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Abstract We consider parameterized parabolic partial differential equations (PDEs)
with variable initial conditions, which are interpreted as a parameter function within
the Reduced Basis Method (RBM). This means that we are facing an infinite-
dimensional parameter space. We propose to use the space-time variational formu-
lation of the parabolic PDE and show that this allows us to derive a two-step greedy
method to determine offline separately the reduced basis for the initial value and the
evolution. For the approximation of the initial value, we suggest to use an adaptive
wavelet approximation. Online, for a given new parameter function, the reduced ba-
sis approximation depends on its (quasi-)best N-term approximation in terms of the
wavelet basis. A corresponding offline-online decomposable error estimator is pro-
vided. Numerical experiments show the flexibility and the efficiency of the method.

1 Introduction

The reduced basis method (RBM) is a well-known model reduction method for pa-
rameterized partial differential equations (PDE) within multi-query and/or realtime
context situations. Of course, the structure and the dimension of the parameter set D
has significant influence on the efficiency of any RBM. Typically, one has D ⊂ RP

with P being “reasonably” small. In some applications, however, P may be large,
even infinite. Such a case occurs if one faces a parameter function so that D ⊂ H
with H being a function (Hilbert) space of infinite dimension.
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We consider a particularly relevant class of problems involving parameter func-
tions, namely parabolic problems with variable initial conditions, i.e., we consider
the initial condition as a parameter. One possible application are pricing and hedg-
ing problems in finance, where the payoff is used as a parameter, see [4, 5]. Using a
parameterized initial value in an evolution equation is a challenge by itself for stan-
dard RBM-techniques such as the POD-Greedy method [3], since usually the error
is propagating over time.

This is the reason why we rely on the space-time variational formulation for
parabolic problems introduced in [6] and being used within the RB-framework e.g.
in [9, 10]. Within this framework, we show that we can separate the treatment of the
initial value parameter function from additional parameters the PDE may have. We
introduce a 2-stage Greedy method for computing a corresponding reduced basis in
the offline phase.

The issue remains how to approximate a parameter function, an ∞-dimensional
object (expansion in a separable Hilbert space). We propose an adaptive wavelet
approximation for the parameter function online. We show that several ingredients
for the RB approximation can be precomputed in the offline phase and how to re-
alize an online-efficient approximation for a new parameter function. Numerical
results show the flexibilty, efficiency and the approximation quality of the proposed
method.

The remainder of this chapter is organized as follows. In Section 2, we recall
those main facts of the RBM that we need here. Section 3 is devoted to a brief
survey of the space-time variational formulation for parabolic problems as well as
its parametric variant. Our suggested RBM for problems with parameter functions is
detailed in Section 4 also including the description of the use of an adaptive wavelet
approximation. We report our numerical results in Section 5 and finish with some
conclusions in Section 6. We refer to [4] to more details on the presented material.

2 Reduced Basis Method

Let D be some parameter space. Consider the parametrized PDE

find u≡ u(µ) ∈ X : b(u,v; µ) = f (v; µ) ∀ v ∈ Y; µ ∈D , (1)

where b : X×Y×D→R is a parameter-dependent bilinear form and f : Y×D→R
a parameter dependent linear form. We assume well-posedness of (1). For discrete
(but high-dimensional) trial XN ⊂ X and test YN ⊂ Y spaces with dim(XN ) =
dim(YN ) = N � 0 and every µ ∈ D , an associated N -dimensional (detailed)
linear system has to be solved that is given by

find uN ≡ uN (µ) ∈ XN : b(uN ,v; µ) = f (v; µ) ∀v ∈ YN . (2)

Again we assume well-posedness for this detailed system.
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In a multi-query or real-time context, the solution of this detailed system (some-
times called “truth”) is often too costly. In order to reduce the system, we con-
sider the solution subset (“manifold”) M(D) = {u(µN ) ∈ XN : µ ∈ D}. The
RBM aims to approximate M(D) by a lower dimensional space XN ⊂ XN where,
dim(XN) = N�N . The reduced problem then reads

find uN ≡ uN(µ) ∈ XN : b(uN ,v; µ) = f (v; µ) ∀ v ∈ YN (3)

with an appropriate test space YN (which may also be parameter-dependent, i.e.,
YN(µ)). Hence, a linear system of dimension N needs to be solved.

