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ABSTRACT
In this contribution, we derive an a posteriori error estimator for the second or-
der wave equation motivated by energy-based a priori estimates by Bernardi and
Süli (2005). This estimate (which is valid for general discretizations) is then used
to derive a POD-Greedy reduced basis approach for the parameterized wave equa-
tion. The quantitative performance of the online-efficient error estimator is shown
for an illustrative example, keeping in mind that model reduction of parametrized
hyperbolic problems is a challenge.
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1. Introduction

The reduced basis method (RBM) is a widely accepted and intensively studied model
reduction technique for parameterized partial differential equations (PPDEs), see e.g.
Haasdonk (2017); Hesthaven, Rozza and Stamm (2016); Quarteroni, Manzoni and
Negri (2016). Significant progress has been made in particular for elliptic and parabolic
problems, Haasdonk and Ohlberger (2008); Urban and Patera (2012, 2014). Hyperbolic
problems still remain a challenge. In fact, even for linear transport problems, it may
happen that such problems cannot be well reduced in the sense that many degrees of
freedom are required for a reduced system of desired accuracy, Ohlberger and Rave
(2016).

In this paper, we consider the hyperbolic wave equation. Our point of departure is an
a priori estimate of energy type introduced in Bernadi and Süli (2005), see §3. We put
this estimate in the framework of a variational formulation of the wave equation (§2),
which then allows us to extend it to an a posteriori error estimate involving the residual
in each step of a time-marching scheme, §4. This estimate can then be used within a
POD-Greedy framework (which has been derived for parametrized evolution problems
in Haasdonk and Ohlberger (2008)) to derive a certified reduced basis approximation
for the parameterized wave equation, §5. We illustrate the quantitative performance of
the derived model reduction by a numerical example, namely a traveling wave problem,
which is particularly challenging for model reduction, §6.

CONTACT S. Glas. Email: silke.glas@uni-ulm.de.



2. Variational Formulation of the Wave Equation

We start by formulating a general linear equation of wave type. To this end, consider
a Gelfand triple of Hilbert spaces V ↪→ H ↪→ V ′ and a symmetric, bounded and
positive operator A ∈ L(V, V ′) given by 〈Aφ,ψ〉V ′×V = a(φ, ψ), φ, ψ ∈ V , induced by
a symmetric, bounded, coercive bilinear form a : V × V → R, such that

αa ‖ψ‖V ≤ ‖Aψ‖V ′ ≤ γa ‖ψ‖V , ψ ∈ V, (1)

i.e., αa and γa are coercivity and continuity constants, respectively. Setting I := (0, T ),
T > 0, given g ∈ L2(I;V ′), u0 ∈ H, u1 ∈ V ′, we look for u(t) ∈ H, t ∈ Ī, such that

ü(t) +Au(t) = g(t) inV ′, t ∈ I a.e., (2a)

u(0) = u0 ∈ H, u̇(0) = u1 ∈ V ′. (2b)

We restrict ourselves to LTI systems even though some of our results can be extended
to the more general situation of a time-dependent A(t).

The maybe most standard approach for deriving a weak formulation of (2) is to
multiply (2a) with a test function v ∈ V (i.e., in space only), integrate over space and
perform integration by parts, i.e.,

〈ü(t), v〉V ′×V + a(u(t), v) = 〈g(t), v〉V ′×V ∀v ∈ V, t ∈ I a.e., (3a)

u(0) = u0, u̇(0) = u1. (3b)

It is well-known (see e.g. (Grossmann, Roos and Stynes 2007, Thm. 5.30), (Wloka 1987,
Thm. 29.1)) that (3) admits a unique solution u ∈ H2(I;V ′)∩H1(I;H)∩L2(I;V ) for
all g ∈ L2(I;H), u0 ∈ V and u1 ∈ H. Moreover, u(t) stays in the same space as the
initial data u0. Hence u0 ∈ V implies u ∈ L2(I;V ), which is often too restrictive in real
wave phenomena, where one may only have u0 ∈ H. However, the above-mentioned
well-posedness result has been extended in (Lions and Magenes 1972, Thm. 9.4) to the
situation in which the data only satisfies g ∈ L2(I;V ′), u0 ∈ H and u1 ∈ V ′ yielding a
unique solution u ∈ H2(I;W ′) ∩H1(I;V ′) ∩ L2(I;H), where W ′ is the dual space of
the domain of A typically defined as W := Dom(A) := {u ∈ H : Au ∈ H}. This latter
result is also aligned with d’Alembert’s formula for the 1D wave equation which shows
that the solution stays (only) in H if the initial data are only that regular. Finally, it
is also known that u ∈ C0(Ī;H) ∩ C1(Ī;V ′), so that the initial conditions are in fact
well-defined as well as terms like ‖u(t)‖H , ‖u̇(t)‖V ′ , t ∈ Ī, which we will need later.

