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Abstract We consider a variational formulation of Linear Time-Invariant (LTI)-
systems and derive a model reduction in dimension and time inspired by space-time
variational reduced basis (RB) methods for parabolic problems. A residual-type RB
error estimator is derived whose effectivity is investigated numerically.

1 Introduction

Model order reduction (MOR) of (linear) systems is a huge field of research with an
enormous amount of literature. On the other hand, the reduced basis (RB) method
has become a widely spread technique for reducing parameterized partial differential
equations. We refer e.g. to [2], where both model reduction techniques are reviewed.
In this paper, we consider a variational formulation of Linear Time-Invariant (LTI)
systems that allows us to introduce an RB-type residual error estimator inspired
by space-time RB methods for parabolic problems, [6, 7]. This, in turn, yields a
reduction not only of the dimension of the LTI system but also w.r.t. the temporal
discretization, i.e., the number of time steps.

The paper is organized as follows: In §2, we introduce a variational formulation
of LTI systems and show its well-posedness, §3 is devoted to Petrov-Galerkin dis-
cretizations which are used as a detailed solution for the Reduced Basis Method
(RBM) in §4. We present some numerical results in §5 and end by conclusions as
well as an outlook in §6.
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2 Variational formulation for LTI-systems

We consider LTI systems on some time interval I := (0,T ), T > 0. Given integers
m, n, p ∈ N, matrices A ∈ Rn×n (which is assumed to be s.p.d. for simplicity),
B ∈ Rn×p , C ∈ Rm×n , D ∈ Rm×p , a control u : I → Rp and an initial state x0 ∈ Rn ,
determine the state x : I → Rn and output y : I → Rm s.t.

ẋ(t) + Ax(t) = Bu(t), y(t) = Cx(t) + Du(t), t ∈ I, x(0) = x0. (1)

W.l.o.g. we restrict ourselves to the homogeneous case, i.e., x0 = 0, but note, that
the inhomogeneous case can easily be incorporated.
A Variational formulation. Wemultiply the first equation in (1) with a test function
z : I → Rn and integrate over I, i.e.,∫ T

0
( ẋ(t), z(t)) dt +

∫ T

0
(Ax(t), z(t)) dt =

∫ T

0
(Bu(t), z(t)) dt, (2)

where (·, ·) denotes the Euclidean scalar product with induced norm ‖ · ‖ in Rd ,
d ∈ {m, n, p}. Obviously, (2) makes sense for z ∈ Z := L2(I,Rn ) ≡ L2(I)n ,
‖z‖Z := ‖z‖L2 (I )n . The desired state function x : I → Rn is then sought in the
Sobolev-Bochner Hilbert space X := H1

(0) (I)n := {x ∈ H1(I)n : x(0) = 0}. As in
[6, 7] we consider a slightly stronger norm than the usual graph norm, namely

|||x |||2X,Std := ‖ ẋ‖
2
L2 (I )n + ‖x‖

2
L2 (I )n + ‖x(T )‖2, (3)

with the corresponding inner product (x, v)X,Std := ( ẋ, v̇)L2 (I )n + (x, v)L2 (I )n +

(x(T ), v(T )) for x, v ∈ X , which is well-defined recalling that X ↪→ C([0,T],Rn ).
Then, setting U := L2(I)p as parameter space, we obtain the following variational
formulation of (1):

for u ∈ U find x = x(u) ∈ X : b(x, z) = f (z; u) := (Bu, z)L2 (I )n ∀ z ∈ Z, (4)

where the parameter-independent bilinear form reads b(x, z) := ( ẋ + Ax, z)L2 (I )n .
We stress the fact that f (·; u) is linear in u (for x0 , 0 affine-linear).
Well-posedness. In order to prove well-posedness of (4), we need to satisfy Nečas’
conditions, namely boundedness, injectivity and inf-sup condition of b(·, ·). Since
the verification is very similar to space-time variational formulation of parabolic
initial value problems, we refer to it, [5, 6, 7]. In particular, the inf-sup constant can
be detailed in similar way, see [6, Prop. 1] and [5, Thm. 5.1].