The RBM is divided into an offline and an online phase. In the offline phase,
bases spanning the reduced system XN , YN are generated by computing detailed
solutions u(µ i) ∈ XN for a well-chosen sample set of parameters µ1, . . . ,µN ⊂ D
along with a reduced stable test space YN . The reduced system is then solved online
for new values of the parameters µ ∈ D . The goal is that the reduced system is
online-efficient, which means it can be solved with an amount of work independent
of the detailed dimension N .

In order to reach the latter goal, a standard assumption is to require that the forms
b and f are decomposable w.r.t. the parameter (sometimes called “affine decompo-
sition”), i.e., there exist Qb, Q f ∈ N and functions θ b

q ,θ
f

q : D → R such that

b(u,v; µ) =
Qb

∑
q=1

θ
b
q (µ)bq(u,v), f (v; µ) =

Q f

∑
q=1

θ
f

q (µ) fq(v) (4)

with (bi-)linear forms bq and fq independent of µ . First, the reduced trial functions
ui := uN (µ i) ∈ XN and corresponding inf-sup-stable test functions vi ∈ YN , i =
1, . . . ,N, are computed. Then, the parameter-independent components are computed
and stored, e.g.

bq(ui,v j) =
N

∑
k,l=1

αi;k α̃ j;l bq(ϕ
N
k , ϕ̃N

l ),

where ϕN
k , ϕ̃N

l are the basis functions of the detailed spaces XN , YN and αi;k,
α̃ j;l are the expansion coefficients of the reduced basis functions ui, v j in terms of
the detailed basis functions. The linear forms fq(v j) are precomputed in a similar
fashion. In the online phase, only θ b

q (µ) and θ
f

q (µ) need to be evaluated for a new
parameter µ and the sums in (4) can be computed with complexity independent of
N , i.e., online-efficient.

3 Space-Time Variational Formulation for Parabolic Problems

We follow e.g. [6, 9, 10] for the introduction of space-time variational formulations
for parabolic PDEs in terms of Bochner(-Lebesgue) spaces. Let H ↪→V be densely
embedded Hilbert spaces. By identifying H with its dual H ′, we obtain the Gelfand
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triple V ↪→H ↪→V ′, i.e., the scalar product (·, ·)H on H generates the duality pairing
〈·, ·〉V ′×V . We denote the induced norms on V and H by | · |V and | · |H , respectively.
We seek the solution in

X := {u ∈ L2(I;V ) : u̇ ∈ L2(I;V ′)}, I := (0,T )⊂ R,

equipped with the graph norm ‖u‖2
X := ‖u‖2

L2(I;V )+‖u̇‖
2
L2(I;V ′).

The parameter spaces are assumed to be of the form D = D0×D1 ⊂ H ×RP,
where µ0 ∈ D0 accounts for the initial value (i.e., a function) and µ1 ∈ D1 for pa-
rameters in the PDE. To be more specific, consider a parameter-dependent bilin-
ear form a : V ×V ×D1 → R with induced linear operator A (µ1) ∈ L (V,V ′) as
〈A (µ1)φ ,ψ〉V ′×V = a(φ ,ψ; µ1) for φ ,ψ ∈ V . Then, given a non-parametric right-
hand side g ∈ L2(I;V ′), we seek u(t) ∈V , t ∈ I such that for µ = (µ0,µ1) ∈D

u̇(t)+A (µ1)u(t) = g(t) in V ′, t ∈ I a.e., u(0) = µ0 in H. (5)

We assume that there exist constants Ca(µ1) > 0, αa(µ1) > 0 and λa(µ1) ∈ R
such that for all φ ,ψ ∈V

|a(φ ,ψ; µ1)| ≤Ca(µ1)|φ |V |ψ|V (continuity), (6)

a(φ ,φ ; µ1)+λa(µ1)|φ |2H ≥ αa(µ1)|φ |2V (Gårding inequality). (7)

Remark 1. (i) For u ∈ X the initial condition in (5) is meaningful since X ↪→
C (Ī;H), [7, III. Prop. 1.2].

(ii) We assume that g is parameter-independent just for ease of presentation. All
what is said here extends to parameter-dependent right-hand sides as well.

