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Abstract. We consider approximations formed by the sum of a linear com-

bination of given functions enhanced by ridge functions – a Linear/Ridge ex-
pansion. For an explicitly or implicitly given function, we reformulate finding

a best Linear/Ridge expansion in terms of an optimization problem. We in-

troduce a particle grid algorithm for its solution. Several numerical results
underline the flexibility, robustness and efficiency of the algorithm.

One particular source of motivation is model reduction of parameterized

transport or wave equations. We show that the particle grid algorithm is able
to produce a Linear/Ridge expansion as an efficient nonlinear model reduction.

1. Introduction

Many (numerical) approximations rely on linear approximation schemes. For
some f ∈ H, H a normed space, one seeks for a possibly good finite-dimensional
subspace HN ⊂ H and an approximation fN ∈ HN of f . Examples include finite
element, finite volume, spectral or discontinuous Galerkin methods. In many cases,
such linear schemes work very well, in particular if the error of an approximation
scheme can be shown to be bounded in terms of the error of the best approximation
in HN (e.g. by the famous Ceá lemma, [7, 28]). If then the error of the best
approximation decays fast (e.g. by using a Clément-type operator, [8]), one obtains
an efficient (numerical) approximation.

Of course, one would want to determine a “best-possible” approximation. For
linear approximation schemes, the worst best possible error is known as the Kol-
morogov N -width dN(F) which is defined for a class F ⊂H of elements as ([18, 24])

dN(F) ∶= inf
HN⊂H;dim(HN )=N

sup
f∈F

inf
fN ∈HN

∥f − fN∥H .

The class F could e.g. be a smoothness class (a Sobolev or Besov space) or a
set of solutions for certain problems with different data (e.g. a parametric partial
differential equation (PPDE) for different parameter values, see below).

The question if dN(F) decays “fast” as N →∞ (e.g. dN(F) = O(e−N)) or “slow”
(e.g. dN(F) ≃ N−s, 0 < s < 1) typically depends on some measure of smoothness
of the elements of F , for example the Besov regularity. If F is given as a set of
solutions of a problem (such as a PPDE), then the decay of dN(F) is a property of
the problem at hand (not its discretization). This means that linear approximation
schemes are not appropriate for problems with a poor decay of the N -width. Hence,
other schemes are needed, which are necessarily nonlinear.
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There is a huge variety of nonlinear approximation schemes, an extensive list
goes far beyond the scope of this introduction. For reasons to be described below,
we are interested in ridge functions for building nonlinear approximation schemes.
More specific, we aim at constructing an approximation scheme consisting of a
linear part and some nonlinear enhancement in terms of a ridge function update.
Doing so, such an expansion consisting of a linear and a nonlinear part, we will be
able to treat problems with fast and slow decay of dN(F) by the same algorithm.
We need to collect some notation in order to motivate our choice.

1.1. Linear/Ridge approximation. We consider a given function u ∶ Ω → R,
where Ω ⊂ Rd is an open bounded domain and u ∈ L2(Ω) is the minimal require-
ment, sometimes we need to assume more, e.g. u ∈ C0,1(Ω̄), at least piecewise.a

This function can be given either explicitly or implicitly as the (unknown) solu-
tion to a given problem. In order to formulate the approximation problem under
consideration, let

XN ∶= span(ΦN) ⊂ L2(Ω), ΦN ∶= {ϕ1, ..., ϕN}
be a given linear space of dimension N ∈ N with ϕi, i = 1, ...,N , being given functions
(which do not need to be linearly independent). Next, we recall the notion of a
ridge function and refer e.g. to [6, 17, 25] for overviews and details.

Definition 1.1. Let a ∈ Rd, b ∈ R and v ∶ R → R. Then, w ∶ Ω → R, w(x) ∶=
v(a⊺x + b) is called ridge function with profile v, direction a and offset b.

Remark 1.2. In practical application, we shall assume v ∈ L2(R)∩C0,1
pw (R) for the

profiles to be discussed below. We will denote its argument by ξ ∈ R, i.e., v(ξ).

In addition to ΦN , we assume that we are given a finite number M ∈ N of profiles

VM ∶= {v1, ..., vM} ⊂ L2(Ω)
and consider the approximation problem

u(x) ≈
N

∑
i=1

αi ϕi(x) +
M

∑
j=1

cj vj(a⊺jx + bj) =∶ uδ(x), x ∈ Ω.(1.1)

A function uδ of type (1.1) will be called Linear/Ridge expansion. Clearly, such a
Linear/Ridge approximation depends on the choices of ΦN and VM as well as on the
coefficients αi, cj ∈ R, the directions aj ∈ Rd and the offsets bj ∈ R. However, in this
paper we view ΦN and VM to be given (e.g. by some preprocessing training), so that
we only consider the dependency of uδ on the directions, offsets and coefficients. In
order to shorten notation, we collect this dependency in one index δ. The main topic
of this paper is thus to investigate appropriate choices of coefficients, directions and
offsets in (1.1) in order to determine a “good” approximation of a given function u.

1.2. Motivation. The main source of motivation for this paper comes from model
order reduction of parameterized partial differential equations (PPDE) by means
of the reduced basis method (RBM, [14, 15, 26]). In order to briefly review it,
let L(µ) be a parameterized partial differential operator and f(µ) be some given
right-hand side, where µ ∈ P ⊂ RQ is some parameter. One seeks for the exact
solution u(µ) of L(µ)u = f(µ) – in a suitable weak sense. Typically, a suitable
(i.e., sufficiently fine, we say “detailed”) discretization is available. However, the

aC0,1
(Ω̄) ∶= {v ∈ C(Ω̄) ∶ ∃L > 0 ∶ ∥v(x) − v(y)∥ ≤ L ∥x − y∥ for all x, y ∈ Ω}.
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computation of a numerical detailed approximation uN (µ) (with N ≫ 1 degrees of
freedom) is too costly at least for approximating u(µ) for several different values
of µ (“multi-query” context) and/or extremely fast (e.g. in realtime and/or in an
embedded system).

