
ON NON-COERCIVE VARIATIONAL INEQUALITIES
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Abstract. We consider variational inequalities with different trial and test

spaces and a possibly non-coercive bilinear form. Well-posedness is shown

under general conditions that are e.g. valid for the space-time variational for-
mulation of parabolic variational inequalities. Moreover, we prove an estimate

for the error of a Petrov-Galerkin approximation in terms of the residual. For

parabolic variational inequalities the arising estimate is independent of the
final time.

1. Introduction

Let X,Y be two separable Hilbert spaces, X ↪→ Y dense, w.l.o.g. ‖w‖Y ≤ ‖w‖X ,
w ∈ X. For a given f ∈ Y ′ (the dual space of Y ), we consider variational inequalities

(1.1) u ∈ K ∩X : a(u, v − u) ≥ f(v − u) ∀ v ∈ K,
where a : X × Y → R is a bounded bilinear form (i.e., ∃ γa < ∞ such that
a(v, w) ≤ γa‖v‖X ‖w‖Y ) and K ⊂ Y is a closed convex set with K ∩ X 6= ∅.a In
order that (1.1) makes sense, one has to require that X ⊆ Y b since the test function
v − u needs to be in Y for u ∈ X and v ∈ K ⊂ Y . A lot of research has been done
in the case that Y = X and a(·, ·) being coercive or at least satisfying a G̊arding
inequality, see e.g. [6, 10, 11], just to mention a few. This includes well-posedness
(existence, uniqueness, stability) as well as numerical methods. Much less is known
for the above mentioned general case.

One source of motivation for the present paper are time-dependent parabolic
problems which fit into the described framework. The above references do contain
interesting and important results also for the parabolic case. However, to the best of
our knowledge, the following three issues have not been addressed so far: (1) Even
though existence and uniqueness results for parabolic variational inequalities are
known, we are not aware of corresponding results for general non-coercive bilinear
forms a(·, ·). For variational equalities with a bounded bilinear form, it is well-
known that Nečas condition (see Definition 2.2 below) is necessary and sufficient for
the well-posedness of the considered problem. For (1.1) however, it is often assumed
that a : X × X → R (i.e., Y = X) is coercive, which is significantly stronger
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than Nečas condition. We want to relax the coercivity condition. (2) Stability
results that allow to bound an unknown Petrov-Galerkin approximation error by
a computable residual are also not known in the above described general case. (3)
Space-time variational formulations of parabolic problems. The motivation for this
comes from recent results in Reduced Basis Methods (RBM), where it has been
shown that a space-time analysis can significantly improve error estimates for a
RBM, [17, 18]. We are interested in the extension to variational inequalities.

Let us briefly describe for a simple example why we are interested in obtaining
error/residual relations. Let a : X × Y → R be a bounded bilinear form and
consider the variational problem of finding u ∈ X such that a(u, v) = 〈f, v〉 for all
v ∈ Y . Let XN ⊂ X, YN ⊂ Y be (finite-dimensional) subspaces and denote by
uN ∈ XN the Petrov-Galerkin approximation, i.e., a(uN , vN ) = 〈f, vN 〉 for all vN ∈
YN (where we assume that YN is appropriately chosen in order to guarantee a stable
solution). If a(·, ·) is inf-sup stable with constant βa > 0, we get βa‖u − uN‖X ≤
supv∈Y

a(u−uN ,v)
‖v‖Y = supv∈Y

〈f,v〉−a(uN ,v)
‖v‖Y = ‖rN‖Y ′ with the residual defined as

rN (v) := 〈f, v〉 − a(uN , v), v ∈ Y . If (like in the case of Reduced Basis Methods,
RBM) the dual norm of the residual, i.e., ‖rN‖Y ′ , is efficiently computable (at least
approximately), one obtains an estimate for the error eN := u− uN , as long as βa,
or a lower bound for it, is computable. Without going into the details, we remark
that this is true for RBM, see e.g. [14]. However, we think that the investigation
of (1.1) is interesting on its own. We like to understand which kind of additional
properties are required in the more general framework to derive well-posedness and
error/residual estimates as known in the coercive case.

The remainder of this paper is organized as follows. In Section 2, we consider
well-posedness of variational inequalities. After collecting some preliminaries in
§2.1, we consider a well-known technique for non-coercive problems [11], namely
to regularize a(·, ·) by a coercive form aε(·, ·). This already leads to some required
properties in terms of the relation of the spaces X and Y that are analyzed in
§2.2. It turns out that in order to prove well-posedness in the general framework in
§2.4, we need to pose some additional requirements on a(·, ·) which are collected in
§2.3. Section 3 is devoted to the derivation of error/residual estimates for which we
consider a well-known saddle-point formulation of (1.1). We generalize estimates
from [6]. Next, we detail our general findings for the particular case of space-time
variational formulations of parabolic variational inequalities in Section 4. The paper
ends with conclusions in Section 5 and a summary of all results in Table 5.1.

We briefly summarize the –at least up to the best of our knowledge– new con-
tributions of this paper:

• We show existence and uniqueness for a variational inequality (1.1) under milder
conditions than what is known from the literature, see Theorems 2.15 and 2.16.

• Error vs. residual estimates are derived that are new and also cover a setting
with less restrictive assumptions, see Theorem 3.12.

• A new error estimate for the space-time variational formulation of parabolic
variational inequalities is derived. This improves on corresponding results e.g.
in [8, §5] that involve the true error.

2. Well-Posedness

We consider well-posedness of (1.1), i.e., existence, uniqueness and stability.
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2.1. Preliminaries. The following result is well-known in the coercive case and
sets the benchmark for our analysis.

Theorem 2.1 (Coercive case, e.g. [5, Satz 7.1], [10]). Let a : X × X → R be
bounded and coercive, i.e., a(v, v) ≥ αa‖v‖2X , v ∈ X. Then, (1.1) (for Y = X)
admits a unique solution u ∈ K ∩X for all f ∈ X ′ and

(2.1) ‖u‖X ≤
1

αa
‖f‖X′ +

( γa
αa

+ 1
)

dist‖·‖X (0,K),

where dist‖·‖X (v,K) := infk∈K ‖v − k‖X , v ∈ X. �

Since we aim at relaxing the assumptions on the bilinear form a(·, ·) (mainly
coercivity and allowing Y 6= X), it pays off to consider variational equalities in
order to understand what kind of result might be achievable for inequalities.

Definition 2.2. We say that the bilinear form a : X × Y → R satisfies a Nečas
condition on U ⊆ Y , if there exists a βa > 0 such that

sup
w∈U

a(v, w)

‖w‖Y
≥ βa‖v‖X ∀ v ∈ X ∩ U, sup

v∈X∩U
a(v, w) > 0 ∀ 0 6= w ∈ U.

Theorem 2.3 (Variational equality, see e.g. [12, Thm. 3.3], [13, Thm. 2]). Let
a : X × Y → R be bounded. Then, the variational equality u ∈ X: a(u, v) = f(v)
∀ v ∈ Y is well-posed (i.e., admits a unique solution u ∈ X for all f ∈ Y ′, which
depends continuously on f) if and only if a(·, ·) satisfies a Nečas condition on Y . �

The above result sets the benchmark in the sense that we cannot hope to derive
well-posedness of (1.1) under milder assumptions than a Nečas condition. We have
not been able to derive results using only Nečas condition, but need additional
conditions concerning the relation between the two Hilbert spaces X and Y .

2.2. Regularization. It is a standard technique in the analysis of non-coercive
problems to define a regularized bilinear form aε(·, ·) that is coercive and then to
consider the limit as ε→ 0. In order to do so, let | · |X be a seminorm on X induced
by some inner product ((·, ·))X on X, i.e., ((v, v))X = |v|2X , ((v, w))X ≤ |v|X |w|X for
v, w ∈ X.c Then, we assume that the norms on X and Y are related as

(2.2) ‖v‖2X = |v|2X + ‖v‖2Y , v ∈ X.
Moreover, for ε > 0, we define a (well-known, [11]) “coercive (or elliptic) regular-
ization” aε(v, w) := ε((v, w))X + a(v, w), v, w ∈ X, as well as the norm

(2.3) ‖v‖2ε := ε|v|2X + ‖v‖2Y , v ∈ X.
In particular we have that ‖ · ‖ε equals ‖ · ‖X for ε = 1 and ‖v‖ε → ‖v‖Y as ε→ 0,
v ∈ X. The idea is to consider a coercive regularized problem (see Lemma 2.6
below) and then to derive well-posedness of (1.1) by considering the limit ε→ 0+.
The following properties are easily shown.

Lemma 2.4. Let a : X×Y → R be bounded and 0 ≤ ε ≤ 1. Then, for all v, w ∈ X:

(i) aε(v, w) ≤ γ+a ‖v‖X ‖w‖ε with γ+a :=
√

2 max{1, γa}.
(ii) With γ+a as in (i) it holds that aε(v, w) ≤ γ+

a√
ε
‖v‖ε ‖w‖ε.

If, in addition a(v, v) ≥ αa,Y ‖v‖2Y holds for all v ∈ X, we have

cNote that it is not required that |v|X = 0 implies v = 0 in X.
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(iii) aε(v, v) ≥ min{1, αa,Y }‖v‖2ε. (iv) aε(v, v) ≥ min{αa,Y , ε}‖v‖2X .

