posedness of the discrete optimality system) Assume that the
discrete inf-sup condition (??) holds. Then, the discrete first order optimality system
(??) is well-posed for all A >0 and

AB+AB> AB+A8>
lysl + 125 < PAZRE (s + [gs1),  Tusl < 23525 (Ihs] + lgs])-

Proof We can apply Theorem ?7? for the reduced discrete optimality system (?7).
Following the lines of its proof, (??) ensures that

-1 AB+AB?
| L5 ] < ZAERE (4.14)
so that the reduced system is uniformly invertible. Adapting Remark ?? for the
discrete case yields [us] < £1L5"|(hs] + lgs). O

Remark 4.4 (Differences to existing space-time methods, continued) We continue
Remarks 7?7 and 7?7 with highlighting the differences to previous publications, now
concerning the discretization.

To summarize our approach, we start by an optimally stable Petrov—Galerkin dis-
cretization of the state equation based upon tensorproducts, which can be chosen to
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be equivalent to a Crank—Nicolson time stepping method. In a second step, we chose

an appropriate discretization of the control. This automatically yields a Petrov—

Galerkin discretization of the adjoint equation and the gradient equation. Putting

everything together results in a stable discretization of the optimality system along

with a priori and a posteriori error estimates.

(a) [? 7 ? ] suggest semi-discretizations for the state by discontinuous Galerkin
methods. Since there Z =), this can also be used for the adjoint state. Stability
and approximation results are then given.

(b) [? 7] uses a Petrov—Galerkin method with temporal discontinuous trial functions
and continuous test functions for primal and adjoint problems. The control is
not discretized, but treated in a variational manner.

(¢) In [? ], the derivation yields a 2 x 2 saddle point problem for primal and dual
state similar to (?7?), which is discretized in a similar fashion as in our approach
for the primal state equation. This means that also here primal and dual states
use discretizations of the same order, which is different from our approach.
Moreover, [? | uses an unstructured space-time discretization, whereas we suggest
a tensorproduct approach. However, the tensorproduct discretization was here
mainly chosen to allow the use of efficient solvers and can easily be replaced by
other discretizations as well.

4.6 Error analysis

Corollary 4.5 (A priori estimate) Applying the Xu—Zikatanov Lemma [? | yields a
quasi-best approximation statement, i.e.,

ly-wsly + 2= zslz + |u-usle <

2
<max{l, L LABAAG” [ jf -9 + inf |z-Z + inf |u-u .
(KPR ing = Gsly+ ing |2 =36l + inf Ju=dislu

Using the above described discretization for Vs, Z5 and Uy, we get an error
of order O(max{h, At}) in the prescribed norms, which can easily be improved
by using higher order discretizations (if the solution is sufficiently regular).

Corollary 4.6 (A posteriori estimate) It holds that
ly=ysly + |z =25l z + lu = uslu < (2+ %) Irslyrwzra

where rs = (g — Dys, h — Bys + Rugs, \us — R*25)" is the residual of the optimality
system.

The latter estimate allows us to use residual-based error estimates, which
are e.g. particularly relevant for the reduced basis method in the case of
parameter-dependent problems, see e.g. [? |].

4.7 Discretization of the cost function

Finally, we detail the space-time discretization of the cost function, i.e.,

Js(us) = Lys(T) = yanlh + 5 lusl3
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= %(GK(T) y? - yd,h)TMZpace(GK (T) y? - yd,h) + %UE M;sus,

where yan = X% ya,i ¢; with the coefficient vector y, 5, = (Ya,i)i=1,....n, € R™
is a discretization of y4.!

We solve the optimal control problem by numerically solving the reduced
2 x 2 block linear system arising from the optimality system (?77).