Finally, we denote the Riesz operator R : V ′ → V defined by (Rψ̃, ψ)V =
〈ψ̃, ψ〉V ′×V , ψ̃ ∈ V ′, ψ ∈ V . We recall some well-known quantities, namely ‖Rψ̃‖V =
‖ψ̃‖V ′ and (ψ̃, φ̃)V ′ = 〈Rψ̃, φ̃〉V×V ′ = (Rψ̃,Rφ̃)V , ψ̃, φ̃ ∈ V ′, with the inner products
(·, ·)V , (·, ·)V ′ on V and V ′, respectively as well as the duality paring 〈·, ·〉V ′×V of V ′

and V induced by H.

3. A Priori Estimates

As already mentioned, we follow Bernadi and Süli (2005); Georgoulis, Lakis and Stynes
(2013) to derive a priori energy-type estimates which we will later also use in an a
posteriori manner.
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Lemma 3.1. Let g ∈ L2(I;V ′), u0 ∈ H, u1 ∈ V ′ and denote the unique solution of
(3) by u ∈ H2(I;W ′) ∩H1(I;V ′) ∩ L2(I;H). Then, we get for all t ∈ I the estimate√

‖u̇(t)‖2V ′ + αa‖u(t)‖2H ≤
√
‖u̇(0)‖2V ′ + γa‖u(0)‖2H +

∫ t

0
‖g(s)‖V ′ds. (4)

Proof. We start by (2) for some s ∈ I and test it with Ru̇(s) ∈ V , which is the same
as taking the inner V ′-inner product with u̇(s) ∈ V ′. Then, we get

(ü(s), u̇(s))V ′ + a(u(s), u̇(s)) = (g(s), u̇(s))V ′ .

Next, we use the well-known equalities (ü(s), u̇(s))V ′ = 1
2
d
dt‖u̇(s)‖2V ′ and

a(u(s), u̇(s)) = 1
2
d
dt‖A

1/2u(s)‖2V ′ . We define Z(s) :=
(
‖u̇(s)‖2V ′ + ‖A1/2u(s)‖2V ′

)1/2
,

where Z(s) ≥ 0 (and also Z(s) > 0 for u 6= 0) and arrive at

Z(s)Ż(s) =
1

2

d

ds
Z(s)2 =

1

2

d

ds
‖u̇(s)‖2V ′ +

1

2

d

ds
‖A1/2u(s)‖2V ′

= (g(s), u̇(s))V ′ ≤ ‖g(s)‖V ′‖u̇(s)‖V ′

≤ ‖g(s)‖V ′

(
‖u̇(s)‖2V ′ + ‖A1/2u(s)‖2V ′

)1/2
= ‖g(s)‖V ′Z(s),

thus Ż(s) ≤ ‖g(s)‖V ′ . Integrating over [0, t] yields Z(t) − Z(0) ≤
∫ t

0 ‖g(s)‖V ′ds. By
inserting the definition of Z(s), we get√

‖u̇(t)‖2V ′ + ‖A1/2u(t)‖2V ′ ≤
√
‖u̇(0)‖2V ′ + ‖A1/2u(0)‖2V ′ +

∫ t

0
‖g(s)‖V ′ds.

Finally, note, that (1) immediately yields
√
αa ‖φ‖H ≤ ‖A1/2φ‖V ′ ≤ √γa ‖φ‖H , φ ∈ H.