Proof. Let v, w ∈ X, then the boundedness of a(·, ·) implies the estimate aε(v, w) ≤
ε|v|X |w|X + γa‖v‖X‖w‖Y ≤ ‖v‖X(ε|w|X + γa‖w‖Y ) ≤ γ+a ‖v‖X‖w‖ε by Remark
2.5 below with a = |w|X , b = ‖w‖Y , γ = γa, which proves (i). As for (ii), we
note that by ε ≤ 1 we have ‖v‖2X ≤ 1

ε (ε|v|2X + ‖v‖2Y ) = 1
ε‖v‖

2
ε, so that (ii) follows

from (i). The statement (iii) follows immediately by aε(v, v) = ε|v|2X + a(v, v) ≥
ε|v|2X + αa,Y ‖v‖2Y ≥ min{1, αa,Y }‖v‖2ε for v ∈ X. Finally, (iv) follows from (iii)
and (2.3). �

Remark 2.5. Let a, b, ε, γ ≥ 0. Then, we have for all 0 ≤ ε ≤ 1 that εa + γb ≤
γ̃
√
εa2 + b2 with γ̃ :=

√
2 max{1, γ}. In fact, by ε ≤ 1 we get (εa + γb)2 = ε2a2 +

2εγab+ γ2b2 ≤ 2(ε2a2 + γ2b2) ≤ 2 max{1, γ2}(εa2 + b2).

Note that the condition a(v, v) ≥ αa,Y ‖v‖2Y , v ∈ X, is milder than coercivity due
to the weaker Y -norm on the right-hand side. The relationship to Nečas condition
is at least not obvious. Now, the following statement is readily seen.

Lemma 2.6. Let a(·, ·) be bounded and assume that a(v, v) ≥ αa,Y ‖v‖2Y holds for
all v ∈ X. Then, the regularized variational inequality

(2.4) uε ∈ K ∩X : aε(uε, v − uε) ≥ f(v − uε) ∀ v ∈ K ∩X
has a unique solution for all fixed ε > 0.

Proof. By Lemma 2.4 (ii), aε(·, ·) is bounded on (X, ‖ · ‖ε) and Lemma 2.4 (iii)
guarantees that aε(·, ·) is also coercive on (X, ‖ · ‖ε) for all ε > 0, which implies
well-posedness by Theorem 2.1. �

Theorem 2.1 also yields a stability estimate (2.1) for ‖uε‖ε with αa, γa replaced by

α−a := min{1, αa,Y }, γε := ε−1/2γ+a , γ+a :=
√

2 max{1, γa}.
However, since γε ↗∞ as ε→ 0 the stability estimate (2.1) is meaningless in the
limit ε→ 0. Fortunately, a refined analysis leads to a useful estimate as follows.

Proposition 2.7. Let a : X × Y → R be bounded and a(v, v) ≥ αa,Y ‖v‖2Y for all

v ∈ X. With ‖f‖ε′ := supv∈X
f(v)
‖v‖ε , the unique solution uε ∈ X of (2.4) satisfies

(2.5) ‖uε‖ε ≤
1

α−a
‖f‖ε′ +

( γ+a
α−a

+ 1
)

dist‖·‖X (0,K).

Proof. By Lemma 2.4 (iii), we get for any v ∈ K ∩X that

α−a ‖v − uε‖2ε ≤ aε(v − uε, v − uε) = aε(v, v − uε)− a(uε, v − uε)
≤ aε(v, v − uε)− f(v − uε),

where the last step follows from (2.4). Then, by Lemma 2.4 (i) we get aε(v, v −
uε)− f(v − uε) ≤ γ+a ‖v − uε‖ε(‖v‖X + ‖f‖ε′). Since v was chosen arbitrarily, the
triangle inequality proves the claim. �

Corollary 2.8. Under the assumptions of Proposition 2.7 we have that

(2.6) ‖uε‖ε ≤
1

α−a
‖f‖X′ +

( γ+a
α−a

+ 1
)

dist‖·‖X (0,K).

Proof. Since f ∈ Y ′ ⊂ X ′, we easily get ‖f‖ε′ = supv∈X
f(v)
‖v‖ε ≤ supv∈X

f(v)
‖v‖Y ≤

supv∈Y
f(v)
‖v‖Y = ‖f‖Y ′ , and the rest follows from Proposition 2.7. �
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Note that the right-hand side of (2.6) does not depend on ε, which will be
relevant later. We cannot immediately take the limit as ε → 0 in (2.6) since both
the norm ‖ · ‖ε and uε depend on ε. It will turn out later that we need to replace
the inf-sup condition in Definition 2.2 by exchanging ‖ · ‖Y by ‖ · ‖ε. As we shall
see now, the latter one can already be ensured by Nečas condition.

Lemma 2.9. Let X,Y be Hilbert spaces with X being densely and continuously
embedded into Y and a : X × Y → R be a bounded bilinear form that satis-

fies an inf-sup condition βa := infv∈X supw∈Y
a(v,w)

‖v‖X ‖w‖Y > 0. Then, for βa,ε :=

infv∈V supx∈X
a(v,x)
‖v‖X ‖x‖ε we have that limε→0 βa,ε = βa.

Proof. For v ∈ X we define Jε(v) := supx∈X
a(v,x)
‖v‖X ‖x‖ε , i.e., βa,ε = infv∈V Jε(v).

It is readily seen that 0 ≤ Jε(v) ≤ γa. Hence, there exists a minimizing sequence
(vk)k∈N ⊂ X, i.e., limk→∞ Jε(vk) = infv∈X Jε(v) = βa,ε ≥ 0. Since Y is closed, the
inf-sup condition implies for any such vk ∈ X the existence of a supremizer yk ∈ Y
with a(vk, yk) ≥ βa‖vk‖X ‖yk‖Y . Now choose

0 < δ <
βa
γa

fixed. SinceX ↪→ Y dense, there exists a xk,δ ∈ X such that ‖xk,δ−yk‖Y ≤ δ ‖yk‖Y ,
which implies that ‖xk,δ‖Y ≤ (1 + δ)‖yk‖Y . Then, we obtain

a(vk, xk,δ) = a(vk, yk)− a(vk, yk − xk,δ) ≥ βa‖vk‖X ‖yk‖Y −γa ‖vk‖X ‖yk − xk,δ‖Y
≥ (βa − δγa) ‖vk‖X ‖yk‖Y

and βa − δγa > 0 due to the choice of δ. Next, we estimate ‖xk,δ‖2ε = ε|xk,δ|2X +
‖xk,δ‖2Y ≤ ε|xk,δ|2X + (1 + δ)2‖yk‖2Y , so that we get

Jε(vk) ≥ a(vk, xk,δ)

‖vk‖X ‖xk,δ‖ε
≥ (βa − δγa)‖yk‖Y

(ε|xk,δ|2X + (1 + δ)2‖yk‖2Y )1/2
=: bε,k.

Since limε→0 bε,k = βa−δγa
1+δ (which is independent of k) and 0 ≤ bε,k ≤ Jε(vk) ≤

γa < ∞, the sequence (bε,k)k∈N is bounded and thus contains a convergent sub-
sequence (bε,km)m∈N. Since a subsequence of a minimizing sequence is also a
minimizing sequence, we denote the subsequence again by (bε,k)k∈N, whose limit
limk→∞ bε,k thus exists. Hence, we may exchange the two limits and obtain

lim
ε→0

βa,ε = lim
ε→0

lim
k→∞

Jε(vk) ≥ lim
ε→0

lim
k→∞

bε,k = lim
k→∞

lim
ε→0

bε,k =
βa − δγa

1 + δ
.

Since this holds for all 0 < δ < βa
γa

, we may consider the limit δ → 0+, which proves

the claim. �

Remark 2.10. We can also interpret the statement in Lemma 2.9 as follows:
There exists a ε̄ > 0 such that βa,ε > 0 for all 0 ≤ ε < ε̄. Note, that Lemma 2.9
in general does not imply the validity of an inf-sup condition for a(·, ·) with ‖ · ‖ε
replaced by ‖ · ‖X . In fact, this would only hold if ε̄ > 1, which is definitely not true
in general.
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2.3. Additional Assumptions. As already mentioned above, we have not been
able to prove well-posedness of (1.1) only under the conditions formulated so far.
However, this does not seem to be astonishing since it was shown in [11] that
assuming just a(v, v) ≥ 0 for v ∈ Y = X yields a possibly empty closed convex set
of solutions. Existing well-posedness results are available for quite specific cases
only. We will now introduce properties mainly on a(·, ·) which are valid e.g. for
parabolic variational inequalities. The first piece is an additional seminorm on X
denoted by [·]X induced by a scalar product [·, ·]X such that

(2.7) [v, v]X = [v]2X , [v, w]X ≤ [v]X [w]X , v, w ∈ X, d

as well as

(2.8) ∃C > 0 : [v]X ≤ C‖v‖X , v ∈ X.
Next, we consider a stronger (but equivalent) norm on X, namely

(2.9) |||v|||2X := |v|2X + [v]2X + ‖v‖2Y =: |v|2X + JvK2X ,

i.e., JvK2X := [v]2X + ‖v‖2Y . Later, we will also use dual (semi-)norms defined as

JfKX′ := sup
v∈X

f(v)

JvKX
and |||f |||X′ := sup

v∈X

f(v)

|||v|||X
.

Note, that (2.8) has the following consequence which we will use later, namely

(2.10) |||v|||X ≤
√

1 + C2‖v‖X , w ∈ X.
In fact, we have |||v|||2X = |v|2X+[v]2X+‖v‖2Y ≤ |v|2X+C2‖v‖2X+‖v‖2Y = (1+C2)‖v‖2X ,
recalling (2.2). Similarly, we get

(2.11) |||v|||X ≤ ε−1/2
√

1 + C2‖v‖ε, w ∈ X, 0 < ε < 1.