The test space is chosen as Y := L2(I;V )×H equipped with the graph norm
‖v‖2

Y = ‖v1‖2
L2(I,V )+ |v2|2H , v = (v1,v2) ∈ Y. For w ∈ X, v = (z,h) ∈ Y and µ ∈D ,

we define

b(w,v; µ) :=
∫

I
〈ẇ(t),z(t)〉V ′×V dt +

∫
I
a(w(t),z(t); µ1)dt +(w(0),h)H , (8)

f (v; µ) :=
∫

I
〈g(t),z(t)〉V ′×V dt +(µ0,h)H . (9)

The variational formulation of the parameterized parabolic PDE is then given by

find u ∈ X : b(u,v; µ) = f (v; µ) ∀ v ∈ Y. (10)

Note, that (10) and (5) are in fact equivalent. Well-posedeness was shown e.g. in [6,
Thm. 5.1]. The linear operator B(µ) : X→Y′ induced by 〈B(µ)u,v〉 := b(u,v; µ),
v ∈ Y, is thus injective, which implies the inf-sup condition with a lower inf-sup-
bound βLB, i.e.,

inf
u∈X

sup
v∈Y

b(u,v; µ)

‖u‖X‖v‖Y
≥ β (µ)≥ βLB > 0. (11)
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The lower inf-sup-bound plays a major role in the a-posteriori error estimation of
the space-time RBM.

4 Reduced Basis Method for Parameter Functions

Recall, that the parameter µ0 ∈D0 is the initial value, i.e., a parameter function in an
infinite-dimensional parameter set (function space). We are now going to introduce
an approach to deal with this challenge.

4.1 Using the Initial Value as Parameter in a Space-Time Setting

We start by separating the (bi-)linear forms in (8,9):

b(u,v; µ) =
∫

I
〈u̇(t),z(t)〉V ′×V dt +

∫
I
a(u(t),z(t); µ1)dt +(u(0),h)H (12)

=: b1(u,z; µ1)+(u(0),h)H

f (v; µ) =
∫

I
〈g(t),z(t)〉V ′×V dt +(µ0,h)H =: g1(z)+(µ0,h)H (13)

for µ = (µ0,µ1) ∈D , u ∈X and (z,h) ∈Y. Note, that b(·, ·; µ) only depends on µ1,
whereas f (·; µ) only depends on µ0, the latter one just for convenience.

The detailed discretization is induced by XN ⊂X and YN ⊂Y with dim(XN )=
dim(YN ) =N . We assume well-posedness and uniform stability of the truth prob-
lem, [4]. Note, that X = H1(I)⊗V and Y = L2(I)⊗V ×H are tensor products, so
that it is convenient to construct the detailed spaces accordingly,

XN = (E1
0 ⊕EK

1 )⊗V J = (E1
0 ⊗V J )⊕ (EK

1 ⊗V J ) =: QJ ⊕WL ,

YN = (FK ⊗V J )×V J =: ZL ×V J , dim(WL ) = L := J K .

Here, E1
0 contains the temporal basis function τ0 (say) at t = 0 (dim(E1

0 ) = 1) and
EK

1 collects the remaining basis functions in time.1All superscripts indicate the
dimension of the spaces, so that N := dim(XN ) = J +L = dim(YN ). This
discretization allows a 2-step computation for µ = (µ0,µ1) ∈D as follows:

(a) Find q(µ0) ∈ VJ : (q(µ0),h)H = (µ0,h)H ∀h ∈V J , (14)

(b) Find w(µ) ∈WL : b1(w,z; µ1) = f1(z; µ1,τ
0⊗q(µ0)) ∀z ∈ ZL , (15)

with b1 as in (12) and f1(z; µ1,w) := g1(z)−b1(w,z; µ1) with g1 as in (13).

1 If we use a function in space, say q ∈ V J , as initial value, we “embed” it into QJ , i.e., we set
τ0⊗q ∈ QJ with the temporal basis function τ0 at t = 0.
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The space-time variational approach allows us to use the standard RB-setting in
Section 2 for the a posteriori error estimate in terms of the residual. It turns out
that the separation in (14) is also crucial here. Let uN(µ) ∈ XN ⊂ XN (the RB-
approximation to be detailed below), then we get for any v = (z,h) ∈ YN

rN(v; µ) = f (v; µ)−b(uN(µ),v; µ)

= g1(z; µ1)−b1(uN(µ),z; µ1)+(µ0−uN(0; µ),h)H

=: rN,1(z; µ)+ rN,0(h; µ). (16)

This separation of the residual allows us to control the error for the initial value
(t = 0) and the evolution separately.