Proposition 2.1 Let A ∈ Rn×n be s.p.d. with constants αA > 0 and γA < ∞, such
that αA‖φ‖ ≤ ‖Aφ‖ ≤ γA‖φ‖ for all φ ∈ Rn . Then,

inf
x∈X

sup
z∈Z

b(x, z)
|||x |||X,Std ‖z‖Z

≥ βStd :=
min{1, αA min{1, γ−2A }}
√
2max{1, (αA)−1}

> 0. (5)
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In order to (quantitatively) improve the inf-sup-bound in (5), we consider an
energy norm, namely (φ, ψ)A := (φ,Aψ), ‖φ‖2

A
:= (φ, φ)A for an s.p.d. ma-

trix A ∈ Rn×n , φ, ψ ∈ Rn and (with a slight double use of notation) (z,w)A :=∫ T

0 (z(t),w(t))A dt as well as ‖z‖2
A

:= (z, z)A for w, z ∈ L2(I)n . Then, we set

|||x |||2X := ‖ ẋ‖2
A−1
+ ‖x‖2A + ‖x(T )‖2, |||z |||Z := ‖z‖A,

and following the reasoning in [7], we can easily show that

inf
x∈X

sup
z∈Z

b(x, z)
|||z |||Z |||x |||X

= sup
x∈X

sup
z∈Z

b(x, z)
|||z |||Z |||x |||X

= 1 ≡ βEn. (6)

3 Petrov-Galerkin (detailed) discretizations

In order to compute an approximation to the solution of (4), we use a standard
Petrov-Galerkin approach. To this end, one constructs finite-dimensional trial and
test spaces XN ⊂ X ,ZN ⊂ Z with dim(XN ) = dim(ZN ) = N . For stability, these
spaces need to satisfy a discrete inf-sup (LBB) condition, i.e.,

βN := inf
xN ∈XN

sup
zN ∈ZN

b(xN , zN )
|||xN |||X |||zN |||Z

≥ βEnLB > 0, (7)

where the lower-bound βEnLB for the inf-sup-constant is independent ofN asN → ∞.
Then, the discrete version of (4) is a Petrov-Galerkin scheme of the form

for u ∈ U find xN (u) ∈ XN : b(xN (u), zN ) = (Bu, zN )L2 (I )n ∀zN ∈ ZN , (8)

where u ∈ U is possibly suitably discretized (see below). As usual, we define the
primal residual rpr(·; u) ∈ Z ′ as

rpr(z; u) := f (z; u)L2 (I )n − b(xN (u), z) = b(x(u) − xN (u), z), z ∈ Z, (9)

and its norm by Rpr(u) := |||rpr(·; u) |||Z ′ . Since Z = L2(I)n is a Hilbert (pivot) space,
we can identify Z = Z ′, which significantly reduces the complexity in computing this
dual norm (we do not need to determine Riesz representations). Then, the following
error-residual relation is straightforward and well-known (recall βEn ≡ 1)

|||x(u) − xN (u) |||X ≤ Rpr(u) = ‖Bu − ẋN (u) − AxN (u)‖A−1 =: ∆pr(u). (10)

A Time-Marching Discretization. We start by introducing a Petrov-Galerkin dis-
cretization arising from a (finite element) discretization in time, which leads to
a Crank-Nicolson (CN) time-marching scheme. To this end, we choose some in-
teger K > 1 and set ∆t := T/K resulting in a temporal triangulation T time

∆t
≡

{tk−1 ≡ (k − 1)∆t < t ≤ k ∆t ≡ tk, 1 ≤ k ≤ K } in time. Denote by
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S∆t = span{σ1, . . . , σK } piecewise linear finite elements on I, where σk is the
(interpolatory) hat-function with the nodes tk−1, tk and tk+1 (resp. truncated for
k ∈ {0, K }) and Q∆t = span{τ1, . . . , τK } piecewise constant finite elements, where
τk := χI k , the characteristic function on the temporal element Ik := (tk−1, tk ). Then,
we set XNCN := S∆t ⊗ Rn , ZNCN := Q∆t ⊗ Rn , i.e., the detailed dimension isN := Kn.
Within that framework, the detailed approximation amounts computing xNCN ∈ XNCN
represented as1 xNCN(t; u) ≡ xNCN(t; u)(t) =

∑K
k=1 x

k
CNσ

k (t), x(tk ) ≈ xkCN ∈ R
n ,

k = 1, . . . , K, t ∈ I, and xNCN := (xkCN)k=1, ...,K ∈ RK×n � RKn = RN . Set-
ting Π∆t := ([Π∆t ]k,`)k,`=0, ...,K , Π̌∆t := ([Π∆t ]k,`)k=0, ...,K−1,`=1, ...,K , Π̂∆t :=
([Π∆t ]k,`)k=1, ...,K,`=0, ...,K and Π̄∆t := ([Π∆t ]k,`)k,`=1, ...,K forΠ ∈ {K, L, M, N,O},