Since trivially ‖v‖X ≤ |||v|||X = (‖v‖2X + JvK2X)1/2, the norms ‖ · ‖X and |||·|||X are
equivalent on X. One might think that we could simply replace ‖ · ‖X by the
equivalent norm |||·|||X . This, however, would lead to error/residual estimates which
may be far from being sharp. The precise interplay between ‖ · ‖X and |||·|||X turns
out to be crucial. As we shall see below, [·]X will play a significant role in our
analysis, keeping footnote d in mind.

Definition 2.11. We call a bilinear form a : X × Y → R, X ⊂ Y ,

(a) weakly coercive, if there exists a constant αw > 0 such that a(v, v) ≥ αwJvK2X
for all v ∈ X;

(b) symmetrically bounded, if there exists a constant γs <∞ such that a(v, w) ≤
γsJvKX |||w|||X for all v, w ∈ X.

At a first glance (b) might be astonishing. However, as we shall see below in
the case of parabolic variatiational inequalities, it is not realistic to hope that an
estimate of the form a(v, w) ≤ γ‖v‖Y ‖w‖X holds true, not even for v, w ∈ X. In
fact, (b) will be verified by integration by parts so that the final time contribution
will be [v]X leading to JvKX instead of ‖v‖Y . This is also the reason for introducing
the above stronger norms. We also remark that weak coercivity in general does not
imply Nečas condition. In fact, if a(·, ·) is weakly coercive, we obtain for v ∈ X ⊂ Y

sup
w∈Y

a(v, w)

‖w‖Y
≥ a(v, v)

‖v‖Y
≥ αw

JvK2X
‖v‖Y

≥ αwJvKX ,

dAgain, we have to keep in mind that [v]X = 0 does not imply that v = 0 in X.
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but J·KX is not a norm on X and cannot be bounded from below by ‖ · ‖X (only
from above by (2.10)). The next step is to modify ‖ · ‖ε as given in (2.3) by

(2.12) |||v|||2ε := ε|v|2X + [v]2X + ‖v‖2Y = ε|v|2X + JvK2X = ‖v‖2ε + [v]2X .

Then, the analogue of Lemma 2.4 reads as follows:

Corollary 2.12. Let a : X × Y → R be bounded, symmetrically bounded and
0 ≤ ε ≤ 1. Then, we have for all v, w ∈ X:

(i) aε(v, w) ≤ γ+s |||v|||X |||w|||ε with γ+s :=
√

2 max{1, γs}.
(ii) With γ+s as in (i) it holds that aε(v, w) ≤ γ+

s√
ε
|||v|||ε |||w|||ε.

If in addition a(·, ·) is weakly coercive, we have

(iii) aε(v, v) ≥ min{1, αw}|||v|||2ε. (iv) aε(v, v) ≥ min{αw, ε}|||v|||2X . �

Proposition 2.13. Let a(·, ·) be symmetrically bounded, then we have the estimate
aε(v, w) ≤ γ+s |||v|||ε |||w|||X for all v, w ∈ X.

Proof. Let v, w ∈ X, then aε(v, w) =ε((v, w))X+a(v, w) ≤ ε|v|X |w|X+γsJvKX |||w|||X
≤ |||w|||X(ε|v|X + γsJvKX) ≤

√
2 max{1, γs} |||v|||ε |||w|||X , by Remark 2.5. �

We now consider the regularized variational inequality (2.4) on (X, |||·|||ε). Using
the same arguments as in Proposition 2.7 and Corollary 2.8 yields the following:

Corollary 2.14. Let a(·, ·) be bounded, symmetrically bounded and weakly coercive.
Then, the unique solution uε ∈ X of (2.4) satisfies

(2.13) |||uε|||ε ≤
1

α−w
|||f |||X′ +

( γ+s
α−w

+ 1
)

dist|||·|||X (0,K),

where α−w := min{1, αw} and γ+s as in Corollary 2.12 (i).

2.4. Well-posedness in the Non-Coercive Case. Now, we are ready to consider
well-posedness also in the non-coercive case.

2.4.1. Existence. We start by proving existence of a solution.

Theorem 2.15 (Existence). Let a : X×Y → R be bounded, symmetrically bounded,
weakly coercive and satisfy a Nečas condition on Y for X ↪→ Y dense. Then, for
given f ∈ Y ′, the unique solution uε of (2.4) converges to u ∈ X as ε → 0 which
solves (1.1).

Proof. The proof follows partly some ideas and lines from [11, §7.4] (there for the
specific case of parabolic variational inequalities). By Corollary 2.14 we have that
|||uε|||ε ≤ κ1 with κ1 independent of ε. Next, we use Lemma 2.9 with ε replaced by
δ and fix some 0 < δ < δ̄. Since X is closed, there exists a supremizer w ∈ X with

βa,δ ‖w‖δ‖uε‖X ≤ a(uε, w) ≤ γs JuεKX |||w|||X ≤ γs|||uε|||ε |||w|||X ≤ γsκ1|||w|||X

≤ γsκ1 δ−1/2
√

1 + C2 ‖w‖δ =: κ2(δ)‖w‖δ, e

where we have used the symmetric boundedness, (2.12), (2.13) and (2.11). Thus, we

get ‖uε‖X ≤ κ2(δ)
βa,δ

and this bound is independent of ε. Hence, (uε)ε>0 is bounded

in X and we can extract a subsequence (uη)η>0 that is weakly convergent, i.e.,

eIt is precisely this part of the proof that requires the symmetric boundedness in order to
obtain an estimate versus |||uε|||ε which was previously shown to be bounded independently of ε.

In [10, 11] this step was done by different techniques for certain special cases.
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uη ⇀ u in X as η → 0. Since K ∩ X is closed convex, it is weakly closed, hence
u ∈ K ∩ X. We finally need to show that u solves (1.1). From (2.4), we get
aε(uε, v)− f(v − uε) ≥ aε(uε, uε) = ε|uε|2X + a(uε, uε) ≥ a(uε, uε). Since –possibly
again by considering subsequences– it holds that uε ⇀ u in X as ε → 0, thus we
have aε(uε, v) → a(u, v) for all v ∈ X as ε → 0 and hence a(u, v) − f(v − u) ≥
lim infε→0 a(uε, uε) ≥ a(u, u), which is equivalent to (1.1). �

2.4.2. Uniqueness. Concerning uniqueness: Let u1, u2 ∈ X be two solutions of
(1.1), then αwJu1 − u2K2X ≤ a(u1 − u2, u1 − u2) = a(u1, u1 − u2) + a(u2, u2 − u1) ≤
f(u1 − u2) + f(u2 − u1) = 0, where we have used the properties of a(·, ·) and (1.1).
This implies that u1 and u2 coincide with respect to J·KX – which does not imply
uniqueness in X which is equipped with a stronger norm.

2.4.3. Stability. In order to derive a stability estimate, one could now use (2.13)
and perform the limit ε→ 0. This leads to

JuKX ≤
1

α−w
‖f‖X′ +

( γ+s
α−w

+ 1
)

dist‖·‖X (0,K).

The main drawback is the control only in J·KX which is weaker than ‖ · ‖X or even
|||·|||X . This deficiency can be overcome using the inf-sup stability of a(·, ·).

Theorem 2.16 (Stability). Let u ∈ K solve (1.1). If a : X × Y → R is bounded
and satisfies a Nečas condition on Y , we have

(2.14) ‖u‖X ≤
1

βa
‖f‖Y ′ +

(γa
βa

+ 1
)

dist‖·‖X (0,K).

Proof. Let φ ∈ K be arbitrary. Then, we use Nečas condition, (1.1) and the
boundedness of a(·, ·) to obtain

βa‖u− φ‖X ≤ sup
v∈Y

a(φ− u, v)

‖v‖Y
= sup
v∈Y

a(φ− u, v − u)

‖v − u‖Y

= sup
v∈Y

a(φ, v − u)− a(u, v − u)

‖v − u‖Y
≤ sup
v∈Y

a(φ, v − u)− f(v − u)

‖v − u‖Y

≤ sup
v∈Y

(γa‖φ‖X + ‖f‖Y ′)‖v − u‖Y
‖v − u‖Y

= γa‖φ‖X + ‖f‖Y ′ .

Using triangle inequality and taking the infimum over φ ∈ K proves the result. �

The equivalence of ‖ · ‖X and |||·|||X yields a stability result also for |||·|||X .

3. Error Versus Residual Estimates

Now we come to the derivation of estimates of the Petrov-Galerkin error versus
the residual. It turns out that the key for this derivation lies in the consideration
of the well-known saddle-point formulation of (1.1).

3.1. Saddle-point Formulation. It is well-known that under certain conditions
the problem (1.1) is equivalent to a saddle-point inequality. This amounts a (natu-
ral) condition, namely that the convex set K has a certain representation.

Definition 3.1. We say that a convex set K ⊂ Y is of dual cone form if there
exists a Hilbert space W (with norm ‖ · ‖W induced by an inner product (·, ·)W ),
a continuous bilinear form b : Y ×W → R, a convex cone M ⊂ W (the so-called
dual cone) and some g ∈W ′ such that K = {v ∈ Y : b(v, q) ≤ g(q), q ∈M}. �
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We now consider the saddle-point inequality: Find (u, p) ∈ X ×M such that

a(u, v) + b(v, p) = f(v) ∀ v ∈ Y,(3.1a)

b(u, p− q) ≤ g(p− q) ∀ q ∈M.(3.1b)

The proof of the following well-known result can e.g. be found in [7, Lemma A4].