The RBM aims at constructing a linear subspace HN ⊂ H (if the PPDE is
posed on H, e.g. the Sobolev space H1

0(Ω)) of dimension N ∋ N ≪ N , which is
typically constructed in an offline training phase. Then, in the online realtime or
multiquery environment, a reduced approximation uN(µ) is computed very rapidly
– as the (Petrov-Galerkin) projection of the detailed solution uN (µ) onto HN . In
this context, the above mentioned class reads

F = {u(µ) ∶ µ ∈ P}
and this explains the particular relevance of the decay of dN(F) for model order
reduction, e.g. [1, 2]. In particular, it is known that certain elliptic problems admit
an exponential decay of dN(F), [5], whereas parameterized transport and wave
equations show poor decay, [13, 22], which motivates the construction of nonlinear
model reduction (approximation) schemes in particular for such types of problems,
[3, 4, 11, 20, 21, 27], just to mention a few.

We are suggesting a nonlinear update in terms of ridge functions due to several
reasons. First of all, ridge functions have a simple structure and turn out the be
particularly suitable for parameterized transport and wave-type problems as we
shall see below. Second, there is a rich literature for approximation theory with
ridge functions, see, e.g. [6, 9, 17, 25]. Finally, ridge functions are closely related
to neural networks, which just recently have been investigated for nonlinear model
reduction, see e.g. [10, 12, 19].

1.3. Outline. The remainder of this paper is organized as follows. In Section 2, we
collect all required preliminaries and introduce the arising optimization problem.
Section 3 is devoted to the association of the desired quantities (directions and
offsets) with particles, which is the basis for the particle grid algorithm which we
introduce in Section 4. Some results of our various numerical experiments are
presented in Section 5. We finish with an outlook in Section 6.

2. Preliminaries

In order to quantify what has to be understood by ‘good’ approximation, define
the set

UN,M ∶= {uδ(x) =
N

∑
i=1

αi ϕi(x) +
M

∑
j=1

cj vj(a⊺jx + bj), αi, bj , cj ∈ R, aj ∈ Rd},(2.1)

which is a nonlinear subset of L2(Ω). We consider the error in the L2-norm and are
interested in the/a best approximation in this norm abbreviated by ∥ ⋅∥0 ≡ ∥ ⋅∥L2(Ω).
In order to make (at least an approximation to) a best approximation accessible,
we collect all variables by setting α ∶= (αi)i=1,...,N ∈ RN , a ∶= (aj)j=1,...,M ∈ RdM ,
b ∶= (bj)j=1,...,M , c ∶= (cj)j=1,...,M ∈ RM and

δ ∶= (α,a,b,c) ∈ RN+(d+2)M ,(2.2)

write uδ(x) as in (2.1) and consider the cost function

Ju ∶ RN+(d+2)M → R≥0, Ju(δ) ∶= ∥u − uδ∥2
0.(2.3)
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Then, uδ∗ = arg infuδ∈UN,M ∥u − uδ∥0, where δ∗ = arg infδ∈RN+(d+2)M Ju(δ).
Before we continue let us detail an example which also indicates our particular

interest in such approximations to be considered here.

Example 2.1 (Parametric linear transport problem). Consider the homogeneous
linear transport equation on the real line with velocity µ > 0, i.e., ∂tu(t, x) +
µ∂xu(t, x) = 0 on (0, T ) × R, T > 0 with initial condition u(0, x) = u0(x), x ∈ R.
In a model reduction framework, one would interpret µ as a parameter and would
want to approximate the solution u(t, x;µ) = u0(x − µt) either for many velocities
µ and/or in realtime. This is typically done in terms of a linear combination of

“snapshots” ϕi ∶= u(⋅, ⋅ ;µ(i)), i = 1, ...,N , where the snapshot parameters µ(i) are
chosen in some offline training phase. However, it is known from [22] that the Kol-

mogorov N -width is at most O(N−1/2), which makes such a linear model reduction
inefficient.

However, choosing the profile v1 ∶= u0 and setting a1 ∶= (−µ,1)⊺, b1 ∶= 0, c1 ∶= 1
yields c1v1(a⊺1(t, x) + b1) = u0(x − µt), i.e., the exact solution. Hence, choosing
M = 1, V1 = {v1}, we get that infδ Ju(δ) = 0 independent of the choice of ΦN .

We stress the fact that we cannot assume in general that the functions v1, ..., vM
are linearly independent, not even pairwise. There are even cases, where vi = vj for
some distinct indices i /= j as the following example shows.

Example 2.2 (Parametric wave equation). Consider the linear wave equation
∂2
ttu − µ2 ∂2

xxu = 0 for t > 0 and x ∈ R with initial conditions u(0) = u0 and
u̇(0) = 0. The solution is given by the famous d’Alembert formula as u(t, x;µ) =
1
2
(u0(x − µt) + u0(x + µt)). Hence, choosing v1 = v2 = u0, c1 = c2 = 1

2
, b1 = b2 = 0 as

well as a1 = (−µ,1)⊺ and a2 = (µ,1)⊺ yields the exact solution. This is an example
of two identical profiles causing an exact representation using different directions.
Besides, also for u̇(0) ≠ 0, the wave equation is a sum of two, but then different,
ridge functions.

Also this problem is particularly interesting since it is known that projection-based
(i.e., linear) model reduction techniques do not work in the sense that the decay of

the Kolmogorov N -width is at most O(N−1/4), [13]. However, d’Alembert’s solution
formula is a ridge function.