Thus, it follows

(‖u̇(t)‖2V ′ + αa‖u(t)‖2H)1/2 ≤ (‖u̇(0)‖2V ′ + γa‖u(0)‖2H)1/2 +

∫ t

0
‖g(s)‖V ′ds ,

which proves the claim.

4. An A Posteriori Error Estimate

We can now easily obtain error estimates from the above Lemma 3.1 for a semi-
discretization in space. Let us stress the fact that the derived estimates are valid of
any suitable discretization and are not restricted to the RBM.

To this end, let Hh = span{φ1, . . . , φN } ⊂ H and Vh := span{ψ1, . . . , ψN } ⊂ V ,
be linear spaces of (possibly large) dimension N ≡ Nh ∈ N. In this case, the discrete

problem is to find uh(t) =
∑N

i=1 uh,i(t)φi, uh,i(t) ∈ R (uh(t) := (uh,i(t))i=1,...,N being
the vector of the expansion coefficients of the approximation uh at time t), such that

〈üh(t), vh〉V ′×V + a(uh(t), vh) = 〈g(t), vh〉V ′×V ∀vh ∈ Vh, (5a)

uh(0) = u0,h, u̇h(0) = u1,h, (5b)
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where u0,h and u1,h are finite approximations of u0 and u1, respectively. We shall
assume that (5) is well-posed. Then, we denote the error by eh(t) := u(t)− uh(t) and
the residual as usual by rh(t) := g(t)− üh(t)−Auh(t). These quantities are known to
be related by an initial-value problem very similar to (5), namely

〈ëh(t), vh〉V ′×V + a(eh(t), vh) = 〈rh(t), vh〉V ′×V ∀vh ∈ Vh, (6a)

eh(0) = e0,h, ėh(0) = e1,h, (6b)

where e0,h := u0 − u0,h, e1,h := u1 − u1,h. As a consequence of Lemma 3.1, we get

Corollary 4.1. Under the assumptions of Lemma 3.1 and with Hh, Vh as above, we
get for all t ∈ I the estimate

‖u(t)− uh(t)‖H ≤
√
γa
αa
‖e0,h‖2H +

1

αa
‖e1,h‖2V ′ +

1
√
αa

∫ t

0
‖rh(s)‖V ′ ds. (7)

5. Reduced Basis Method (RBM)

As already mentioned earlier, the RBM is a model reduction technique for parameter-
ized partial differential equations1. Thus, we introduce a general notion of a parametric
version of the weak formulation of the wave equation (3). Let µ ∈ P ⊂ RP be a param-
eter and consider the parametric form a : V × V × P → R. We arrive at the (already
discretized in space) parametric semi-discrete variational formulation

〈üh(t;µ), vh〉V ′×V + a(uh(t;µ), vh) = 〈g(t;µ), vh〉V ′×V ∀vh ∈ Vh, (8a)

uh(0;µ) = u0,h, u̇h(0;µ) = u1,h. (8b)

We detail the reduced basis method for this kind of parametric wave equation.

5.1. Detailed Solution, the “Truth”

Any reduced basis approximation is based upon an approximation of the underlying
problem. This discretization is assumed to be sufficiently fine in order to be able to
represent the solution for any parameter with the desired accuracy. Such a detailed
discretization is also called the “truth”. Thus, we assume that Vh is sufficiently refined
and for the remaining temporal discretization we apply a well-known θ-scheme with
τ := T/K for some K > 1 and tk := k τ . Then, we seek an approximation ukh(µ) ≈
uh(tk;µ), where we will often omit the µ-dependency in order to shorten the notation.
Then, the fully discrete problem for a given parameter µ ∈ P amounts to find functions
ukh = ukh(µ) ∈ Vh, k = 2, . . . ,K (given the initial value u0

h := u0,h and a second-order
accurate approximation u1

h of uh(t1;µ)), such that for all vh ∈ Vh

1

τ2
(uk+1
h − 2ukh + uk−1

h , vh)L2(Ω) + a(θuk+1
h + (1− 2θ)ukh + θuk−1

h , vh;µ) =

= θ〈g(tk+1;µ), vh〉V ′×V + (1− 2θ)〈g(tk;µ), vh〉V ′×V + θ〈g(tk−1;µ), vh〉V ′×V

=: 〈gkh(µ), vh〉V ′×V , k = 1, . . . ,K − 1. (9)

1For recent introductions to the RBM, we refer to Haasdonk (2017); Hesthaven, Rozza and Stamm (2016);

Quarteroni, Manzoni and Negri (2016).