Lemma 3.2. Let K be of dual cone form and assume that a : X×Y → R is bounded
and satisfies a Nečas condition on Ker(B) := {v ∈ Y : b(v, q) = 0∀ q ∈ W} for
X ↪→ Y dense. If the bilinear form b(·, ·) is inf-sup stable, i.e., there exists a βb > 0

such that supv∈Y
b(v,q)
‖v‖Y ≥ βb‖q‖W ∀ q ∈ W, then, the variational inequality (1.1)

and the saddle-point inequality (3.1) are equivalent in the following sense:

(i) If u is a solution of (1.1), then there exists a unique p ∈M such that (u, p)
is a solution of (3.1).

(ii) If (u, p) is a solution of (3.1), then u solves (1.1).

One advantage of (3.1) for the numerical treatment is that one does not need
to construct a conforming discretization of the convex set K, i.e., some finite-
dimensional KN ⊂ K. Often, it is easier to construct MN ⊂ M or to solve (3.1)
by a primal-dual active set strategy (i.e., no need for a conforming discretization
of the space M), [6]. Moreover, as we shall see below, the saddle-point form allows
us to derive a-posteriori error estimates.

3.2. (Petrov-)Galerkin Methods. Now, we consider approximations to the so-
lution u (resp. u and p) in finite-dimensional spaces XN ⊂ X and MN ⊂ M , the
dimension of both somehow related to N ∈ N. Moreover, we will consider a finite-
dimensional KN ⊂ K. The discrete problem corresponding to (1.1) then reads

(3.2) uN ∈ KN ∩XN : a(uN , vN − uN ) ≥ f(vN − uN ) ∀ vN ∈ KN .

We denote the error by eN := u− uN and the residual RN ∈ Y ′ by

(3.3) RN (v) := f(v − uN )− a(uN , v − uN ), v ∈ Y.
With KN = {vN ∈ XN : b(vN , qN ) ≤ g(qN ), qN ∈ MN}, the discrete saddle-point
problem corresponding to (3.1) reads: Find (uN , pN ) ∈ XN ×MN such that

a(uN , vN ) + b(vN , pN ) = f(vN ) ∀ vN ∈ XN ,(3.4a)

b(uN , pN − qN ) ≤ g(pN − qN ) ∀ qN ∈MN .(3.4b)

For v ∈ X, the residual rN ∈ X ′ of the equation (3.4a) is denoted by

rN (v) := f(v)− a(uN , v)− b(v, pN ) = a(eN , v) + b(v, δN ),(3.5)

with the dual error δN := p− pN . The inequality residual of (3.4b) is sN ∈W ′

sN (q) := b(uN , q)− g(q), q ∈W.(3.6)

For the following, we basically follow [6]. We define the Riesz representators
r̂N ∈ X, ŝN ∈W,σ ∈W of residuals and the inequality functional, respectively, by

(v, r̂N )X = rN (v), v ∈ X, (q, ŝN )W = sN (q), q ∈W,
(σ, q)W = b(u, q)− g(q), q ∈W.

Additionally, we need a projection π : W →M which is assumed to be orthogonal
with respect to some scalar product 〈·, ·〉π on W . Furthermore, we define an induced

norm ‖η‖π :=
√
〈η, η〉π, which is assumed to be equivalent to the norm ‖ · ‖W , i.e.,
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there exist constants cπ, Cπ, such that 0 < cπ < Cπ and cπ‖q‖W ≤ ‖q‖π ≤ Cπ‖q‖W
for all q ∈W . We assume that π has the following properties:

(q − π(q), η)W ≤ 0, q ∈W, η ∈M,(3.7a)

π(σ) = 0,(3.7b)

〈q, σ〉π ≤ 0, q ∈M.(3.7c)

3.3. The Coercive Case. We recall some known estimates for the case Y = X and
the bilinear form a(·, ·) being coercive. One can prove an error/residual estimate.

Inequality formulation. Define the residual of the equality as

%N (v) := f(v)− a(uN , v), v ∈ Y.

Note, that RN (v) = %N (v) − %N (uN ) with RN as in (3.3). Moreover, in general
%N (uN ) 6= 0 and %N (v) 6→ 0 as N →∞.

Proposition 3.3. Assume that a : X ×X → R is coercive with constant αa > 0.
Let KN ⊂ K and denote by uN ∈ KN the unique solution of (3.2). Then we have
‖eN‖X ≤ d1 + (d21 + d2)1/2, where d1 := 1

2αa
‖RN‖X′ and d2 := |%N (uN )|.

Proof. Using v = uN in (1.1) yields a(u, u− uN ) ≤ f(u− uN ). Hence, we get

αa‖eN‖2X ≤ a(u− uN , u− uN ) = a(u, u− uN )− a(uN , u− uN )

≤ f(u− uN )− a(uN , u− uN ) = RN (u) = %N (u)− %N (uN )

= RN (u− uN ) + %N (uN ) ≤ ‖RN‖X′‖eN‖X + |%N (uN )|.

Hence, we get the estimate ‖eN‖2X − 2d1‖eN‖X − d2 ≤ 0 with d1, d2 ≥ 0. Thus, we
can estimate ‖eN‖X by the largest root of the quadratic equation. �

Proposition 3.3 and (2.14) show that the variational inequality is stable and
yields an error/residual relation in the conforming case, i.e., if KN ⊂ K. This
estimate, however, might not be optimal since d2 might not be small or not tend to

zero as N →∞. One can also derive an estimate of the form ‖eN‖X ≤ C‖RN‖1/2X′ ,
which is also not sufficient.

Saddle-point formulation. Now, we consider on the saddle-point formulation (3.1),
(3.4). We recall from [6] the primal/dual error relation which we will need later on.

Lemma 3.4 (Primal/Dual Error Relation, coercive case). In addition to the as-
sumptions of Lemma 3.2 assume that b(·, ·) is inf-sup stable for Y = X. Then, we
obtain the following primal/dual error relation for δN := p− pN and eN := u− uN

‖δN‖W ≤
1

βb
(‖rN‖X′ + γa‖eN‖X).(3.8)

Proof. Due to the inf-sup stability on Y = X and the closedness of X, there exists
a v ∈ X, v 6= 0 such that we get βb‖v‖X‖δN‖W ≤ b(v, δN ) = rN (v) − a(eN , v) ≤
‖v‖X‖rN‖X′ + γa‖v‖X‖eN‖X . The estimate follows directly. �

The following estimate has been derived in [6, Proposition 4.2]. We report the
proof since we will need to modify it later in the case where a(·, ·) is not coercive.
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Proposition 3.5 (A-posteriori Error Bound, coercive case). Let K be of dual cone
form and assume that a : X ×X → R (Y = X) is bounded and coercive. If b(·, ·)
is inf-sup stable on X ×Wand (3.7) holds. Then we get the error bounds

‖eN‖X ≤ ∆u
N := c1 + (c21 + c2)1/2, ‖δN‖W ≤ ∆p

N :=
1

βb
(‖rN‖X′ + γa∆u

N ),(3.9)

c1 :=
1

2αa

(
‖rN‖X′ +

γa
βb
‖π(ŝN )‖W

)
, c2 :=

1

αa

(
‖π(ŝN )‖W ‖rN‖X′

βb
+ (pN , π(ŝN ))W

)
.

Proof. First, we want to prove (3.9). Using coercivity, (3.1b) and (3.7a) and the
definition of the residual yields

αa‖eN‖2X ≤ a(eN , eN ) = rN (eN )− b(eN , δN )

≤ ‖rN‖X′‖eN‖X − b(u, δN ) + b(uN , δN )

≤ ‖rN‖X′‖eN‖X − g(δN ) + g(δN ) + sN (δN )

= ‖rN‖X′‖eN‖X + sN (δN ) = ‖rN‖X′‖eN‖X + (p, ŝN )W

= ‖rN‖X′‖eN‖X + (p, π(ŝN ))W + (p, ŝN − π(ŝN ))W

≤ ‖rN‖X′‖eN‖X + (p, π(ŝN ))W

= ‖rN‖X′‖eN‖X + (p− pN , π(ŝN ))W + (pN , π(ŝN ))W

= ‖rN‖X′‖eN‖X + (δN , π(ŝN ))W + (pN , π(ŝN ))W .(3.10)

Next, we continue by the Cauchy-Schwarz inequality

αa‖eN‖2X ≤ ‖rN‖X′‖eN‖X + ‖δN‖W ‖π(ŝN )‖W + (pN , π(ŝN ))W .(3.11)

Inserting (3.8) yields: ‖eN‖2X−2c1‖eN‖X−c2 ≤ 0. Note that c1 and c2 are positive
and we can bound ‖eN‖X again by the largest root of the quadratic equation, which
yields the upper a-posteriori error bound ∆u

N for the primal solution. Inserting (3.9)
into (3.8) proves also the second inequality of the claim. �

Remark 3.6. It should be noted that the error bounds ∆u
N and ∆p

N both tend to
zero as N → ∞. In fact, we have for any q ∈ W that (q, ŝN )W = sN (q) =
b(uN , q) − g(q) → b(u, q) − g(q) = (σ, q)W ≤ 0 as N → ∞ since u ∈ K. Since π
is continuous, we get (q, π(ŝN ))W → (π(σ), q)W = 0 as N → ∞ since π(σ) = 0.
Hence, π(ŝN )→ 0 as N →∞ and rN and δN trivially tend to zero.