4.2 Wavelet Approximation for the Parameter Function

The initial value is a function in D0 ⊆H. In principle, we could use any stable basis
in H to represent the initial value. However, as indicated in Section 1, we do not
want to fix any possible representation of µ0 a priorily, [5], but adapt it during the
online phase. Hence, we need a basis for H that allows for a rapid and local update of
a given new µ0. We have chosen wavelets. A detailed introduction to wavelets goes
far beyond the scope of the present paper, we thus refer e.g. to [8] for details and
sketch here just those ingredients that are particularly relevant in the RB-context.

Wavelets on the real line are usually formed via translation and dilation of a
single (compactly supported) function ψ : R→R, often called mother wavelet, i.e.,

ψλ (x) := 2 j/2
ψ(2 jx− k), x ∈ R, j ∈ N0 (the level), k ∈ Z, λ = ( j,k).

The simplest example is the Haar wavelet, where ψ(x)Haar :=

{
1, 0≤ x < 0.5,
−1, 0.5≤ x < 1.

Then Ψ
Haar := {ψHaar

λ
: λ ∈ Z×Z} is an orthonormal basis (ONB) for L2(R). If

one only uses {( j,k) : j ∈ N0, 0 ≤ k < 2 j} instead of Z×Z, an ONB of L2(0,1)
results. We denote such general index sets by Λ .

Definition 1. A countable set Ψ := {ψλ : λ ∈Λ} ⊂ H is called wavelet basis, if

(i) Ψ is a Riesz basis for H, i.e., there exist constants 0 < cΨ ≤CΨ < ∞ such that

cΨ ∑
λ∈Λ

|dλ |2 ≤
∣∣∣∣∑
λ∈Λ

dλ ψλ

∣∣∣∣2
H
≤CΨ ∑

λ∈Λ

|dλ |2, (in short: ‖d‖`2 ∼ ‖d
T
Ψ‖H);

(17)
(ii) Ψ has local support, i.e., |supp(ψλ )| ∼ 2−|λ |, λ = ( j,k), |λ | := j;
(iii) Ψ has d̃ vanishing moments, i.e., there exists some r∈N such that ((·)p,ψλ )H =

0 for 0≤ p < d̃.
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Remark 2. The Riesz representation theorem yields the existence of a dual wavelet
basis Ψ̃ with the same properties but a possibly different d instead of d̃ in (iii).
Typically, ψλ is a piecewise polynomial of degree d.

Nowadays, there is a whole variety of wavelet systems available, on general do-
mains Ω ⊂ Rd , with arbitrary smoothness and additional properties. Definition 1
has several consequences. Just to mention a few (and without going into detail due
to page restrictions):
(1) The wavelet coefficients dλ decay fast with increasing level |λ |.
(2) The wavelet coefficients are small in regions where the function is smooth –

they indicate regions of local non-smoothness (like isolated singularities).
(3) The norm equivalence (17) can be extended to scales of Sobolev spaces Hs

around s= 0 and allow for an online-efficient computation of the residual, [1, 2].
(4) There are fast adaptive methods to approximate a given function in H (to be

applied to approximate µ0 online). Roughly speaking, one only needs higher
level wavelets in regions where the function is locally non-smooth. The norm
equivalence (17) ensures that this procedure converges very fast (see below).

Remark 3. It might be a first naive idea to choose a finite subset of wavelet-indices,
say ΛM ⊂ Λ , and use the corresponding expansion coefficients as a parameter set
of dimension |ΛM|. Of course, this severely limits the choice of initial conditions. If
one is interested in a whole variety of such functions including localized effects, a
sufficient approximation causes |ΛM| to be huge – thus making this idea computa-
tionally infeasible. Only if one has some knowledge on the shape of the initial value,
one may a-priorily fix the approximation space, see e.g. [4, 5].

4.3 Online-Offline Reduced Basis Method

1st step Greedy: Adaptive approximation of the initial value. We start by col-
lecting offline-information for the online initial value approximation given a new
parameter function µ0. We collect those information in a library Linit that is com-
puted offline. The standard Jackson-estimate allows to truncate a wavelet expansion
at a certain maximum level and to control the approximation error in terms of the
Sobolev regularity. In fact, if we denote by S j the subspace of H generated by all
wavelets with level |λ | ≤ j, then

inf
v j∈S j
|v− v j|L2(Ω) ≤C 2− js|v|Hs(Ω), v ∈ Hs(Ω), s≤ d,

with d as in Remark 2, [8, (5.30)]. Hence, if we know (or fix) the regularity of all
candidates for the initial values, we may fix a maximal level, say J. For all wavelets
in the corresponding space SJ , we precompute the associated “snapshot” qλ ∈ QJ

for the initial value by solving

(qλ ,φ)H = (ψλ ,φ)H ∀φ ∈ SJ , |λ | ≤ J. (18)
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We thus obtain in the order of 2J such initial value snapshots and store them in an
Initial Value Library Linit = {qλ : λ ∈Λ , |λ | ≤ J}.