[K∆t ]k,` := (σ̇k, σ̇`)L2 (I ), [L∆t ]k,` := (σk, σ`)L2 (I ), [M∆t ]k,` := (σk, τ`)L2 (I )

[N∆t ]k,` := (σ̇k, τ`)L2 (I ) [O∆t ]k,` := (σ̇k, σ`)L2 (I ), (11)

and recalling [M∆t ]k,` = ∆t2 (δk,` + δk+1,`) and [N∆t ]k,` = δk,` − δk+1,` , we obtain
b(xNCN, τ

`eµ )L2 (I )n =
[
[Id + ∆t2 A]x`CN − [Id −

∆t
2 A]x`−1CN

]
µ .

Discretization of the Control. Without any discretization, we can in general not
evaluate the term (Bu, zN )L2 (I )n exactly. As a first attempt, it seems reasonable
(as done in the literature of LTIs) to use the same temporal discretization, i.e.,
UN := S∆t ⊗ Rp and interpolate the control onto the temporal nodes T time

∆t
, i.e.,

uN (t) :=
∑K

k=0 u
k σk (t), u∆t = (uk )k=0, ...,K ∈ R(K+1)×p , where we note that the

initial value u(0) does not need to vanish, which is the reason, why the above sum
starts from k = 0.

Crank-Nicolson Scheme. We finally obtain the following iteration: x0 := x0 and[
Id − ∆t2 A

]
x`CN =

[
Id + ∆t2 A

]
x`−1CN +

∆t
2 B(u` + u`−1), ` = 1, 2, . . . , K . (12)

In particular, the reduction to homogeneous initial conditions has no effect to the
temporal iteration. These considerations also show the well-posedness of the discrete
problem (8). Note, that (12) yields an iteration so that one does not need to solve
the potentially large linear system as for the second discretization in (15) below. Of
course, (12) can also be written as a linear system (BNCN)T xNCN(uN ) = f NCN(uN ),
where [BNCN](k,ν), (`, µ) = [Ň∆t ]k,` [Id]ν,µ+[M̌∆t ]k,` [A]ν,µ , whichmeans thatBNCN =
Ň∆t ⊗ Id + M̌∆t ⊗ A, which is non-symmetric.
Standard Error Estimate. An error estimate is derived by using well-known tech-
niques from studying iterations. Denoting by x(t; uN ) the solution of (1), we have

‖x(t`; uN )− xNCN(t`; uN )‖ ≤ 2∆t
`−1∑
k=0

γkE

αk+1
I
‖rpr(t`−k ; xNCN, u

N )‖ =: ∆Std(uN ), (13)

1 We often omit the dependency on the control for simplicity.
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where αI := 1 + ∆t2 αA, γE := 1 + ∆t2 γA with αA, γA given in Proposition 2.1 and
the residual rpr(t; xN , uN ) := BuN (t) − ẋN (t) − AxN (t).
Supremizers and a Linear System. Alternatively, given some choice for XN , we
choose the test space in such a way that the inf-sup-constant βN in (7) is maximized.
This is typically done by using so called supremizers, [4], which reads here

zxN = A−1 ẋN + xN . (14)

Let ΞN := {ξN1 , . . . , ξ
N
N
}, XN = span(ΞN ), then we set ΘN := {θN1 , . . . , θ

N
N
},

θNi := zξi and ZNsup := span(ΘN ). We obtain a linear system for (8)

B
N
supx

N
sup(u) = f Nsup(u), (15)

where the (symmetric) stiffness matrix has the entries [BNsup]i, j = b(ξNi , θ
N
j ) =

(ξ̇Ni + AξNi , A−1 ξ̇Nj + ξ
N
j )L2 (I )n = (AθNi , θ

N
j )L2 (I )n , i, j = 1, . . . ,N , and the right-

hand side reads ( f Nsup(u))i := (Bu, A−1 ξ̇Ni + ξ
N
i )L2 (I )n , i, j = 1, . . . ,N . For the

specific choice of the CN-trial functions ξNi = σ
k ⊗ eν , i = (k, ν), k = 1, . . . , K ,

ν = 1, . . . , n,N = Kn, we obtainBNsup = (K̄∆t⊗A−1)+(L̄∆t⊗A)+((Ō∆t+ŌT
∆t

)⊗ Id).
RB-type Residual Error Estimate. This Pertov-Galerkin formualtion allows us to
use a result in [7, Prop. 2.9] to derive an ‘RB-type residual’ error estimator to be
described now. For the trial space XN we will consider as in [7] a discrete norm
|||·|||X,∆t . To define it, we set x̄N

k
:= 1
∆t

∫
I k

xN (s) ds and x̄N (t) :=
∑K

k=1 x̄
N
k
τk (t),

t ∈ I. Then, we set |||xN |||2X,∆t := ‖ ẋN ‖2
A−1
+ ‖ x̄N ‖2A + ‖x

N (T )‖2. With these
settings, it was proven in [7, Prop. 2.9] that

βNsup := inf
xN ∈XN

sup
zN ∈ZNsup

b(xN , zN )
|||zN |||Z |||xN |||X,∆t

= 1.