3.4. Beyond Coercivity. Now, we derive error estimates for the case where a(·, ·)
is not required to be coercive. One might hope to derive an error/residual relation
without weak coercivity and symmetric boundedness (see Definition 2.11) following
the proof of Proposition 3.5 with ‖ · ‖X replaced by ‖ · ‖Y . In fact, if a(·, ·) would
be coercive on the larger space Y , i.e., a(v, v) ≥ αa,Y ‖v‖2Y , v ∈ Y , we get

(3.12) αa,Y ‖eN‖2Y ≤ JrN KX′ ‖eN‖Y + (δN , π(ŝN ))W + (pN , π(ŝN ))W ,

where the residuals rN ∈ Y ′ and sN ∈ W ′ are defined by (3.5) and (3.6), respec-
tively. However, the subsequent argument involving the primal-dual error relation
fails since following the lines of the proof of Lemma 3.4 leads

βb‖v‖Y ‖δN‖W ≤ rN (v)− a(eN , v) ≤ ‖rN‖Y ′‖v‖Y + γa‖eN‖X ‖v‖Y ,
i.e., the error eN appears in the stronger ‖ · ‖X -norm on the right-hand side as
opposed to the left-hand side of (3.12). Even if we would pose an inf-sup condition
for b(·, ·) with ‖ · ‖Y replaced by the stronger norm [·]X , we would get [v]X on the
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left-hand side. In both cases we are stuck here. A way out is to use the symmetric
boundedness, which we have already needed for the well-posedness.

Proposition 3.7. Let a : X × Y → R be bounded, symmetrically bounded, weakly
coercive and satisfying a Nečas condition on Y for X ↪→ Y dense. Then we have
for KN ⊂ K the estimate JeN KX ≤ d1 + (d21 + d2)1/2, where d1 := 1

2αw
JRN KX′ and

d2 := |%N (uN )| for the error eN := u− uN and the residual RN defined in (3.3).

Proof. Note that (1.1) and (3.2) are well-posed. Using the weak coercivity, the
proof follows the lines of the proof of Proposition 3.3, i.e.,

αwJeN K2X ≤ a(u− uN , u− uN ) = a(u, u− uN )− a(uN , u− uN )

≤ f(u− uN )− a(uN , u− uN ) = RN (u) = %N (u)− %N (uN )

= RN (u− uN ) + %N (uN ) ≤ JRN KX′JeN KX + |%N (uN )|

and then the usual arguments prove the claim. �

Now, we turn to the saddle-point inequality. The first step is to derive an
error/residual-relation for (3.1). We start by fixing some notation. The equality
and inequality residuals are defined as in (3.5) and primal respectively dual errors
are again abbreviated by eN := u− uN , δN := p− pN . A first attempt could be to
try to generalize the primal/dual error relation in Lemma 3.4.

Remark 3.8. Let a : X × Y → R be bounded, symmetrically bounded, weakly
coercive and satisfy a Nečas condition. Let b : Y ×W → R be bounded and

(3.13) ∃βb,|||·|||X > 0 : inf
q∈W

sup
v∈X

b(v, q)

|||v|||X‖q‖W
≥ βb,|||·|||X .

Then, ‖δN‖W ≤ β−1b,|||·|||X (|||rN |||X′ + γsJeN KX).

Proof. As in the proof of Lemma 3.4, we have for 0 6= v ∈ X the estimate
βb,|||·|||X |||v|||X‖δN‖W ≤ b(v, δN ) = rN (v)− a(eN , v). Now, use the symmetric bound-
edness of a(·, ·) and get βb,|||·|||X |||v|||X‖δN‖W ≤ |||rN |||X′ |||v|||X + γsJeN KX |||v|||X . �

Remark 3.9. As already noted in Remark 2.10, the inf-sup condition (3.13) is
generally not satisfied by our previous assumptions even if we would use ‖ · ‖X
instead of |||·|||X . Moreover, it is by no means clear if such a condition holds at all.
If it would hold, however, we would get an estimate analogous to Proposition 3.5.

As already said, an inf-sup condition as (3.13) might not be realistic. Thus, we
now aim at replacing the primal/dual error relation. In order to do so, we need
some relationship between b(·, ·) describing the convex set (in terms of the Hilbert
space W –or the convex cone M ⊂ W– the bilinear form is defined on) and the
space X. We will show later how to verify this at least in the space-time framework.

Definition 3.10. The convex set K is called X-compatible if there exists a linear
mapping D : M → X such that (1) b(Dp, q) = (p, q)W for p, q ∈ M ; (2) There
exists a CD <∞f such that |||Dp|||X ≤ CD ‖p‖W for all p ∈M .

Lemma 3.11. Let K be X-compatible and let a : X × Y → R be symmetrically
bounded. Then, ‖δN‖W ≤ CD(|||rN |||X′ + γsJeN KX).

fIn fact, CD can be chosen as the operator norm with respect to |||·|||X , i.e., CD = ‖D‖L(M,X).
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Proof. Since K is X-compatible, we have for w ∈M that (w, δN )W = b(Dw, δN ) =
rN (Dw)− a(eN , Dw) ≤ |||rN |||X′ |||Dw|||X + γs|||Dw|||XJeN KX , which proves the claim
by choosing w = δN = p− pN ∈M . �

Theorem 3.12. Let a : X×Y → R be bounded, symmetrically bounded, weakly co-
ercive and satisfy a Nečas condition on Ker(B) for X ↪→ Y dense. Let b : Y ×W →
R be bounded and inf-sup stable. If K is X-compatible, the following error/residual
estimates hold JeN KX ≤ ∆u

N := c1 + (c21 + c2)1/2, where c1 := 1
2αw

(JrN KX′ +

γsCD‖π(ŝN )‖W ) and c2 := 1
αw

(CD|||rN |||X′‖π(ŝN )‖W + (pN , π(ŝN ))W ). Moreover,

we get ‖δN‖W ≤ ∆p
N := CD(|||rN |||X′ + γs∆

u
N ).

Proof. First, note that the continuous problems (1.1), (3.1) and the discrete ones
(3.2), (3.4) are well-posed and equivalent in the sense of Lemma 3.2. In order
to prove the claimed estimate, we follow until (3.10) the lines of the proof of
Proposition 3.5. Hence, we arrive at αwJeN K2X ≤ JrN KX′JeN KX + (δN , π(ŝN ))W
+(pN , π(ŝN ))W . We use Lemma 3.11 and get (δN , π(ŝN ))W ≤ ‖δN‖W ‖π(ŝN )‖W ≤
CD‖π(ŝN )‖W (|||rN |||X′ +γsJeN KX), i.e. αwJeN K2X ≤(JrN KX′ +γsCD‖π(ŝN )‖W )JeN KX
+CD‖π(ŝN )‖W |||rN |||X′ + (pN , π(ŝN ))W . Again, we get an estimate of the form

x2− 2c1x− c2 ≤ 0. As c1, c2, x ≥ 0, it follows that x ≤ c1 +
√
c21 + c2, which proves

the claim. The estimate for ‖δN‖W follows from Lemma 3.11. �

Remark 3.13. (a) As in Remark 3.6 we obtain that ∆u
N , ∆p

N → 0 as N →∞.
(b) If a stronger inf-sup condition (3.13) holds, we can derive an error/residual
estimate similar to Theorem 3.12 (just replacing MD by β−1b,|||·|||X ) without the re-

quirement of X-compatibility of the convex set K.

4. Space-Time Formulation of Parabolic Variational Inequalities

Now we apply the general theory to the space-time variational formulation of
parabolic variational inequalities (PVIs). Let us first describe the framework.

4.1. Space-Time Variational Formulation. We recall space-time formulations
of parabolic initial value problems and then generalize to variational inequalities.

Spaces. Let V ↪→ H ↪→ V ′ be a Gelfand triple of Hilbert spaces and I := (0, T ),
T > 0. The spaces V , H and V ′ arise from the spatial variational formulation of a
parabolic problem (e.g. H = L2(Ω), V = H1

0 (Ω), Ω ⊂ Rd). We denote by

(4.1) % := sup
φ∈V

‖φ‖H
‖φ‖V

the embedding constant of V in H. For the space-time variational formulation, we
require the notion of Bochner spaces (see [4, §5.9.2]) for any normed space U , i.e.,
L2(I;U) :=

{
v : I → U strongly measurable: ‖v‖2L2(I;U) :=

∫
I
‖v(t)‖2U <∞

}
, and

choose from here on

X := {v ∈ L2(I;V ) : v̇ ∈ L2(I;V ′), v(0) = 0}, Y := L2(I;V ), i.e., X ↪→ Y dense.

Note that X ↪→ C(Ī;H) so that v(0) and v(T ) are well-defined in H. Then, set

‖v‖Y := ‖v‖L2(I;V ), JvK2X := ‖v‖2Y + ‖v(T )‖2H , |||v|||2X := JvK2X + ‖v̇‖2Y ′ , v ∈ X,
and we keep these norms.g The norm in X, even though equivalent to the standard
graph norm, allows for a control of the state at the final time, [18].

gNote that ‖v̇‖Y ′ plays the role of |v|X in the previous section.
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Forms. Now, we detail the variational formulation. To this end, let c : V × V → R
be the bilinear form corresponding to the weak form in space. We start by a
parabolic initial value problem (PIVP) that reads for given f(t) ∈ V ′, t ∈ I a.e.,

〈u̇(t), v(t)〉V ′×V + c(u(t), v(t)) = 〈f(t), v(t)〉V ′×V ∀ v(t) ∈ V, t ∈ I a.e.,(4.2a)

u(0) = 0 inH.(4.2b)

Next, we define space-time bilinear forms

[u, v] :=

∫
I

〈u(t), v(t)〉V ′×V dt, C[u, v] :=

∫
I

c(u(t), v(t)) dt

and we finally obtain the variational formulation

(4.3) u ∈ X : a(u, v) = f(v) ∀ v ∈ Y,

where a(u, v) := [u̇, v] + C[u, v] as well as f(v) := [f, v].