5 Numerical Results

In this section, we present some results of our numerical experiments. We fol-
low two main goals: (1) We make quantitative comparisons concerning the
inf-sup-stability of the optimality system and (2) we compare the above pre-
sented space-time variational approach with the standard semi-discretization
(see also [? ] for such comparisons for parabolic problems). We do not compare
with other state-of-the-art methods as we are mainly interested in investigat-
ing the effect of simultaneous space-time discretization. In order to make the
comparison fair, we chose an all-at-once method for the semi-discrete frame-
work so that the reduced discrete optimality system is built in a similar manner
in both approaches. Moreover, we used the Crank—Nicolson scheme for the
semi-discrete problem since our choice for trial and test spaces for the primal
problem is equivalent to this time-stepping scheme, [? ? |. Thus, in the semi-
discrete setting, primal and dual problems amount for a comparable number
of operations, with a stability issue for the dual problem, of course. Note that,
in the semi-discrete case, the Crank—Nicolson scheme for the adjoint problem
(i.e,, Oz + Az=0; 2(T)=y(T) —yaq) is backward in time.

All results were obtained with MATLAB R2020b on a machine with a quad
core with 2.7 GHz and 16 GB of RAM.

5.1 Discrete inf-sup constant

We start by computing the discrete inf-sup constant of the optimality system
and compare that with the bound (??) in Corollary ??. We report the data
for a 1d example on I x Q = (0,1) x (=1,1) with p(x) = 22 + 0.1 for ny, = 40,
K =80, but stress that the results are representative also for other examples.

First, we investigate the dependence of the inf-sup constant w.r.t. the reg-
ularization parameter A. In Figure 7?7, we show the computed discrete inf-sup
constant in comparison with the lower bound (2 + %)_1. We observe the same
quantitative behaviors of both curves and see that our bound seems to be
almost sharp for increasing values of A. In particular, we see the optimality
(inf-sup is unity) already for A = 1072 and larger. For small values of ), the
bound is too pessimistic by almost two orders of magnitude.

Next, we fix A = 1072 and investigate the dependence of the discretization.
The results are presented in Figure ?7. On the left, we fix K = 60 and vary ny,
whereas on the right, we choose nj = 60 and modify K. We see that the lower

Doing so, we have that yq,, € Vi (i.e., a piecewise linear approximation), which is useful for
our experiments. We could of course have also used a piecewise constant approximation.
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100

\\\\

1072

discrete inf-sup

lower bound
1074 ; 7 7 >\
1074

1073 1072 1071 100 10

Figure 1 Discrete inf-sup constant of the optimality system for different values of A.
bound is in fact pessimistic, stability improves as K increases and worsens for

np — as to be expected. However, we can confirm uniform stability (i.e., for all
choices of ny and K) in all cases.

K =60 np = 60
discrete inf-sup —— discrete inf-sup
100 4 === lower bound 100 | =w=»= lower bound | _——
10_1 + 07!
1072 1072
1 1 1 1 | ; 1 1 1 |
20 40 60 80 100 120 20 40 60 80 100 120
nhp K

Figure 2 Discrete inf-sup constant of the optimality system for A = 102 and different
values of nj and K.

5.2 Comparison of space-time and semi-discrete methods

Our next aim is to compare our space-time method with the classical time-
stepping. As already pointed out earlier, we choose the data in such a way
that the results are in fact comparable.

5.2.1 One-dimensional example

We start by Problem ?? on I xQ = (0,1) x (-1,1) for p(x) = z + 1.3,
% + (1.3 + z) tanh(502)t? and desired state
ya(x) = tanh(50x). Again, we note that we got comparable results also for
other data. We compare the value of the objective function that we reach by
solving the optimality system with the two approaches. The results are shown
in Figure ?? for two values of the regularization parameter \. We show the
value for increasing number K of time steps and two different spatial dis-
cretizations, namely ny = 101 and ny = 1001. First, we observe that the overall

boundary data n(t,z) =
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performance is independent of the choice of A. Next, we see that both methods
converge to the same value of the objective function as K increases. However,
the huge benefit of the space-time setting shows off, namely that we reach an
almost optimal value also for very coarse temporal discretizations, which of-
fers significant computational savings. It is not surprising that this effect is