These examples should motivate the consideration of the optimization problem

Ju(δ)→min! δ ∈ RN+(d+2)M(2.4)

for a given function u ∈ L2(Ω).
Lemma 2.3. Let u ∈ L2(Ω). Then, there exists a minimizer δ∗ of (2.4) for Ju
defined in (2.3).

Proof. Since L2(Ω) is a Hilbert space and UN,M ⊂ L2(Ω) is closed, the claim follows
by standard arguments. �

Note, that UN,M is not necessarily convex and therefore the minimizer in Lemma
2.3 is not necessarily unique. We are now going to determine an approximation
uδ ∈ UN,M to the given function u step by step.

Remark 2.4. In practice we might just have access to the function u indirectly by
a quantity like the residuum of a PDE. In this case, one would not use the L2-error
as cost function Ju but rather the residuum (if computable) or an appropriate error
estimator.
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2.1. Given directions and offsets. As a first step, let us assume that the di-
rections a and offsets b according to the profiles VM would be given. Then, the
optimal coefficients α and c for a, b are easily determined as we shall see next.

Lemma 2.5. Let u ∈ L2(Ω) and ΦN , VM , a = (aj)j=1,...,M ∈ RdM as well as
b = (bj)j=1,...,M be given. Define the matrices Ai,i′ ∶= (ϕi, ϕi′)0, i, i′ = 1, ...,N and
Cj,j′ = (C(a,b))j,j′ ∶= (vj(a⊺j ⋅ +bj), vj′(a⊺j′ ⋅ +bj′))0 as well as Bi,j = (B(a,b))i,j ∶=
(ϕi, vj(a⊺j ⋅ +bj))0, i, i′ = 1, ...,N , j, j′ = 1, ...,M . Then, the optimal coefficients

α∗ = α∗(u,a,b) = (α∗1 , ..., α∗N)⊺ and c∗ = c∗(u,a,b) = (c∗1, ..., c∗M)⊺ are given as the
solution of the linear system of equations

( A B
B⊺ C

)(α
c
) = (f(u)

g(u)) ,(2.5)

where the right-hand side is given by f(u)i ∶= (u,ϕi)0, i = 1, ...,N , and g(u,a,b)j ∶=
(u, vj(a⊺j ⋅ +bj))0, j = 1, ...,M .

Proof. Let a, b be fixed and denote δ̃ ∶= (α,c) as well as δ = (α,a,b,c) as in (2.2).

We consider the reduced cost function J̃u(δ̃) ∶= Ju(δ) as a function of δ̃ only. Then,

J̃u(δ̃) = ∥u − uδ̃∥2
0 = ∥u∥2

0 − 2(u,uδ̃)0 + ∥uδ̃∥2
0 and

(u,uδ̃)0 =
N

∑
i=1

αi (u,ϕi)0 +
M

∑
j=1

cj (u, vj(a⊺j ⋅ +bj))0 = f(u)⊺α + g(u)⊺c,

∥uδ̃∥
2
0 =

N

∑
i,i′=1

αi αi′(ϕi, ϕi′)0 +
M

∑
j,j′=1

cj cj′ (vj(a⊺j ⋅ +bj), vj′(a⊺j′ ⋅ +bj))0

+ 2
N

∑
i=1

M

∑
j=1

αi cj(ϕi, vj(a⊺j ⋅ +bj))0 = α⊺Aα + c⊺Cc + 2α⊺Bc,

so that J̃u(δ̃) = ∥u∥2
0 − 2 f(u)⊺α − 2g(u)⊺c +α⊺Aα + c⊺Cc + 2α⊺Bc. Hence, since

A and C are symmetric,

∇J̃u(δ̃) = (∂αNJu(δ)
∂cMJu(δ)

) = (−2 f(u) +Aα +A⊺α + 2Bc
−2g(u) +Cc +C⊺c + 2B⊺α

)

= 2( −f(u) +Aα +Bc
−g(u) +Cc +B⊺α

) = −2(f(u)
g(u)) + 2( A B

B⊺ C
)(α

c
) ,

i.e., ∇J̃u(δ̃) = 0 if and only if (2.5). Finally, ∇2J̃u(δ̃) = 2( A B
B⊺ C

) is symmetric

and since for x ∈ RM+N

x⊺ ( A B
B⊺ C

)x = ∥
N

∑
i=1

xi ϕi +
M

∑
j=1+N

xj vj(a⊺j ⋅ +bj)∥
2

0

≥ 0,

∇2J̃u(δ̃) is also positive semi-definite, which concludes the proof. �

This result shows that the coefficients are determined once directions and off-
sets are given. Setting δ(u,a,b) ∶= (α∗(u,a,b),a,b,c∗(u,a,b)), we consider the
reduced cost function depending solely on directions and offsets

Ĵu ∶ R(d+1)M → R≥0, Ĵu(a,b) ∶= ∥u − uδ(u,a,b)∥2
0(2.6)
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along with the reduced optimization problem

Ĵu(δ̂)→min! δ̂ = (a,b) ∈ R(d+1)M .(2.7)

Hence, we are left with finding the directions a and the offsets b.

3. Directions, offsets and particles

Since the determination of directions and offsets amounts to solving a complex
optimization problem, we aim at using a very well-known heuristic method, the
particle swarm algorithm, see e.g. [16, 23]. In order to reduce computational com-
plexity, we arrange our “particles” (which are associated to the collection of all
directions aj ∈ Rd and offsets bj ∈ R, j = 1, ...,M) in a dynamic grid. Hence, we call
the arising scheme particle grid method. For each profile, we collect the direction
and the offset in one vector dj ∶= (aj , bj) ∈ Rd+1. These vectors are then associated
to some component pj ∈ (−1,1)D =∶ SD. The vector d = (dj)j=1,...,M ∈ RDM of all
directions and offsets is then associated to one particle. The dimension D is at most
d + 1, but can also be smaller if the problem at hand fixes some components of dj ,
see Example 3.1 below.