Theorem 4.1 (Well-posedness of space-time equation, e.g. [16, Theorem 5.1,
Appendix A], [3, Ch. XVIII, §3]). Let c : V × V → R be a bounded bilinear form
satisfying a G̊arding inequality, i.e. there exist αc > 0 and λc ≥ 0 such that c(φ, φ)+
λc ‖φ‖2H ≥ αc‖φ‖2V for all φ ∈ V . Then, problem (4.3) is well-posed. �

4.2. Parabolic Variational Inequalities. Given a closed convex subset K ⊂
Y (= L2(I;V )), i.e. K(t)⊆V for t ∈ I a.e., consider the parabolic variational in-
equality, which reads: Find u ∈ H1(I;H) ∩ C(Ī;V ) such that u(t) ∈ K(t) and

(u̇(t), v(t)− u(t))H + c(u(t), v(t)− u(t)) ≥ 〈f(t), v(t)〉V ′×V ∀ v(t) ∈ K(t),(4.4a)

u(0) = 0 inH,(4.4b)

for all t ∈ I. According to [9], such a function u is called a strong solution (also
due to the stronger regularity assumption as compared to (4.3), which also allows
to use (·, ·)H in the first term in (4.4a) instead of 〈·, ·〉V ′×V ). It is also investigated
there when a strong solution exists. The space-time variational formulation now
reads: Find u ∈ X ∩K with u(t) ∈ K(t) for all t ∈ I a.e. and

(4.5) a(u, v − u) ≥ f(v − u)∀ v ∈ K,

with a(·, ·) and f(·) given as in the previous section. It should be noted that (4.5)
does not correspond to the weak formulation in [9], since there integration by parts
with respect to time is performed. As a byproduct of our analysis we obtain also
new well-posedness results for (4.5). To this end, we verify that the space-time
non-coercive form a(·, ·) is bounded, symmetrically bounded and weakly coercive.

Proposition 4.2. If the bilinear form c(·, ·) is bounded and satisfies a G̊arding
inequality, such that αc − λc%2 > 0, then the bilinear form a(·, ·) is bounded, sym-
metrically bounded and weakly coercive.

Proof. First we show that a(·, ·) is bounded. Let v ∈ X, w ∈ Y , then

a(v, w) = [v̇, w] + C[v, w] ≤ ‖v̇‖Y ′‖w‖Y + γc‖v‖Y ‖w‖Y ≤ max{1, γc} ‖v‖X ‖w‖Y ,
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by Cauchy-Schwarz inequality, which proves the boundedness. For the weak coer-
civity, we apply the G̊arding inequality for some v ∈ X (recall v(0) = 0)

a(v, v) = [v̇, v] + C[v, v] =
1

2
‖v(T )‖2H +

∫ T

0

c(v(t), v(t)) dt

≥ 1

2
‖v(T )‖2H +

∫ T

0

(αc‖v(t)‖2V − λc‖v(t)‖2H) dt

≥ 1

2
‖v(T )‖2H + (αc − λc%2)‖v‖2Y ≥ min{1

2
, αc − λc%2}JvK2X ,

i.e., weak coercivity with constant αw := min{ 12 , αc−λc%
2}1/2. Finally, integration

by parts and recalling that v(0) = 0 in H for v ∈ X yields for v, w ∈ X that

a(v, w) = (v(T ), w(T ))H − (v(0), w(0))H − [v, ẇ] + C[v, w]

≤ ‖v(T )‖H‖w(T )‖H + ‖v‖Y ‖ẇ‖Y ′ + γc‖v‖Y ‖w‖Y ≤ γsJvKX |||w|||X ,

with γs := max{1, γc}. �

As a direct consequence of Theorem 2.15, we get:

Corollary 4.3. If the assumptions of Proposition (4.2) hold, the space-time vari-
ational inequality (4.5) has a solution which is unique with respect to [·]X .

Saddle-point Inequality. We can also formulate a space-time saddle-point inequality,
which we will use for deriving an error bound. Let us assume that K(t), t ∈ I a.e.,

can be represented as K(t) = {v(t) ∈ V : b̃(v(t), q(t)) ≤ g(t; q(t))∀ q(t) ∈ M̃},
where M̃ ⊂ W̃ is the dual cone, b̃ : V × W̃ → R is the bilinear form in space only
and g(t) ∈ W̃ ′ is given.h Based upon these, we need to define W and b : Y ×W → R.
The precise definition of W and b(·, ·) is influenced by the question how the convex
space-time set K arises from K(t), i.e., its temporal evolution or how the dual cone

M ⊂ W arises from M̃ . Then, given g ∈ W ′, the saddle-point inequality reads as
in (3.1) with a(·, ·) and f(·) defined as before.

4.3. Modeling of the Cone. We will now discuss different possibilities for the
choice of M , W and b(·, ·). For each choice, we need to

• prove that b(·, ·) is inf-sup stable, so that Lemma 3.2 ensures that the saddle-point
inequality is equivalent to the variational inequality. This ensures well-posedness;

• specify an operator D : M → X from Definition 3.10 in order to ensure that K
is X-compatible and to obtain an error estimate by Theorem 3.12;

• detail the projector π in order to derive the precise form of an error estimate.

Let us start by thinking of an obstacle or a barrier. In this setting, it makes
sense to require that a solution u ∈ X of a PVI satisfies the cone condition for (at
least for almost) all times, i.e.,

(4.6) b̃(v(t), q̃) ≤ g̃(t; q̃) ∀ q̃ ∈ M̃ ∀ t ∈ I a.e.

In some applications, a condition for ‘almost’ all t ∈ I might not be sufficient.

4.3.1. Straightforward approaches. We start by some straightforward approaches.

hFrom here on, we use tildes to indicate quantities in space (only).
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Stationary Cones. In case of a stationary cone, i.e., g(t) ≡ g ∈ W̃ ′, one might try

to set M := M̃ , W := W̃ and now bstat(v, q) :=
∫ T
0
b̃(v(t), q) dt for v ∈ Y , q ∈ W .

This, however, does not yield that the cone-condition holds for (almost) all times

since bstat(v, q) = b̃(v̄, q) with the temporal average v̄ :=
∫ T
0
v(t) dt. Thus, this

would only ensure that the temporal average is in K which might not be what we
want (depending on the problem at hand, of course).

Average Condition. Another possibility is, that we define the space W := L2(I; W̃ )

and the bilinear form as b(v, q) :=
∫ T
0
b̃(v(t), q(t))dt. Given g ∈ W ′ = L2(I; W̃ ′),

the cone condition reads
∫ T
0
b̃(v(t), q(t)) dt ≤

∫ T
0
〈g(t), q(t)〉W̃ ′×W̃ dt, which can be

seen as a cone condition ‘on average’. From an application point of view, this might
again be insufficient (e.g. a company should not be bankrupt just in average). On
the other hand, we can show that b(·, ·) is inf-sup stable:

Proposition 4.4. Let b̃ : V × W̃ → R be bounded and inf-sup stable, i.e.,

(4.7) b̃(η, µ) ≤ γb̃‖η‖V ‖µ‖W̃ , inf
µ∈W̃

sup
η∈V

b̃(η, µ)

‖η‖V ‖µ‖W̃
≥ βb̃ > 0.

Then, b : Y ×W → R defined for W := L2(I; W̃ ) by b(y, q) :=
∫ T
0
b̃(y(t), q(t)) dt is

inf-sup stable on Y ×W with constant βb ≥ βb̃.

Proof. Define the operator B̃ : V → W̃ ′ by 〈B̃η, µ〉W̃ ′×W̃ := b̃(η, µ) for η ∈ V ,

µ ∈ W̃ . By (4.7), the operator B̃ is boundedly invertible with ‖B̃η‖W̃ ′ ≤ γb̃ ‖η‖V
and ‖B̃−1µ̂‖V ≤ βb̃

−1‖µ̂‖W̃ ′ . Let q ∈ W be given, i.e., q(t) ∈ W̃ for almost

all t ∈ I. For such a t ∈ I, define q̂(t) ∈ W̃ ′ as the Riesz representation, i.e.,

〈q̂(t), η〉W̃ ′×W̃ = (q(t), η)W̃ , for η ∈ W̃ (where (·, ·)W̃ is the inner product in W̃ ) in

particular ‖q̂(t)‖W̃ ′ = ‖q(t)‖W̃ . Then, set yq(t) := B̃−1q̂(t) ∈ V . This implies that

b̃(yq(t), q(t)) = 〈q̂(t), q(t)〉W̃ ′×W̃ = ‖q(t)‖2
W̃

. Since

‖yq‖2Y =

∫ T

0

‖yq(t)‖2V dt ≤ βb̃
−2
∫ T

0

‖q̂(t)‖2
W̃ ′dt = βb̃

−2
∫ T

0

‖q(t)‖2
W̃
dt = βb̃

−2‖q‖2W

we get ‖yq‖Y ≤ β−1b̃ ‖q‖W and in particular that yq ∈ Y . Finally,

b(yq, q) =

∫ T

0

b̃(yq(t), q(t))dt =

∫ T

0

‖q(t)‖2
W̃
dt = ‖q‖2W ≥ βb̃‖q‖W ‖yq‖Y ,

which proves the claim. �

So far, we have not specified the dual cone M based upon the dual cone M̃ in
space only. This also relates to the X-compatibility of K. We have not been able
to construct an operator D : M → X as in Definition 3.10. The reason is that X
requires regularity in time which is not provided by the norm in W with the above
choice. Hence, the next try is to equip W (and M) with some temporal regularity.