2nd step Greedy: Evolution snapshots. Based upon the library Linit, we pre-
compute snapshots for the corresponding evolutions. This is done by an adapted
standard Greedy scheme w.r.t. some training set D train

1 ⊂D1. The arising Evolution
Greedy is detailed in Algorithm 1. Note, that the training phase is performed for each
wavelet index λ with the respective training set {ψλ}×D train

1 . For each wavelet in-
dex λ , Algorithm 1 produces an RB space of the form W λ

N(λ ) = span{w1
λ
, . . . ,wN(λ )

λ
}

of dimension N(λ ), where wi
λ

solves the space-time parabolic problem

b1(wi
λ
,z; µ

i
1) = g1(z)−b1(qλ ,z; µ

i
1) ∀ z ∈ YN (19)

for a parameter µ i
1 chosen in the i-th step of Algorithm 1 with training set {ψλ}×

D train
1 . We collect all such solutions of (19) in an Evolution Library

Levol := {w1
λ
, . . . ,wN(λ )

λ
: λ ∈Λ , |λ | ≤ J},

which consists of all RB bases of the evolutions with initial values in Linit.

Algorithm 1 Evolution Greedy
Require: training set D train = {ψλ}×D train

1 ⊂D , tolerance tol1 > 0
1: Choose µ1 ∈D train, µ1 := (ψλ ,µ

1
1 ). Get precomputed qλ ∈ Linit

2: Compute w(µ1) ∈WL as in (19), Ξ λ
1 = {w(µ1)}

3: for `= 1, . . . ,Nmax do
4: µ`+1 = arg max

µ∈D train
∆ 1
` (µ)

5: if ∆ 1
` (µ

`+1)< tol1 then N(λ ) := ` Stop end if
6: Compute w(µ`+1) ∈WL as in (19)
7: S`+1

1 := S`1∪{µ`+1}, Ξ λ
`+1 := Ξ λ

` ∪{w(µ`+1)}
8: end for
9: return RB basis Ξ λ

N(λ )

We do not compute a reduced inf-sup stable test space YN , since we use normal
equations, see Remark 4 below. The space-time variational approach allows us to
use a standard error estimator in Algorithm 1, i.e., the first part of (16),

∆
1
` (µ) :=

‖r`,1(µ)‖Z′

βLB
, (20)

where βLB is the lower bound of the inf-sup constant of the bilinear form b.
Orthonormalization. Note, that we are going to use combinations of RB bases

stored in Levol for the RB approximation online. This combinations of snapshots
may not necessarily be linearly independent. We resolve this by performing an
online orthonormalization that is prepared offline as follows. Denote the set of
all functions that arise from the 2-step Greedy method by W Nmax := {wi : 1 ≤
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i ≤ Nmax}, Nmax = ∑λ∈Λ ,|λ |≤J N(λ ), and denote its Gramian matrix by M :=
[(wi,w j)X]i, j=1,...,Nmax . We then compute an SVD, i.e., M = UT DU. Setting S :=
U−1D−1/2 obviously yields ST MS = 1. At a first glance, this might seem to be an
overkill. However, in the online phase, we need to access to all rows and columns
of S that correspond to the required RB snapshots in Levol that are significant for
approximating the evolution for a new µ0. Hence, we need to consider W Nmax .