Example 3.1. Consider the linear transport and wave equation in one space-
dimension from Example 2.1 and 2.2, respectively. The underlying domain is
Ω = R+ × R and the variables read (t, x) ∈ Ω indicating time and space. Hence,
in both cases, any direction takes the form a = (at, ax) and any ridge function reads
v(at t + ax x + b) for some offset b ∈ R.

The ridge functions should be consistent with the initial condition u(0, x) = u0(x),
which implies that v ∶= u0 and ax ∶= 1 as well as b ∶= 0. This shows that we do not
need a full vector d = (at, ax, b) of dimension d + 1 = 3, but that a single parameter
suffices to represent each combination of direction and offset with a particle.

In fact, in both cases, profiles take the form v(x ± µt), which means that we
choose a = (±µ,1)⊺ and b = 0 with µ ∈ R.

The association of particles to all vectors dj , j = 1, ...,M (i.e., for all M profiles),
is done by constructing an appropriate mapping

π ∶ SD → Rd+1, π(pj) =∶ (aj , bj)⊺.
Of course, on can construct several such mappings.

Example 3.2. For D = d + 1, we frequently used the smooth transformation π ∶
(−1,1)d+1 → Rd+1 defined as πi(s) ∶= tan(π

2
s) for each component i = 1, ..., d + 1.

Example 3.3 (Example 3.1 continued). In order to associate the real-valued pa-
rameter µ to a particle p ∈ (−1,1), we can define π ∶ S1 → R3 by p↦ (tan(π

2
p),1,0)⊺,

i.e., µ = tan(π
2
p).

This setting now allows us to reformulate the reduced optimization problem (2.7)

in terms of the particles, i.e., Ĵu(p)→min! for p = (p1, ..., pM) ∈ SMD , where

Ĵu ∶ SMD → R≥0, Ĵu(p) ∶= J̌u(τ(p1), ..., τ(pM)),(3.1)

where the arguments are to be understood in the following manner:

R(d+1)M ∋ δ̂ = (a1 a2 ⋯ aM
b1 b2 ⋯ bM

) = (d1, ..., dM) = (τ(p1), ..., τ(pM)).

We call such a p particle.
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Example 3.4. In order to illustrate the challenges for solving the reduced opti-
mization problem for (3.1), let us consider three examples, where the function u
to be approximated is given as a sum of ridge functions (i.e., which can even be
represented exactly). We consider the two-dimensional case Ω = (0,1)2 and M = 2
profiles. The data is collected in the following table.

Case u(x1, x2) v1(ξ) v2(ξ)
1 1.6 cos(10x1 + 10

3
x2) + 0.8 cos(10x1 − 5x2) cos(10ξ) cos(10ξ)

2 cos(x1 + 2x2) + cos(x1 − 0.5x2) cos(ξ) cos(ξ)
3 5 ∣x1 − 1

2
x2 − 1

2
∣ + 0.6 (x1 + 1

3
x2)2 ∣ξ − 1

2
∣ ξ2

Given v1 and v2, setting b1 = b2 = 0, (a1)1 = (a2)1 = 1 we scatter S2
1 by selecting

particles p = (p1, p2) ∈ (−1,1)2 for the remaining two unknowns (a1)2 and (a2)2.
Each such particle defines a direction for which we define uδ and compute the value
of the cost function, i.e., the error ∥u − uδ∥0. The results are depicted in Figure 1.

The functions u are shown in the top row. The reduced cost function Ĵu as a
function of p ∈ (−1,1)2 is visualized in the second row, scattered on a grid of 1292

points. Solving for the two directions and offsets would thus amount finding a global
minimum of the cost functions shown in the second row. As we see, we may face
multiple local minima, even multiple global minima (in particular in cases 1 and 2,
where v1 = v2, so that we see symmetry), steep gradients and several highly localized
phenomena.

Figure 1. Cases 1-3 (from left to right): function to be approximated
(top row) and corresponding reduced cost functions (bottom row).

As we see from Example 3.4, we may face a truly complex optimization problem.
In particular, we cannot hope to use gradient-based optimization techniques, at
least not in a straightforward manner.

4. A particle grid algorithm

As already motivated earlier, we are now going to describe an algorithm which
has shown good performance in determining at least a good approximation to a
global minimum of Ĵu in (3.1). Recall, that we are facing an optimization problem
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in SMD ≅ SDM ≅ SDM = (−1,1)DM . Hence, we define the optimization dimension as
P ∶=DM .

The algorithm produces a sequence of particle grids

P(0) → P(1) → ⋯→ P(k) → P(k+1) → ⋯,

where each grid (i.e., a swarm in form of a grid) P(k) consists of mpar particles in
SP . We choose npar nodes in each dimension, i.e.,

mpar = nPpar for npar ∈ N,

particles in SP = (−1,1)P . Then, we initialize the first particle swarm P(0) by taking
the tensor product, yielding a regular grid. Each particle has uniquely defined next
neighbors in each diagonal direction. This next neighbor relation does not change
in the course of the iteration, as we will see in Lemma 4.1. This means that each
swarm is a grid whose internal geometry does not change even if the position of
each particle may vary. We may associate each particle grid P(k) with a tensor of
dimension P (e.g., a matrix for P = 2).