More Regularity. In this regard, another possibility is to set

(4.8) W := H1
{0}(I; W̃ ) := {q ∈ H1(I; W̃ ) : q(0) = 0}.
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Note that W ⊂ C(Ī; W̃ ).i At a first glance, the left boundary condition might
be surprising. However, keeping in mind that a parabolic variational inequality
is equipped with an initial condition which lies in the convex set K, there is no
need to ensure this by the variational formulation. Thus, the homogeneous initial
condition is a natural choice. In order to prove inf-sup stability, we define: ‖q‖2W :=
‖q̇‖2

L2(I;W̃ )
+ ‖q‖2

L2(I;W̃ )
+ ‖q(T )‖2

W̃
. Similar to the proof of Proposition 4.4, we can

show the following result, whose proof we skip.

Proposition 4.5. Let b̃ : V × W̃ → R be bounded and inf-sup stable as in (4.7).

Then, b : Y ×W → R defined by b(y, q) :=
∫ T
0
b̃(y(t), q̇(t) + q(t)) dt is inf-sup stable

with constant βb ≥ 2−1/2βb̃.

As above, we obtain well-posedness, but we have not been able to show X-
compatibility. A straightforward candidate would be M := H1

0 (I; M̃) (i.e., M ⊂
C(Ī; M̃)) and (Dp)(t) := D̃(p(t)) + ṗ(t)) with D̃ : M̃ → V accordingly, which
–however– is not bounded in X.

4.3.2. Pointwise Conditions. Given K(t) as above, we now describe a possible
choice of W , M and b(·, ·) that ensures v(t) ∈ K(t) for all t ∈ Ī provided that
v ∈ X ∩ K. Moreover, this approach also allows to construct appropriate op-
erators D and π. To this end, we assume that W̃ ′ ↪→ H̃ ↪→ W̃ is another
Gelfand triple with a (pivot) Hilbert space H̃. Moreover, we require that M̃ ⊂ H̃.

Then, g(t; q(t)) = 〈g(t), q(t)〉W̃ ′×W̃ for q(t) ∈ W̃ . Defining H1
{0}(I; W̃ ′) := {w ∈

H1(I; W̃ ′) : w(0) = 0 in H̃}, we set W := (H1
{0}(I; W̃ ′))′, M := H1(I; M̃) and

(4.9) b(y, q) :=

∫ T

0

b̃(y(t), q(t))dt, y ∈ Y, q ∈W.

First, note that M ⊂ W in the sense of a continuous embedding. In fact, let

q ∈M , i.e., ‖q‖2
H1(I;W̃ )

=
∫ T
0
{‖q̇(t)‖2

W̃
+ ‖q(t)‖2

W̃
}dt <∞ and q(t) ∈ M̃ ⊂ H̃ ⊂ W̃

for all t ∈ Ī. Then, `q(v) :=
∫ T
0
{〈q̇(t), v̇(t)〉W̃×W̃ ′ + 〈q(t), v(t)〉W̃×W̃ ′}dt, v ∈

H1
{0}(I; W̃ ′) = W ′, defines a linear mapping `q : W ′ → R, which is bounded, i.e.,

|`q(v)| ≤ Cq‖v‖W ′ , hence `q ∈ (H1
{0}(I; W̃ ′))′ = W , which proves the embedding

M ⊂W . Next, we note for later reference that for g ∈W ′ and q ∈M we have

(4.10) 〈g, q〉W ′×W =

∫ T

0

〈g(t), q(t)〉W̃ ′×W̃ dt.

In fact, note that W ′ ↪→ L2(I; H̃) ↪→ W ∼= H−1(I; W̃ ) so that the duality of

W ′ and W is induced by L2(I; H̃) in the sense that 〈g, h〉W ′×W = (g, h)L2(I;H̃)

if g ∈ W ′ and h ∈ L2(I; H̃). For q ∈ M = H1(I; M̃) ⊂ L2(I; H̃), we thus get

〈g, q〉W ′×W = (g, q)L2(I;M̃) and the duality of W̃ ′ and W̃ is induced by H̃, which

shows (4.10). This setting in fact realizes a pointwise condition for K:

Proposition 4.6. Assume that W̃ ′ ↪→ H̃ ↪→ W̃ is a Gelfand triple with a Hilbert
space H̃ such that M̃ ⊂ H̃. Let W := (H1

{0}(I; W̃ ′))′, M := H1(I; M̃) and b(·, ·) be

as in (4.9). If w ∈ X ∩K, then w(t) ∈ K(t) for all t ∈ I.

iThe following fact is well-known, see e.g. [1, Satz 8.24]: For any Hilbert space U and any
v ∈ H1(I;U) there exists a unique w ∈ C(Ī;U) with v(t) = w(t) for t ∈ I a.e. In the sequel, we

will always identify v ∈ H1(I;U) with its continuous representative.
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Proof. Let t ∈ I and pick an arbitrary η ∈ M̃ . Denoting by δt the Dirac distribution
in time at t, we consider a sequence (qδ)δ>0 ⊂M with qδ → δt⊗η as δ → 0+. Then,

b(w, qδ) =
∫ T
0
b̃(w(s), qδ(s))ds → b̃(w(t), η) as δ → 0+. On the other hand, since

qδ ∈M , we get by (4.10) that b(w, qδ) ≥ 〈g, qδ〉W ′×W =
∫ T
0
〈g(s), qδ(s)〉W̃ ′×W̃ ds→

〈g(t), η〉W̃ ′×W̃ as δ → 0+, i.e., b̃(w(t), η) ≥ 〈g(t), η〉W̃ ′×W̃ for all η ∈ M̃ , i.e.,
w(t) ∈ K(t). �

Next, we need to prove inf-sup stability in order to show well-posedness.

Proposition 4.7. Let the assumptions of Proposition 4.6 hold and assume (4.7),

i.e., b̃ : V × W̃ → R is inf-sup stable with constant βb̃ > 0. Then, b : Y ×W → R
is inf-sup stable with constant βb ≥ βb̃.

Proof. Let q ∈ W be given and denote by q̂ ∈ W ′ its Riesz representation, i.e.,
(q̂, w)W ′ = 〈q, w〉W×W ′ for all w ∈ W ′, in particular 〈q, q̂〉W×W ′ = ‖q̂‖2W ′ = ‖q‖2W .

Since W ′ = H1
{0}(I; W̃ ′), we have q̂(t) ∈ W̃ ′ for all t ∈ Ī and similar to the proof

of Proposition 4.4 we define yq : Ī → V by yq(t) := B̃−1(q̂(t)) ∈ V , t ∈ Ī. Since

‖yq‖2Y =

∫ T

0

‖yq(t)‖2V dt =

∫ T

0

‖B̃−1(q̂(t))‖2V dt ≤ β−2b̃

∫ T

0

‖q̂(t)‖2
W̃ ′dt

= β−2
b̃

∫ T

0

〈q̂(t), q(t)〉W̃ ′×W dt = β−2
b̃
〈q̂, q〉W ′×W = β−2

b̃
‖q‖2W ,

we get yq ∈ Y. Finally,

b(yq, q) =

∫ T

0

b̃(yq(t), q(t))dt =

∫ T

0

〈B̃yq(t), q(t)〉W̃ ′×W̃ dt

=

∫ T

0

〈q̂(t), q(t)〉W̃ ′×W̃ dt = 〈q̂, q〉W ′×W = ‖q‖2W ≥ βb̃‖q‖W ‖yq‖Y ,

which proves the claim. �

4.3.3. X-compatibilty. With R̃ : W̃ → W̃ ′ we denote the Riesz operator in space
〈R̃q̃, w̃〉W̃ ′×W̃ = (q̃, w̃)W̃ for all w̃ ∈ W̃ ′, and with R : W → W ′ the space-time
Riesz operator defined by 〈Rw, q〉W ′×W = (w, q)W for all q ∈W . In particular, we

have ‖R̃w̃‖W̃ ′ = ‖w̃‖W̃ and ‖Rw‖W ′ = ‖w‖W . For later reference, we note that

(w, q)W = (Rw,Rq)W ′ and similarly (q̃, w̃)W̃ = (R̃q̃, R̃w̃)W̃ ′ . Then, we get the
following result.

Proposition 4.8. Assume that W̃ ′ ↪→ H̃ ↪→ W̃ is a Gelfand triple such that
M̃ ⊂ W̃ ′. Moreover, assume the existence of a linear mapping D̃ : W̃ → V with
(i) b̃(D̃p̃, q̃) = (p̃, q̃)W̃ for all p̃, q̃ ∈ M̃ and (ii) ‖D̃p̃‖V ≤ CD̃ ‖p̃‖W̃ for all p̃ ∈ M̃ .

Then, K is X-compatible with (Dp)(t) := D̃(R̃−1[(Rp)(t)]) for t ∈ Ī and p ∈M .

Remark 4.9. Note that the condition M̃ ⊂ W̃ ′ is stronger than M̃ ⊂ H̃.

Proof. For p ∈M , we have Rp ∈W ′, thus (Rp)(t) ∈ W̃ ′ and R̃−1[(Rp)(t)] ∈ W̃ for
all t ∈ Ī, so that D is well-defined on M . In order to verify (1) in Definition 3.10,
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we get for p, q ∈M by (4.10), (i) and the definitions of R and R̃

b(Dp, q) =

∫ T

0

b̃((Dp)(t), q(t)) dt =

∫ T

0

b̃
(
D̃(R̃−1[(Rp)(t)]), q(t)

)
dt

=

∫ T

0

(
R̃−1[(Rp)(t)], q(t)

)
W̃
dt =

∫ T

0

〈(Rp)(t), q(t)〉W̃ ′×W̃ dt

= 〈Rp, q〉W ′×W = (p, q)W ,

which proves (1). In order to show (2), we first note that for v ∈ X, we have

‖v(T )‖2H =

∫ T

0

d

dt
‖v(t)‖2H dt = 2

∫ T

0

〈v̇(t), v(t)〉V ′×V dt

≤ 2

∫ T

0

‖v̇(t)‖V ′ ‖v(t)‖V dt ≤ 2‖v̇‖Y ′ ‖v‖Y ≤ ‖v̇‖2Y ′ + ‖v‖2Y ,

so that we get for p ∈M

|||Dp|||2X ≤ 2‖Dṗ‖2Y ′ + 2‖Dp‖2Y = 2

∫ T

0

‖(Dṗ)(t)‖2V ′ dt+ 2

∫ T

0

‖(Dp)(t)‖2V dt.