Let us stress that βNsup is independent of the control (parameter) u and of T , ∆t. Thus,
for any approximation xN (u) ∈ XN (e.g., the RB approximation below), we get

|||xNsup(u) − xN (u) |||X,∆t ≤ ∆
pr
N (u) := ‖Bu − ẋN (u) − AxN (u)‖A−1 . (16)

We may use a discretized control uN or any u allowing to compute f Nsup(u), e.g.
f Nsup(uN ) = [(Ô∆t ⊗ (A−1B)) + (L̂∆t ⊗ B)]u∆t for ξNi = σ

k ⊗ eν as above.

4 Reduced Basis Method (RBM)

Now, we employ the RBM to the above introduced variational formulation of an LTI.
As mentioned already earlier, we view the control u as a parameter, i.e., (1) is seen
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as a parametric linear system. Doing so, we can reduce both the dimension n of the
LTI system and the number K of time steps by reducingN := Kn to some N � N .
RBM for Petrov-Galerkin Problems. The starting point is the detailed discretiza-
tion (8) of (4). Within a multi-query context, one would need to solve (8) for many
different controls u ∈ U and in a realtime scenario, a good approximation to xN (u)
would be needed extremely fast. This is precisely the situation one is facing within
parameterized partial differential equations, where the RBM has proven to be a very
useful tool for model reduction (at least in the elliptic and parabolic case).

We thus interpret (4) as a semi-discretized parabolic problem and follow [6, 7]
to construct a RBM for the arising non-symmetric space-time-like problem. In
order to do so, one looks for subspaces XN ⊂ XN and ZN ⊂ ZN of dimension
dim(XN ) = dim(ZN ) = N � N = Kn and some BN ∈ R

N×p such that

find xN ≡ xN (u) ∈ XN : b(xN , zN ) = fN (zN ; u) := (BNu, zN )L2 (I )n ∀ zN ∈ ZN

(17)
and in such a way that xN can be computed online efficient, i.e., with a complexity
independent of N . Let us assume that we have (possibly orthonormal) bases {ξ (i) :
i = 1, . . . , N } and {z( j ) : j = 1, . . . , N } for XN and ZN , respectively, at hand.
Then, (17) amounts solving a linear system BT

N xN (u) = fN (u) of dimension N ,
where fN (u) (and hence the coefficient vector xN (u)) depend on the control u and
we obtain a parameter-dependent solution xN (u). Moreover, [BN ]i, j = b(ξ (i), z( j ))
and [ fN (u)] j = (BNu, z( j ))L2 (I )n . Of course, the reduced system depends on the
choice of the detailed Petrov-Galerkin detailed discretization. Let PN : XN → XN

and QN : ZN → ZN denote projections onto the reduced spaces and let PN ,
QN : RN → RN denote the matrix representations w.r.t. the above bases, we get
BT

N,disc = QN (BNdisc)
TPT

N and fN,disc(u) = QN f Ndisc(u) for disc ∈ {sup,CN}. Given
some RB basis functions ξ (1), . . . , ξ (N ) in XNCN determined as ξ (i) := xNCN(u(i)) by
(12) (the selection of the ‘snapshots’ u(i) will be detailed below) and the supremizers
z(1), . . . , z(N ) by (14), the system matrix of the reduced problem reads BN,sup =

(ΞN )TBNsupΞ
N (recall (11)), where ΞN := (ξ (i)