If P(k) = {p(k)i ∈ (−1,1)P ∶ i = (i1, ..., iP ) ∈ {1, ..., npar}P }, and each particle

takes the form P(k) ∋ p
(k)
i = ((p(k)i )1, ..., (p(k)i )P )⊺ ∈ (−1,1)P , the algorithm can

be described as follows: Choose δ ∈ (0, 1
2
). Then, for each particle p

(k)
i ∈ P(k), we

consider the value of the particle and of the at most 3P − 1 surrounding particles

p
(k)
j with j = (j1, ..., jP ) where ∣is− js∣ ≤ 1 for all 1 ≤ s ≤ P . We collect the indices of

these particles in a set I(i) ∶= {j = (j1, ..., jP ) ∈ {1, ..., np}P ∶ ∣is − js∣ ≤ 1, 1 ≤ s ≤ P}
and set

q
(k+1)
i ∶= arg min

j∈I(i)
Ĵu(p(k)j ), ∣I(i)∣ ≤ 3P − 1.(4.1)

Subsequently we get the next particle by the step:

(4.2) p
(k+1)
i ∶= (1 − δ)p(k)i + δq(k+1)

i .

For the points on the boundary of the grid we need to slightly adapt this pro-
cedure. Technically, we view particles at opposite sides of the boundary as being
neighbors, which means that, for example in one dimension the particle on the
most left is considered as the neighbor of the particle on the most right. For di-

mension 1 ≤ s ≤ P , a particle p
(k)
j with j = (j1, ..., js−1,1, js+1, ..., jP ) is a neighbor

of p
(k)
i with i = (j1, ..., js−1, npar, js+1, ..., jP ). This means that we are sticking the

boundary together, so that we get a grid where in each dimension each particle has
neighbors to the left and to the right, similar to a torus.

This concludes the description of one iteration P(k) → P(k+1), which is termi-
nated after a predefined number K ∈ N of iterations with the output

papp ∶= arg min
i∈{1,...,np}P

Ĵu(p(K)i ).(4.3)

which is used as an approximation for some minimizer p∗. Here, we often choose
δ = 1

3
, which turned out to be a reasonable choice as it always ensures a positive

distance of neighboring particles. We summarize the method in Algorithm 1.
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Algorithm 1 Particle grid algorithm

Input: Number of particles mpar = nPpar, maximal number of iterations K,

parameter δ ∈ (0, 1
2
)

1: Initialize P(0) = {p(0)i ∶ i ∈ {1, ..., npar}P } equidistantly
2: for k = 0 to K − 1 do
3: for all indices i ∈ {1, ..., npar}P do

4: Compute q
(k+1)
i as in (4.1)

5: Calculate p
(k+1)
i by (4.2); set P(k+1) = {p(k+1)

i ∶ i ∈ {1, ..., npar}P }
6: Compute Ĵu(p(k+1)

i )
7: end for
8: Get papp as in formula (4.3)
9: end for

Output: Approximation particle papp

Figure 2 shows 6 stages of Algorithm 1 for one specific example with P =DM = 2
and npar = 10. We start with a regular grid on top left and indicate how the
algorithm moves the particles by showing the states for iterations k = 1, k = 5,
k = 25, k = 56 and k = 90. As we see, not all particles are concentrated in one point
even for this case having a single global minimum. The reason is that sticking the
opposite boundaries together prevents a concentration. However, most points are
very close to the global minimum or on lines parallel to the coordinate axes through
the point of global minimum.

Figure 2. Particle grid iterations for P =DM = 2, npar = 10: Iterations
k = 0, k = 1, k = 5, k = 25, k = 56, k = 90.

The following observation is then immediate.

Lemma 4.1. The next neighbor relation does not change in the course of the iter-
ation, i.e., the index set I(i) is independent of the iteration k. �
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4.1. Complexity. Let K be the number of iterations and mpar the number of

particles. In order to compute Ĵu, we sample Ω ⊂ Rd by n ∈ N quadrature points
for computing the L2-norm. Hence, we need to compute point values of u and uδ
at nd points. For each quadrature point, the evaluation of uδ requires to evaluate
ϕi, i = 1, ...,N and vj(a⊺j ⋅ +bj), j = 1, ...,M , which is a total of Cost(Ĵu) ∶= N ⋅ nd +
M ⋅ (d + 1) ⋅ nd operations for one evaluation of Ju and mpar ⋅Cost(Ĵu) evaluations

for one particle grid P(k). For each iteration, we need to evaluate Ĵu for all grid
points and per grid point, we have at most 3P −1 comparisons. In total, Algorithm
1 thus requires in the order of

K ⋅ nPpar ⋅ [nd ⋅ (N +M ⋅ (d + 1)) + 3P − 1]

operations, where P = DM and D ≤ d + 1. Hence, the algorithm gets to its limits
for large particle dimension D and large numbers M of profiles. The dimension N
of the linear part only plays a minor role, especially as with sufficient memory the
values of ϕi can be computed once and be stored.

4.2. Parallelization. The particle grid algorithm has the advantage that it can
easily be parallelized. In fact, in a shared memory environment, the current grid

P(k) and any given particle p
(k)
i is needed for determining the position p

(k+1)
i

in the next iteration. Hence, all such computations can be performed in parallel
without further communication, which leads to linear speedup w.r.t. the numbers of
processors. For distributed memory one would pass the positions of the neighbors

of p
(k)
i to the processor handling this particle.

5. Numerical experiments

In this section, we present results of some of our numerical examples. The main
focus is the question how well a Linear/Ridge expansion is able to approximate
certain functions and also the quantitative performance of the presented particle
grid algorithm.

We start by applying our particle grid algorithm for determining a Linear/Ridge
approximation of type (1.1), i.e., we seek for an approximation in UN,M consisting
of the sum of a linear combination of functions ΦN and profiles VM for selected
choices of such sets ΦN and VM .