Since ‖φ‖V ′ ≤ %2‖φ‖V , φ ∈ V , with the embedding constant % from (4.1), we

obtain |||Dp|||2X ≤ 2%4
∫ T
0
‖(Dṗ)(t)‖2V dt+ 2

∫ T
0
‖(Dp)(t)‖2V dt. For any q ∈ L2(I; W̃ )

it holds by (ii) that∫ T

0

‖(Dq)(t)‖2V dt =

∫ T

0

‖D̃(R̃−1[(Rq)(t)])‖2V dt ≤ C2
D̃

∫ T

0

‖R̃−1[(Rq)(t)]‖2
W̃
dt

= C2
D̃

∫ T

0

‖(Rq)(t)‖2
W̃ ′dt = C2

D̃
‖Rq‖L2(I;W̃ ′).

Using this, we get

|||Dp|||2X ≤ 2%4C2
D̃
‖Rṗ‖L2(I;W̃ ′) + 2C2

D̃
‖Rp‖L2(I;W̃ ′)

≤ 2C2
D̃

max{1, %4}‖Rp‖2
H1(I;W̃ ′)

= 2C2
D̃

max{1, %4}‖Rp‖2W ′

= 2C2
D̃

max{1, %4}‖p‖2W ,

i.e., (2) in Definition 3.10 with CD =
√

2CD̃ max{1, %2}. �

4.3.4. Projection onto the cone. Now, we comment on the definition of the projector
π : W →M . With the above notation at hand, for any fixed t ∈ Ī, we assume the
existence of some π̃(t) : W̃ → M̃ (i.e., a projector in space only) satisfying

(4.11) 〈q̃−π̃(t)(q̃), η̃〉W̃ ≤ 0, q̃ ∈ W̃ , η̃ ∈ M̃, π̃(t)(σ̃(t)) = 0, 〈q̃, σ̃(t)〉π̃ ≤ 0, q̃ ∈ M̃,

where σ̃(t) ∈ W̃ is the Riesz representation of the inequality residual, which means

that 〈σ̃(t), q̃〉W̃ = b̃(u(t), q̃) − 〈g(t), q̃〉W̃ ′×W̃ for q̃ ∈ W̃ .j We will now show that
there exists a π : W →M , such that it defines a projection and that the necessary
conditions for the error estimation (3.7) are fulfilled.

Lemma 4.10. Let π̃(t) : W̃ → M̃ satisfy (4.11) for all t ∈ Ī such that π̃(t) is
uniformly bounded, Fréchet differentiable with uniformly bounded π̃′(t) := d

dt π̃(t).

Then [π(q)](t) := π̃(t)[R̃−1q̂(t)], q ∈W , q̂ := Rq, is a projector π : W →M .

jNote, that here we have a slight abuse of notation using the tilde for space-only quantities.

Even though π̃(t) is a projection with respect to space only, the dependence on t describes its
temporal evolution, i.e., π̃ defined by (π̃)(t) := π̃(t) is a space-time object.
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Proof. We need to show that π(q) ∈M for all q ∈W . To this end,

‖π(q)‖2
H1(I;W̃ )

=

∫ T

0

{
‖ d
dt
π(q)(t)‖2

W̃
+ ‖π(q)(t)‖2

W̃

}
dt

=

∫ T

0

{
‖ d
dt

[π̃(t)(R̃−1q̂(t))]‖2
W̃

+ ‖π̃(t)(R̃−1q̂(t))‖2
W̃

}
dt

≤
∫ T

0

∥∥∥π̃′(t)(R̃−1q̂(t)) + π̃(t)
(
R̃−1

( d
dt
q̂(t)

))∥∥∥2
W̃
dt+ ‖π̃‖2∞

∫ T

0

‖q̂(t)‖2
W̃ ′dt

≤ 2‖π̃′‖2∞
∫ T

0

‖R̃−1q̂(t)‖2
W̃

+ 2‖π̃‖2∞
∫ T

0

∥∥R̃−1(
d

dt
q̂(t))

∥∥2
W̃
dt+ ‖π̃‖2∞‖q̂‖2L2(I;W̃ ′)

≤ 2‖π̃′‖2∞‖q̂‖2L2(I;W̃ ′)
+ ‖π̃‖2∞

(
2‖ d
dt
q̂‖2
L2(I;W̃ ′)

+ ‖q̂‖2
L2(I;W̃ ′)

)
≤ (3‖π̃‖2∞ + 2‖π̃′‖2∞)‖q̂‖2

H1(I;W̃ ′)
<∞,

for q ∈W . Thus, π(q) ∈ H1(I; W̃ ) ∩ C(Ī; M̃) and therefore π(q) ∈M . �

Of course, the assumptions of Lemma 4.10 are valid in the case that the cone
is stationary. This also holds for the assumptions of the next statement. For this,
we recall that the Riesz representation R : W → W ′ can also be described as
(Rw, ξ)W ′ = 〈w, ξ〉W×W ′ . Then, we get:

Lemma 4.11. Under the assumptions of Lemma 4.10, the above defined projector
π : W →M also fulfills (3.7).

Proof. We start by proving (3.7a), i.e., (q − π(q), η)W ≤ 0 for all q ∈ W, η ∈ M .
We have, recalling that q̂ := Rq,

(q − π(q), η)W =

∫ T

0

〈q(t)− π(q)(t), Rη(t)〉W̃×W̃ ′ dt

=

∫ T

0

〈q(t)− π̃(t)(R̃−1q̂(t)), Rη(t)〉W̃×W̃ ′ dt

=

∫ T

0

(q(t)− π̃(t)(R̃−1q̂(t)), η(t))W̃ dt

=

∫ T

0

(R̃−1q̂(t)− π̃(t)(R̃−1q̂(t)), η(t))W̃ dt ≤ 0,

by the first condition in (4.11) for the projector in space π̃(t). To prove the second
condition (3.7b), we start by using the inequality residual

(σ, q)W = b(u, q)− 〈g, q〉W ′×W =

∫ T

0

{b̃(u(t), q(t))− 〈g(t), q(t)〉W̃ ′×W̃ }dt

=

∫ T

0

(σ̃(t), q(t))W̃ dt

By definition of the space-time projector, we have [π(σ)](t) = π̃(t)(R̃−1R(σ(t)))

and therefore σ̂ = Rσ ∈W = H1
{0}(I; W̃ ′). By applying the Riesz operator, we get

(σ, q)W = 〈σ̂, q〉W ′×W =

∫ T

0

〈σ̂(t), q(t)〉W̃ ′×W̃ dt =

∫ T

0

(R̃−1σ̂(t), q(t))W̃ dt
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Thus we have R̃−1σ̂(t) = σ̃(t) for t ∈ I a.e., hence σ̃ ∈ W which means that σ(t)
and σ̃(t) can be identified with each other for almost every t ∈ I. This proves the

claim as [π(σ)](t) = π̃(t)(R̃−1σ̂(t)) = π̃(t)(σ̃(t)) = 0. We finish by proving (3.7c)
for the space-time projector, i.e., 〈q, σ〉π ≤ 0 for all q ∈M . Setting

〈q, p〉π :=

∫ T

0

〈q(t), p(t)〉π̃ dt, p, q ∈W,

we get for q ∈ M that 〈q, σ〉π :=
∫ T
0
〈q(t), σ(t)〉π̃ dt =

∫ T
0
〈q(t), σ̃(t)〉π̃ dt ≤ 0, as

q(t) ∈ M̃ and the third condition of (4.11) holds. �

4.4. Obstacle Problems. Finally, we show a concrete example for obstacle prob-
lems for which we can apply the previous results. For obstacle problems, we have
K(t) = {v ∈ Y : v(t) ≥ g(t)}, where g(t) ∈ H1

0 (Ω) = W̃ ′ = V and W̃ = V ′ =

H−1(Ω). In this case, we have b̃(φ, η) = 〈φ, η〉V×V ′ , M̃ = V + := {φ ∈ V : φ ≤
0 on Ω}, H̃ = H = L2(Ω), so that M̃ ⊂ W̃ ′ ⊂ H̃. Then, M = H1(I;V +),W =
(H1
{0}(I;H1

0 (Ω)))′ ∼= H−1(I;H−1(Ω)):= {g′ : g ∈ L2(I;H−1(Ω))}, recall (4.8). Since

W ′ ⊂ X we we can define D and π as above which yields a corresponding error
estimator.

5. Conclusions

We have considered variational inequalities under milder conditions than coer-
civity on the involved bilinear form a(·, ·). This framework in particular includes
space-time variational formulations of parabolic variational inequalities. We derive
a new well-posedness results and prove an estimate for the error in terms of the
(computable) residual. This error estimate is particularly useful for Reduced Ba-
sis Methods (RBMs). We have summarized our results in Table 5.1. It is worth
mentioning that some results are with respect to the seminorm J·KX which is not
a norm on X. Considering parabolic problems, this is natural as we cannot hope
to control the norm of the derivative, i.e., ‖u̇‖L2(I;V ′). On the other hand, J·KX is
significantly stronger than ‖ · ‖Y , in the parabolic case, e.g., it allows one to control
the state at the final time. Finally, we have detailed our general construction for
space-time parabolic variational inequalities.
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