A=10"1 A=107°

0.46 77T e e e I i e e s TTTT 1 I S
-¢= sd, n =101 -¢= sd, np =101

-~ st, ny =101
3 —o—sd, ny, = 1001 ||
3\ —e— st, ny, = 1001

-e- st, np =101
—6—sd, ny = 1001
—e— st, np = 1001

Objective function J(y,u)
Objective function J(y,u)

10t 102 103 10t 102 103
K K

Figure 3 1d example, values of the objective function for different discretizations (left:
X =107, right: A = 1073, abbreviations: semi-discrete (sd), space-time (st)).

due to the improved stability of the space-time method as we can also see in
Figure ??, where we depict the control for different values of K for A = 1073
and nj, = 101. We can clearly observe the stability issues for the semi-discrete
approach in the left column, which do not appear in the space-time context.

5.2.2 Higher dimensional examples

A possible criticism of the space-approach is the fact that the size of the
optimality system might significantly grow with increasing space dimension.
Hence, we realized both approaches also in 2d and 3d and report the results
in the 2d case here. We do not monitor CPU-time comparisons, but refer e.g.
to [? 7 |, where such comparisons have been done for space-time variational
formulations of the heat and wave equation, respectively. It was shown there,
that appropriate tensorproduct solvers in fact yield competitive CPU times
for the arising space-time systems. The adaptation of those approaches to the
optimality system (?7) is subject to ongoing work, see also Remark ?? below.

Hence, we are going to report results for I x € := (0,1) x (0,1)? and bound-
ary data pu(z) = 0.25cosh(zy) + 0.25 along with a compatible function 7. As
desired state, we choose yq(x) = tanh(10(x - 0.5)(y —0.5)). As in the 1d case,
we compare the values of the objective function, see Figure ?7?7. The overall
behavior is very similar to the 1d case, namely we get a significant improve-
ment of the space-approach over the semi-discrete one for small number of
time steps K. Note, that here we use a linear scale for the horizontal axis as
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Figure 4 Optimal control for A = 1073 and nj = 101 (left column: semi-discrete, right
column: space-time, top row: K = 50, bottom row: K = 500).

opposed to Figure 77, where the results are shown in logarithmic scale. More-
over, for large values of A, we observe the necessity of a sufficiently fine spatial
discretization for both methods.

Remark 5.1 With the chosen all-at-once approach, we get very similar CPU times for
both methods. As already pointed out earlier, a runtime comparison of best possible
schemes is not the aim of this paper. Not using efficient tensorproduct solvers yields
that the limiting factor is the memory — in both cases.

6 Summary, conclusions and outlook

We have considered a space-time variational formulation for a PDE-cons-
trained optimal control problem. Our first-optimize-then-discretize approach
follows the abstract functional analytic framework of such problems, which is
then detailed for the space-time variational method. This can be summarized
as follows:

e Well-posed space-time variational formulation of the state equation. This
yields different trial and test spaces (Petrov—Galerkin style) of minimal
regularity;

® Formulation of the optimal control problem in the arising spaces, defi-
nition of the Lagrange function and derivation of KKT conditions. This
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Figure 5 2d example, values of the objective function for different discretizations (left:
X =107, right: A = 1073, abbreviations: semi-discrete (sd), space-time (st)).

yields the adjoint and gradient equations in natural spaces with minimal
regularity requirements;

® Derivation of (necessary and sufficient) optimality conditions and opti-
mality system (still in the infinite-dimensional setting);

e [LBB-stable discretization of the optimality system. In special cases,
this can be chosen to be equivalent to a Crank-Nicolson semi-discrete
discretization, which allows quantitative numerical comparisons.

Moreover, we reported on numerical experiments showing that space-time
methods yield the same value of the objective function for significantly smaller
number of unknowns. Since the CPU-times for the same number of unknowns
turned out to be similar, this offers potential for significant speedup.

Topics for future research include control and state constraints, other types
of PDEs for the constraints, improved schemes for solving the optimality
system, adaptive discretization of the control, etc. Also efficient solvers that
explicitly exploit the Kronecker structures of arising operators should be in-
vestigated. Finally, the above setting seems to be a very good starting point
for investigating model reduction, e.g. [? ].
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