4



For θ ≥ 1/4, the above scheme is unconditionally stable, we use θ = 1/4. The above
iteration (9) can be rewritten in operator form for fixed θ as

LIuk+1
h = LE1

ukh + LE2
uk−1
h + bkh, k = 1, . . . ,K − 1, (10)

where LI = LI(µ) := Ih + θτ2Ah(µ) : Vh → Vh is the implicit part, LE1
= LE1

(µ) :=
2Ih − (1 − 2θ)τ2Ah(µ), LE2

= LE2
(µ) := −Ih − θτ2Ah(µ) : Vh → Vh the two explicit

ones as well as Ah(µ) : Vh → Vh is the operator induced by a(·, ·;µ) on Vh × Vh, Ih is
the identity on Vh and bkh := τ2 gkh(µ).

5.2. Reduced Basis Error Estimate

Both for the offline determination of a reduced model as well as for the online certifi-
cation of a reduced basis approximation, we need an error estimator, which is online-
efficient, i.e., whose computational work is independent of the detailed dimension N .
Of course, for the considered wave equation, such an estimator also needs to incorpo-
rate the temporal evolution of a reduced system.

In order to obtain a reduced temporal evolution, we replace Vh in the θ-scheme for
the detailed approximation by some subspace VN ⊂ Vh of dimension N � N (the
construction of VN will be detailed below). Hence, we compute (ukN )k=1,...,K such that

1

τ2
(uk+1
N − 2ukN + uk−1

N , vN )L2(Ω) + a(θuk+1
N + (1− 2θ)ukN + θuk−1

N , vN ;µ) =

= 〈gkh(µ), vN 〉V ′×V , k = 1, . . . ,K − 1,

for all vN ∈ VN , given some sufficiently accurate approximations of the initial data,
namely u0

N and u1
N . Recalling that we have an implicit scheme, the above iteration

requires to solve K linear problems of reduced dimension N , which can be written as

LI,Nuk+1
N = LE1,Nu

k
N + LE2,Nu

k−1
N + bkN , k = 1, . . . ,K − 1,

where LI,N := PN ◦ LI , LEi,N := PN ◦ LEi
, i = 1, 2, and bkN := PNb

k
h, and PN :

Vh → VN denotes the orthogonal projection. Due to the assumed separability w.r.t.
the parameter, this iteration can be performed online-efficient.

Next, for µ ∈ P, we want to estimate the (truth) error at time-step k defined by
ekN (µ) := ukh(µ)− ukN (µ) in terms of the residual RkN (µ), i.e.,

Rk+1
N (µ) :=

1

τ2

(
LE2

uk−1
N + LE1

ukN − LIuk+1
N + bkh

)
, k = 1, . . . ,K − 1. (11)

We look for an error-residual relation. A standard key observation is the fact that the
error satisfies an evolution problem, namely (for k = 1, . . . ,K − 1)

LIek+1
N = LIuk+1

h − LIuk+1
N = LE2

ek−1
N + LE1

ek + τ2Rk+1
N . (12)

Then, the desired a-posteriori error bound follows from Corollary 4.1 applied to (12),

‖ukh(µ)− ukN (µ)‖H ≤ ∆k
N (µ), k = 0, . . . ,K,
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with the reduced basis error estimator given by

∆k
N (µ) :=

√
γa
αa
‖e0
N (µ)‖2H + 1

αa
‖ė0
N (µ)‖2V ′

+
1
√
αa

(‖R2
N‖V ′

2
+

k−1∑
i=3

‖RiN‖V ′ +
‖RkN‖V ′

2

)
.

Here ėkN (µ) := u̇kh(µ) − u̇kN (µ) is the error of the temporal derivative. Moreover, the
integral on the right-hand side in (7) is approximated by the trapezoidal rule. We will
always use ∆K

N (µ), i.e., the error bound at the final time T , in order to control the full
evolution.

Note, that the residual RkN (µ) in (11) is separable w.r.t. the parameter, so that
∆k
N (µ) can be computed online-efficient by an offline/online computational procedure.