5.1. Approximation properties. First, we choose functions u which can be writ-
ten exactly in the form (1.1), i.e., u ∈ UN,M and approximate the coefficients y in
(2.2) by our particle grid algorithm. Doing so, we can monitor the error ∥u− uy∥0.

5.1.1. Polynomials and Wavelets. We start by a problem in two dimensions, (t, x) ∈
Ω = [0,1] × [−1,1] which might be interpreted as time and space. It seems to be
a straightforward choice to use span(ΦN) = Pr(Ω), i.e., the space of algebraic
polynomials of degree at most r ∈ N. Here we choose r = 2, so that N = 6 and for
simplicity we use the monomial basis, i.e.,

ϕ1(t, x) = 1, ϕ2(t, x) = t, ϕ3(t, x) = x, ϕ4(t, x) = t2, ϕ5(t, x) = tx, ϕ6(t, x) = x2.

Of course, we could use a more stable basis Φ6 (e.g. orthonormal polynomials), but
we are also interested to see how the algorithm can cope with ill-conditioned sets
ΦN , which are possibly even allowed to be linearly dependent.
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Concerning the profiles, we choose wavelets as it is known that dilates and trans-
lates of wavelets yield frames or bases of L2(R2). That makes them good candidates
for profiles. Specifically, we take M = 4 and

● v1 as Mexican Hat,
● v2 as the Haar wavelet,
● v3 as Morlet wavelet,
● and v4 to be the Hockeystick, which is also known as the ReLU activation

function in neural networks,
see Figure 3b. The function u to be approximated is a Linear/Ridge expansion

with αi = 1, i = 1, ...,6, bj = 0, cj = 1, j = 1, ...,4 and a1 = (1,1)⊺, a2 = (1,
√

2 − 1)⊺,

a3 = (1,−1)⊺ and a4 = (1,
√

2 + 1)⊺. The arising function is displayed in Figure
3a. As we see, the shape of u is rather complex. As the required discretization for
performing computations, we use ht = 1

128
, hx = 1

64
, so that we have 129 grid points

for both variables. For Algorithm 1 we choose as above δ = 1/3 and mpar = 64 = 1296
particles. In Figure 3d, we monitor the L2-error over the number of iterations. We
obtain monotone convergence, without rate of course. For example, in order to
reach an error smaller than 10−4 we need about 250 Iterations. After about 1000
iterations, the L2-error is machine accuracy, i.e., 9.91 ⋅ 10−15. The approximation
uδ is shown in Figure 3c.

(a) Function u. (b) Wavelet-type profiles.

(c) Linear/Ridge approximation.
(d) Error decay.

0 500 1,000
10−15

10−10

10−5

100

Iterations

L
2
-e
rr
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Figure 3. Approximation of function given as sum of quadratic poly-
nomials (N = 6) and M = 4 wavelets of different type.
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5.1.2. Discontinuous staircase function. Even though the shape of the function in
our first example is complex, it is a smooth functionb. Hence, we are now going
to consider a function which consists of eight jumps along straight lines which
are rotated in order to exclude a tensor product approximation. We use again
Ω = (0,1) × (−1,1). The profiles are chosen as the jump function displayed in
Figure 4a top right. In order to investigate the role of non-linearly independence
of the profiles, we take v1 = ⋯ = v8 = 1R+ , i.e., M = 8 identical profiles. We forego
the linear part here, i.e., N = 0. The function u to be approximated takes the
form (1.1) with N = 0 and M = 8 choosing bj = 0, cj = 1, j = 1, ...,8 and directions
according to the angles π

9
, so that we obtain a staircase-like function as displayed

in Figure 4a bottom left.
For the discretization, we choose as above 129 grid points in both coordinate

directions. For the particle grid algorithm, we use δ = 1/3, mpar = 38 = 6561 and
mpar = 48 = 65563 particles, respectively, where we note that the algorithm did
not converge for 28 particles. The error decay is shown in Figure 4b. The reason
why we show results for mpar = 38 and mpar = 48 is the fact that we observe a
stagnation of the error for mpar = 38 after 50 iterations, whereas mpar = 48 yields
machine accuracy after 49 iterations. This shows that one might be forced to use a
large number of particles in order to reach high accuracies. After 50 iterations, we
achieved an L2-error of 0. In Figure 4a, we show the staircase-type step function
that is also the computed approximation after 50 iterations.

(a) Staircase-type step function.
(b) Error decay.

0 20 40

10−1

Iterations

L
2
-e
rr
o
r

npar = 3

npar = 4

Figure 4. Approximation of a given staircase-type step function.

5.2. Non-exact approximation functions. So far, we used the algorithm to ap-
proximate functions that can exactly be represented in terms of the chosen families
ΦN and VM . This shows how fast (or slow) the algorithm is able to find the function
in terms of directions and offsets. Now, we are going to consider functions u that
cannot be represented exactly by uδ, i.e., infδ ∥u−uδ∥ > 0. To this end, consider for
c ≥ 1 the function

(5.1) u(t, x;µ) ∶=
∞

∑
k=1

1

k!
cos [2π(k

√

c
10
t + x)], (t, x) ∈ Ω ∶= (0,1) × (−1,1).

bOf course, the Haar wavelet is discontinuous, but a quite easy and single function to be
approximated.
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For the linear part of the approximation, we choose snapshots ϕj(t, x) = u(t, x; j),
for j = 1, ...,N , and the profiles are chosen as vi ∶= cos(2π⋅), i = 1, ...,M for M ∈
{0, ...,4}. In Figure 5, we display the L2-error for u(t, x) = u(t, x; 100) and different
values of N and M . For the discretization, we choose as above 129 grid points
in both coordinate directions and for the particle grid algorithm, we used δ = 1/3,
mpar = 5M particles. We do not obtain monotone convergence as N grows, which
might be a stability issue. On the other hand, however, the error decreases for fixed
N and increasing M in a monotonic manner.