Online Phase: We need to adapt the online phase for the specific case of a pa-
rameter function µ0. The main idea is to efficiently compute a (quasi-)best N0(µ0)-
term approximation to a given µ0 by determining those N0(µ0) wavelets yielding
the largest coefficients in absolute values. Let us denote by ΛN(µ0) the arising index
set of dimension N0(µ0). Then, the computed approximation takes the form

u0,N(µ0) = ∑
λ∈ΛN(µ0)

dλ (µ0)qλ , N0(µ0)≡ |ΛN(µ0)|,

with qλ ∈ Linit. The approximation error can be estimated as

‖µ0−u0,N(µ0)‖H ≤ ∆
0
N(µ0) :=

‖rN,0(µ0)‖H ′

βLB

≤ 1
βLB

∥∥∥µ0− ∑
λ∈ΛN(µ0)

dλ ψλ

∥∥∥
H
=

1
βLB

∥∥∥ ∑
λ 6∈ΛN(µ0)

dλ ψλ

∥∥∥
H
. (21)

For the evolutionary part, we use the reduced basis {w`
λ

: λ ∈ ΛN(µ), ` =
1, . . . ,N(λ )}⊂Levol to span the reduced space, which is of dimension N :=N(µ0)=

∑λ∈ΛN(µ0) N0(λ ), i.e., we have to solve a linear system of dimension N×N. Recall,
that we have precomputed the SVD of the full Gramian matrix M along with the
matrix S to orthogonalize the snapshots. Now, we pick the submatrix SN of S con-
sisting of the N rows and columns of S that correspond to the given initial value µ0.
We use this matrix SN as a preconditioner for the system matrix BN(µ). The arising
online phase is detailed in Algorithm 2.

Algorithm 2 Online Phase with Online Orthonormalization
Require: New parameter µ ∈D , N = N(µ0), Linit, Levol, preconditioner S.
1: Compute BN(µ), FN(µ) and pick SN out of S.
2: Orthogonalization: B̃N(µ) := ST

NBN(µ)SN , F̃N(µ) := ST
NFN(µ).

3: if det(B̃N(µ)) = 0 then Delete zero rows/columns. end if
4: Solve ũN(µ) = (B̃N(µ))

−1F̃N(µ)→ uN(µ) = SN ũN(µ).
5: Compute ∆N(µ).
6: return RB solution uN(µ), estimator ∆N(µ).

Remark 4. The online solution in line 4 of Algorithm 2 is performed by solving the
corresponding normal equations. This is also the reason why we did not construct a
reduced test space in the offline phase in (19). For details, we refer to [4].
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Recall from (16) that the residual – and consequently also the error estimate ∆N –
can be split in two parts. The first part contains ‖µ0−u0,N(µ0)‖H which is equivalent
to the initial value error in (21). Since µ0 − u0,N(µ0) is a linear combination of
wavelets, the Riesz basis property allows us to reduce this computation to a weighted
sum of wavelet coefficients, which is clearly online-efficient.

The second part of the error estimator is easily seen to be offline-online decom-
posable and thus computable online-efficient. In addition, we obtain the following
error bound

‖g1−b1(uN(µ), ·; µ1)‖Y′ ≤
∣∣∣1− ∑

λ∈ΛN(µ0)

dλ (µ0)
∣∣∣‖g1(·)‖Y′+

∣∣∣ ∑
λ∈ΛN(µ0)

dλ (µ0)
∣∣∣tol1, (22)

for tol1 defined as in Algorithm 1 and dλ (µ0) being the expansion coefficients of
the approximate initial condition in terms of the basis function qλ of Linit in (18).

It is remarkable that the upper bound (22) can be evaluated before the RB approx-
imation is actually computed, i.e., a-priori. This is important since the RB solution
may not respect the chosen greedy tolerances. The reason is that the training set
of the parameter function space contains single functions but linear combination of
these functions need to be considered online. If the upper bound (22) indicates this,
one may need to add some more basis functions by performing some few offline
computations (in a multi-fidelity fashion).

5 Numerical Experiments

We aim at numerically investigating the influence of the right-hand side and of the
error made in the approximation of the parameter function onto the RB error (esti-
mator). In order to concentrate on these issues, we consider a univariate diffusion
problem for V := H1

0 (0,1) and H := L2(0,1), I := (0,0.3)

u̇(t,x)−µ1u′′(t,x) = g(x) for (t,x) ∈ (0,0.3)× (0,1),
u(0,x) = µ0(x) for x ∈ (0,1).

The parameter space is chosen as D =D0×D1 := L2(0,1)× [0.5,1.5]. For the right-
hand side, we compare two settings. The first one is g(t,x) = gzero(t,x) ≡ 0, as the
a-priori error bound (22) is minimal then. The second case is an instationary smooth
right-hand side g(t,x) = gsin(t,x) = sin(2πx)cos(4πt).