5.3. Reduced Basis Method via POD-Greedy

The POD-Greedy method has been introduced in Haasdonk and Ohlberger (2008) as
a model reduction method for linear evolution equations. It is a combination of the
standard Greedy algorithm for the parameter search and a Proper Orthogonal De-
composition (POD) in time in order to select the time step containing the maximal
information of the trajectory for the given parameter. We use this framework in com-
bination with our a posteriori error estimator ∆k

N (µ) introduced above. The resulting
scheme is shown in Algorithm 1.

Algorithm 1 POD-Greedy algorithm, see Haasdonk and Ohlberger (2008)

Require: Given Nmax > 0, finite training set Ptrain ⊂ P, accuracy εtol

1: choose µ1 ∈ Ptrain, k arbitrarily; set Ψ1 :=
{

uk
h(µ1)

‖uk
h(µ1)‖V

}
, V1 := span(Ψ1); set ` := 1

2: while maxµ∈Ptrain
∆K
` (µ) > εtol do

3: define µ`+1 := argmaxµ∈Ptrain
∆K
` (µ) . Greedy

4: define ψ̃`+1 := POD
{
ukh(µ`+1)− ProjV`

(ukh(µ`+1))
}
k=0,...,K

. POD

5: define Ψ`+1 := orthonormalize
(
Ψ` ∪ {ψ̃`+1}

)
, V`+1 := span(Ψ`+1), ` := `+ 1

6: end while
7: define VN := V`, N :=dim(VN ) return VN , N ;

Let us comment on line 1: Often, the initial values are taken as the first basis
functions. However, since we consider homogeneous initial conditions, we use some
arbitrary snapshot as initialization for the POD-Greedy scheme. Algorithm 1 yields
an N -dimensional reduced space VN = span{ψ1, . . . , ψN}.

6. A Numerical Experiment

We present some results of one of our numerical experiments.

Model data. Choose Ω = (0, 1) and I := (0, 1). We set V := H1
0 (Ω) ↪→ L2(Ω) =: H,

hence V ′ = H−1(Ω). The parameter µ ∈ P := [0.3, 2] ⊂ R is chosen to be the wave
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speed. Then, we aim at determining u(·, ·;µ) : I × Ω→ R that solves (in weak form)

ü(t, x;µ)− µ2 uxx(t, x;µ) = 0 on I × Ω, (13a)

u(t, 0;µ) = tanh(5t)3 ∀ t ∈ I, (13b)

u(t, 1;µ) = 0 ∀ t ∈ I, (13c)

u(0, x;µ) = 0 ∀ x ∈ Ω, (13d)

u̇(0, x;µ) = 0 ∀ x ∈ Ω. (13e)

The separability w.r.t. the parameter is obvious. The wave speed µ is normalized in
such a way that the wave front reaches the right endpoint x = 1 of Ω exactly at the
terminal time T = 1 for the choice µ = 1, see Figure 1. For µ < 1, the wave front does

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1.0

x

t = 0.2
t = 0.4
t = 0.6
t = 0.8
t = 1.0

Figure 1. Solution u(t, ·; 1) of (13) for µ = 1 and different times t = 0.2, 0.4, 0.6, 0.8, 1.0 (yellow, orange,

red, cyan, blue): The wave evolves in time from left to right from t0 = 0 to T = 1 due to the left-hand side
boundary condition (13b).

not reach x = 1 within the period of time I, whereas for µ > 1, the wave is reflected
at the right end point due to the homogeneous Dirichlet boundary conditions in (13c),
see also the upper row in Figure 2, where we depict the solutions for µ = 0.3 and
µ = 2.0. The reflection is clearly visible for µ = 2.0 in Figure 2(b).

The strongly parameter-dependent shape of the solutions leads us to the expectation
that this is a tough problem for model reduction since a linear combination of u(·, ·;µi),
i = 1, . . . , N cannot be expected to yield a good approximation for u(·, ·;µ), µ 6= µi.
In order to make that point even clearer, we also take the spatial derivatives ux(·, ·;µ)
into consideration, see the bottom row of Figure 2. As we see, the dependency of the
derivative w.r.t. the parameter is even more pronounced – another hint that we are
facing a challenging problem for model reduction.