0 5 10 15 20 25

10−3

10−2

10−1

100

N

L
2
-e

rr
or

M = 0

M = 1

M = 2

M = 3

M = 4

Figure 5. Approximation of an infinite series: L2-error for different
sizes of ΦN and VM .

5.3. Parametric Partial Differential Equations (PPDEs). Next, we consider
two PPDEs that depend on parameters µ ∈ RP and investigate the approximation
of the solution u(µ) for various parameter values. The first problem is a stationary
one, the second is instationary; both are defined in Ω = (0,1)2, which is interpreted
as a time/space-domain for the wave equation. For both cases, we use δ = 1/3 and
mpar = 112 = 121 particles.

5.3.1. Case 1: Thermal block. The thermal block is a classical problem for model
reduction, [14]. We consider the stationary case, which is a Poisson problem with

piecewise constant coefficients, which serve as parameters. In fact, we decompose Ω
by Ωi ∶= [0,1]× [ i−1

4
, i

4
], i = 1, ...,4. The bilinear form of the variational formulation

of the problem reads for µ = (µ1, ..., µ4) ∈ R4, P = 4, as follows

a(u, v;µ) =
4

∑
i=1

µi ∫
Ωi
∇u(x)∇v(x)dx.

The right-hand side and boundary data can be retrieved from [14], and the formula
for the exact solution can easily be seen to be for x = (x1, x2) ∈ Ω as follows

u(x;µ) =
4

∑
i=1

1

µi
ϕi(x), ϕi(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
4
, 0 ≤ x2 < i−1

4
,

−x2 + i
4
, x2 ∈ [ i−1

4
, i

4
],

0, i
4
< x2 ≤ 1,
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see the left part of Figure 6. We consider different parameters µ ∈ [0.1,10]4.
Due to the specific form of the solution, we use the linear approximation with

N = 4 and choose Φ4 ∶= {ϕ1, ϕ2, ϕ3, ϕ4} with the functions defined above. We took
M = 2 arbitrarily chosen profiles. The reason for this choice is as follows: Since
the solution can be approximated quite accurately by the linear combination of the
snapshots ϕi (which is due to the fact that such snapshots are known from the
Reduced Basis Method to yield a very accurate approximation), the particle grid
algorithm should automatically detect that no profiles are needed. As we can see
from the results in Table 1 this is in fact the case – the algorithm finds the solution
up to machine accuracy after only 1 iteration of the particle grid algorithm. We
stress the fact that we tested much more parameter values and always observed
this behavior.

Figure 6. Exact solutions for the PDE examples 1 and 3. Left: 4 × 1
thermal block for µ = (0.4,2,0.3,5). Right: Solution to wave equation
for µ = 0.8.

5.3.2. Case 2: Linear transport equation. Recalling Example 2.1, we consider the
parametric linear transport equation with initial condition u0, which we choose as
a single profile, i.e., M = 1. For the linear part we use the same Φ4 as in §5.3.1,
i.e., the algorithm is supposed to set the corresponding coefficients αi to zero.

5.3.3. Case 3: The wave equation. As in Example 2.2, we consider the univariate
parametric wave equation utt(t, x)−µ2 uxx(t, x) = 0 for (t, x) ∈ Ω along with initial
conditions. We choose the initial data in such a manner that the solution reads

u(t, x;µ) = 0.5 sin(10x + 10µt) + 0.5 sin(10x − 10µt),
which is a superposition of two ridge functions. Consequently, we set M = 2 and
V2 ∶= {v1, v2} = {sin(10⋅), sin(10⋅)}. Again, for the linear part we use Φ4 as in §5.3.1.

The results are shown in Table 1. As expected, the hyperbolic wave equation
is a harder problem than linear transport, which in turn is much harder problem
than the thermal block. The numbers of the required iterations of the particle
grid algorithm are significantly higher in order to reach a desired tolerance. On the
other hand, we see that the algorithm is able to dismiss all the linear functions. The
algorithm in fact converges and even reaches machine accuracy – at the expense of
more iterations.
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Case PPDE parameter µ no. iterat. K L2-error

1 Thermal block (0.1,10,1,0.6) 1 5.1019e − 15

1 Thermal block (10,2,0.1,0.5) 1 1.4446e − 14

1 Thermal block (0.4,2,0.3,5) 1 6.0861e − 15

2 Transport 1/4 12 7.1348e − 05

2 Transport 1/4 66 4.6205e − 16

2 Transport 1 19 3.0119e − 05

2 Transport 1 70 9.3829e − 17

2 Transport 4 24 6.1985e − 05

2 Transport 4 67 0

3 Wave 1/4 20 7.6682e − 05

3 Wave 1/4 83 8.9850e − 16

3 Wave 1 21 8.2400e − 05

3 Wave 1 86 3.1765e − 16

3 Wave 4 28 4.3012e − 05

3 Wave 4 83 8.9850e − 16

Table 1. Parametric PDEs: Errors and iterations for both examples
and different parameter values.