Truth. We use the space-time discretization that is equivalent to the Crank-
Nicolson scheme, which is stable for ∆x = ∆ t = 2−6, [9]. Note, that this setting
also allows us to compute the inf-sup constants analytically, so that our results are
not influenced by any approximation errors in the constants. Finally, as in [9], we
use the natural discrete norm for w ∈ XN ⊂ X given as

9w92
N := ‖w̄‖2

L2(I;V )+‖ẇ‖
2
L2(I;V ′)+‖w(T )‖

2
H ,
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for w̄k := (∆ t)−1 ∫
Ik

w(t)dt ∈V and w̄ :=
K

∑
k=1

τk⊗ w̄k ∈ L2(I;V ).

Parameter function. For the representation of the initial value, we use the Haar
wavelets, see §4.2. The approximation error, i.e., the sum of those wavelet coeffi-
cients that are not used in the approximation, is computed up to a sufficiently high
fixed level. For the online computations, we used µ0,smooth := x(1− x), which is
smooth and allows for a sparse wavelet approximation. As a second example, we
chose µ0,L2 := |x−0.5|1/2 ∈ L2(0,1)\H1

0 (0,1). The space-time formulation allows
us such a non-smooth initial condition, whose wavelet coefficients reflect the singu-
larity of the derivative at x = 0.5.

Evolution Greedy. The tolerance was chosen as tol1 = 0.001 and the training set
for D1 was set D train

1 := {0.5+ k 1
17 : k = 0, . . . ,17}, |D train

1 |= 18. We fix the max-
imal level J = 6, which turned out to yield a sufficient resolution, i.e., |Linit|= 26 =
64. The Evolution Greedy is performed |SJ |= 26 times with D train = {ψλ}×D train

1
for all |λ | < 6. For both right-hand sides we obtain 4 to 5 evolution reduced bases
functions. The results concerning the following quantities are displayed in Figure 1.
(1) 9u(µ)−uN0+N(µ)9N Exact error of the RB-approximation
(2) ∆ 1

N(µ) the RB error bound for the evolution in (20)
(3) 1

β LB
( ∑

λ 6∈ΛN(µ0)
|dλ |2)1/2 sum of non-considered wavelet coefficients

as upper bound for ∆N,0(µ0) as in (21)
(4) ∆ 1

N(µ) +
1
β LB

( ∑
λ 6∈ΛN(µ0)

|dλ |2)1/2 full error bound ∆N : sum of the latter two

(5) Bound a-priori bound, right-hand side of (22)

In Figure 1(a) (with smooth initial data and gzero), we see almost no difference
between (3) and (4), since the evolution error (estimator (2)) is very small, which
should be expected for gzero. Moreover, the difference between the full error esti-
mator (4) and the true error (1) is quite small, the efficiency of the error estimator is
quite good. The a-priori bound is reasonably good for N0 ≥ 45.

As we change the right-hand side to gsin in Figure 1(b), the bound (5) immedi-
ately detects this. Until N0 = 50, the error is dominated by the evolution and the
error bound is quite sharp. However, as this part drops down, the initial value error
(3) remains, which causes a slight decrease of efficiency.

The third case in Figure 1(c) uses a non-smooth initial data. As expected, the
decay of the initial value error (3) is slow - we need many wavelets to represent
µL2 well. The evolution error (2) is almost negligible, which is also detected by the
a-priori bound (5). However, even in this case, the full error estimator is sharp. Of
course, the final RB-dimension depends on the initial value and its approximation.
However, we have compared several configurations of initial value and right-hand
side and found in all cases that N grows linearly with N0 and the ratio is the same in
all scenarios, [4].

In all cases, an expansion using N0 = 32 wavelets already gives very good results.
The detailed dimension was N = 4096 and could be reduced to a maximum of
N = 160, a factor of more than 25. Note, that we do not need a time-marching
scheme online, but just the solution of one linear system.
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Fig. 1 Error and estimators for different cases. Quantities (1)–(5) according to table above.

6 Conclusions

We presented a RBM for a parameter function as the initial value of a parabolic PDE.
The space-time variational formulation allows us to separate the approximation of
the initial condition from the error made in the evolution as time grows. We used
an online adaptive wavelet approximation, which provides us with a great flexibility
regarding both the size of the RB spaces as well as the approximation quality. We
present an a-priori bound as well as an error estimator. Numerical results show the
flexibility of the method and the efficiency of the a posteriori error bound.
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