We divide Ω into 400 and I into 100 subintervals, i.e., N = 400 and K = 101. The
training set Ptrain is chosen as 60 equidistantly distributed points in P.

Results. We start by investigating the rate of the decay of the truth RB error ‖uKh −
uKN‖L2

at the final time in the L2-norm. As we consider a tough problem for model

reduction and having the slow decay of N−1/2 for the transport equation in mind
(Ohlberger and Rave (2016),Brunken, Smetana and Urban (2019)), we expect some
polynomial decay. In fact, as can be seen on the left of Figure 3, we obtain an average
rate of N−7/2 – as opposed to exponential rates observed e.g. for certain elliptic and
parabolic problems. This was to be expected since the reachable rate is limited by
the decay of the Kolmogorov N -width dN (P). However, using similar arguments as
in Ohlberger and Rave (2016), one can in fact show that the decay of dN (P) for the
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(a) u(·, ·, 0.3). (b) u(·, ·, 2.0),

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

(c) u(t, ·, µ).

(d) ux(·, ·, 0.3). (e) ux(·, ·, 2.0).

0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

2

3

4

(f) ux(t, ·, µ).

Figure 2. Detailed solutions and spatial derivatives for different parameter values. Right column: slice at

fixed times t ∈ {0.39, 0.78}.

wave equation is (at least in the worst case) not better than for transport equations.
Moreover, the comparison of the exact error (in blue) and the error estimator (in

red) shows that our error estimator introduced above in fact realizes the same decay
rate as the exact error – in the RB language this means that the weak Greedy decay
is comparable to the strong Greedy decay. This shows that ∆K

N (µ) properly reflects
the behavior of the problem (on the chosen training set Ptrain).

5 10 15 20 25 30 35 40

N

10
-4

10
-2

10
0

m
ax

µ
∈
P
tr
ai
n

Error: ‖uK

h
(µ)− u

K

N
(µ)‖L2

Estimator: ∆K

N
(µ)

0.3 0.8 1.3 1.8

µ

10
-5

10
-4

10
-3

10
-2

Estimator: ∆K

N
(µ)

Error: ‖ · ‖L2

Figure 3. Left: RB-Greedy approximation error (red: error estimator ∆K
N (µ); blue: true L2-error). Right:

L2-Error (blue, solid) and error estimator (red, dashed) over a test set Ptest ⊂ [0.3, 2] = P.

Next, we consider a test set Ptest (disjoint from Ptrain), which is chosen as 171
equidistantly distributed points in P. For those parameters, we compare the true RB
error (in solid blue) with the error estimator ∆K

N (µ). Here N := 42 is chosen in such
a way, that the POD-Greedy error is below εtol := 10−3 (indicated by the horizontal
line on the left of Figure 3). First, we see that this tolerance is in fact realized, the
red dashed line is always below εtol. Second, we see that the slope of ∆K

N (µ) mainly
follows the true error with slightly increasing distance for growing wave numbers µ.
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Defining the effectivity ratio in the usual way as ηN (µ) := ∆K
N (µ)

‖uK
h (µ)−uK

N (µ)‖L2

, we obtain

1

|Ptest|
∑

µ∈Ptest

ηN (µ) = 10.72,
1

|Ptest ∩ [0.3, 1]|
∑

µ∈Ptest∩[0.3,1]

ηN (µ) = 6.92,

which also shows that the problem is increasingly tough for increasing wave speed.

7. Conclusions and Outlook

We have presented an energy-based error estimate for the wave equation and have
used it for model reduction in a wave speed-parameterized problem. We have proven
the a posteriori error bound and have quantitatively investigated the performance of
the arising POD-Greedy reduced basis approximation for a traveling wave problem.
We have observed polynomial decay N−7/2 of the reduced basis error and average
effectivities of about 10.72.

The presented results seem to justify further investigations. We will extend this
work to first-order system formulations of the wave equations also including additional
dissipation for numerical stabilization. Moreover, we will also consider space-time vari-
ational formulations of the wave equation in the spirit of Brunken, Smetana and Urban
(2019); Urban and Patera (2012, 2014).
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