5.4. Higher dimensions. Next, we are considering a problem in higher dimen-
sions, namely travelling plane waves (i.e., a wave function that is constant over any
plane that is orthogonal to a fixed direction in space). The general form of a plane
wave thus reads for a given normalized direction n = (n1, n2, n3)⊺ ∈ R3, ∥n∥ = 1 and
some velocity c as follows

A(t, x) ∶= v(n⊺x − c t), v ∶ R→ R,
which is actually a ridge function. It is well-known that A can also be obtained as
the solution of the 3d-wave equation Att − c2∆A = 0, which is the connection to our
previous example. From a physical point of view, we shall assume that the plane
waves emerge from two different light sources, i.e., for fixed t it takes the form

u(x) ∶=
2

∑
i=1

vi(n⊺i x − c t),

which we use as function to be approximated. We choose the specific profiles
v1 ∶= v2 ∶= sin, i.e., again, identical profiles. We fix time and velocity as t = 1,
c = 1. Doing so, we get the directions a ∈ R6 for d = 3, M = 2, i.e., D = nM = 6
as aj = nj ∈ R3, j = 1,2 and b = (b1, b2), b1 = b2 = −c. We use the specific choices

n1 ∶= (−1/
√

2,1/
√

2,0) and n2 ∶= (0,−1/
√

2,1/
√

2).
We are interested in the convergence history of the particle grid algorithm. To

this end, we fix the number of particles npar = 4 per direction, i.e., a total of
mpar = nDpar = 46 = 4096. The results are shown in Figure 7. We obtain quite fast
convergence at the early stages which then slows down.

5.5. Training directions for parametric PDEs. Let us reconsider parameter-
dependent PDEs as in §5.3 above. Within a model reduction context, a reduced
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Figure 7. 3d planar wave. L2-error over iterations for fixed number
npar = 69 of particles. The minimal error is 1.040410−4.

model is typically determined offline within a training phase. In our setting the
sets ΦN and VM would thus be determined in an offline training.

In an online environment (typically suitable for multi-query or realtime situa-
tions), new parameters µ ∈ RP are given and an approximation is to be determined
extremely fast – in online complexity. If we would determine the online approx-
imation in terms of uδ in (1.1), we would need to determine (optimal) directions
that are parameter-dependent, i.e., a(µ) and b(µ), which might be computation-
ally costly in the sense that many iterations of the particle grid algorithm would
be needed, destroying online efficiency.

In order to speedup this procedure, we suggest to train the mapping µ ↦
(a(µ),b(µ)) offline as follows: For a given (or to be determined) set {µ1, ..., µntrain

}
of training parameters, we determine (highly accurate) approximations a(µi),b(µi),
i = 1, ..., ntrain, offline by the particle grid algorithm. Then, we determine a inter-
polation µ ↦ (ǎ(µ), b̌(µ)) of those offline data such that the interpolation error
∥(a(µ),b(µ)) − (ǎ(µ), b̌(µ))∥ is small, at least for a number of test samples µ. Of
course, this interpolation error influences the overall online approximation error.
We are going to investigate this influence.

To this end, we consider the solution u(⋅, ⋅ ;µ) of the parametric linear transport

problem ut + µ−1/2 ux = 0, u(0) = u0, since it is known that this problem also
results in poor approximation rates using standard linear model reduction such
as the Reduced Basis Method, [22]. In addition, the function µ ↦ µ−1/2 is much
harder for the interpolation as a polynomial parameter-dependence. We choose 10
equidistant training parameters µi ∈ [0.1,1]. Since the offset is zero here, we only
determined the corresponding directions a(µi), i = 1, ...,10, which are real numbers
here. The left graph in Figure 8 shows a cubic spline interpolation of the obtained
data. We also display the exact curve µ ↦ a(µ) by determining high resolution
approximations of optimal directions for 100 parameters µ by the particle grid
algorithm. As we see, the error is almost negligible.

Next, we computed an online approximation for a new parameter µ as follows:
(1) Evaluate the interpolation to retrieve ǎj(µ), set bj = 0, N = 0; (2) compute the
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coefficients cj and obtain an approximation ǔδ in (1.1). This is to be compared
with the function uδ using the exact direction aj(µ). On the right in Figure 8, we
display these errors ∥ǔδ(⋅, ⋅;µ) − uδ(⋅, ⋅;µ)∥0 for different initial conditions u0 which
also serve as the single profile. We used the same knots for the interpolation and
see that the quantitative errors depend on the initial condition or more precisely
on the derivative of the profile. However, please note the range of the vertical axis,
which indicates that all errors are in fact in a comparable range.

Figure 8. Training directions for the parametric linear transport equa-
tion: Spline interpolation of directions (left) and errors for the obtained
ridge approximation (right).

5.6. Conclusions. As we did much more experiments than we can report here
(due to page limitation) let us collect some observations that we have seen and our
corresponding conclusions.

● Even though we have seen that the optimization problem arising from the
Linear/Ridge approximation is a challenging task, the particle grid algo-
rithm often works very well.

● For approximating a given function, the performance seems to be better
for smooth functions. However, the algorithm yields also good results for
non-continuous or multivariate functions, even though machine accuracy is
harder to reach then.

● By treating time “just as another variable”, the presented approach can
handle stationary and instationary problems in the same manner.

● Choosing the number of particles sufficiently large, we were always able to
reach machine accuracy.

● The algorithm is able to detect if a linear approximation is already sufficient
to reach a desired accuracy. Hence, the scheme is robust in the considered
cases of fast and of slow decay of the Kolmogorov N -width. We anticipate
that this is restricted to (P)PDEs with linear characteristics.

6. Outlook

The above described results of our numerical experiments seem to indicate that
this path might be continued. Of course, we are aware that research in several
directions is required, e.g.
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● the introduced particle grid algorithm is based upon the particle swarm
heuristics. There is no rigoros convergence analysis, which is a signifi-
cant drawback in particular compared to linear RBMs, where online effi-
ciency and a posteriori error control is certified. One might think of using
(stochastic) gradient-descent methods in combination with backpropaga-
tion/automatic differentiation as known from the training of neural net-
works. Another option might be to start by the particle swarm algorithm
and then use the result as starting point for a decent method.

● in the current form, the particle grid algorithm is not yet online efficient,
which would be required for using it within a multi-query and/or realtime
environment. Also here, techniques from neural networks might help.

● last, but not least, we did not focus on the training of ΦN and VM , but
merely viewed them as being given.
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