∆t
)i=1, ...,N . Note, that BN,sup is

symmetric and independent of the parameter, i.e., the control. We can thus pre-
compute and store a LU- or QR-decomposition, which reduces the online amount of
work to solve the linear system toO(N2). The right-hand side is parameter-dependent
and reads fN,sup(uN ) = (ΞN )T f Nsup(uN ) for some uN ∈ UN .
Reduced Basis Generation. We use a greedy procedure to compute a Reduced
Basis, indicated in Algorithm 1 and which is based upon some error estimator
∆
pr
N . After execution of this scheme, we obtain a reduced space XN ≡ XNN :=

span{xNCN(u(1)), . . . , xNCN(u(N ))} as well as a reduced test space ZN ≡ ZNN,sup :=
span{zN (u(1)), . . . , zN (u(N ))} and also a reduced control space UN . The general
procedure is indicated by Algorithm 1, which is based upon the choice of a training
parameter space Utrain ⊂ UN . Note, that the state snapshots are computed by using
the CN-time marching scheme (12) and the reduced system is then generated by the
supremizers in (14), see line 2 in Algorithm 1.
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Algorithm 1 (Primal) Greedy algorithm with CN-snapshots and RB-supremizers
1: ChooseUtrain ⊂ UN , tol, η (1) := u (1) ; set N := 1
2: Compute ξ (N ) := xNCN(η (N ) ), z (N ) := zN (η (N ) ) . detailed solution (12) & supremizer (14)
3: set XN := span{ξ (1), . . . , ξ (N ) }, ZN := span{z (1), . . . , z (N ) }, orthonormalize bases
4: setUN := span{η (1), . . . , η (N ) }, orthonormalize
5: for u ∈ Utrain do
6: Compute xN (u) ∈ XN . RB approximation with N d.o.f.
7: Compute ∆prN (u) . primal error estimator, e.g., (16)
8: end for
9: Set η (N+1) := argmaxu∈Utrain ∆

pr
N (u) . worst parameter

10: if ∆prN (η (N+1) ) > tol set N := N + 1, goto 2 else break end if

Computation of the RB Error Bound. We can further detail the residual-based
error estimate from (16) applied to the reduced problem, i.e.,

|||xNsup(u) − xN,sup(u) |||X,∆t ≤ ∆
pr
N (u) := ‖Bu − ẋN,sup(u) − AxN,sup(u)‖A−1 . (18)

First, we have ∆pr(u)2 = ‖Bu‖2
A−1
− 2 fN,sup(u)T xN (u) + xN (u)TBN,supxN (u) for

xN ≡ xN,sup. Obviously, the last two terms can easily and efficiently be evaluated.
Hence, we consider the first part, namely ‖Bu‖A−1 = ‖A−1/2Bu‖L2 (I )n . At this point,
it is now crucial how a reduced discretization of the control u is or can be chosen:

• If the control comes from temporal measurements, it will most likely be in form
of a detailed control, i.e., uN . Then, ‖Bu‖2

A−1
= uT

∆t

(
L∆t ⊗ BT A−1B

)
u∆t , which

is not fully online efficient since the computational amount depends on K .
• If the control can be reduced a priori, e.g., in a multi-query context (think of
optimal control), then one would have some uN with N degrees of freedom so
that ‖BuN ‖A−1 can be computed in O(N2) operations independent ofN = nK .

5 Numerical Experiments

We report on some results of our numerical experiments for a standard example,
where A arises from a Finite Element discretization of a 1d heat equation with
Neumann boundary conditions on the left end and homogeneous Dirichlet boundary
conditions on the right end as well as homogeneous initial conditions. The control
matrix is B := nκ(−1, 0, . . . , 0)T ∈ Rn×1, m = 1 and κ > 0 is the conductivity. On
the left-hand side of Figure 1, we see the Greedy error sequence, i.e., the decay of
∆
pr
N over a training set of controls as N → ∞. We observe a rate of about 10−0.1N .

On the right-hand side, we increase the number K of time steps and observe that we
can basically reach any desired accuracy. Moreover, we compare the exact error with
the error estimator ∆prN and obtain decreasing effectivities for increasing K . We stress
that we measure the error in a quite strong norm |||·|||X,∆t , which is much stronger
than what is usually used in model order reduction, namely ‖ · ‖L2 (I )n .
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Fig. 1: Greedy error sequence (left), test error and error estimator for increasing K (right): relative error vs. N .

6 Summary and Outlook

We have introduced a space-time-type RB model reduction for LTI systems which
allows to reduce both the state dimension n and the number of time steps K . We
obtain exponential decay w.r.t. the reduced dimension N and reasonable effectivities,
in a quite strong norm, however. The next step is to extend this framework to the
output using adjoint techniques. At that stage, quantitative comparisons with well-
established techniques like balanced truncation, will be performed. This should
result in a clear picture together with other comparisons of model order reduction
and POD-Greedy [1] as well as POD-Greedy versus space-time RBM, see [3].
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