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The space-time discontinuous Galerkin (dG)-Trefftz is known to be a highly efficient numerical scheme for solving linear
hyperbolic problems. We investigate to what extend such a dG-Trefftz method can be used as a basis for a model reduction
method for a traveling wave problem using the wave speed as a parameter. Such problems are known to be tough for linear
model reduction techniques as the error decay is slow with increasing size of the reduced model (by the Kolmogorov n-width).

The presented dG-Trefftz method yields a nonlinear model reduction technique as the reduced trial space is parameter-
dependent. We present results of numerical experiments which show a convergence rate which is better than the known
worst-case rate for linear schemes, but which is still polynomially. We compare the dG-Trefftz method with a nonlinear
model technique based upon trained autoencoders using neural networks. It turns out that these methods are not able to
outperform the dG-Trefftz scheme.
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1 Introduction

Transport and wave-type problems are well-known to be hard problems for model reduction. In fact, the Kolmogorov n-width
being the best possible error achieved by linear model reduction with n € N degrees of freedom decays only at a polynomial
rate. Instead, elliptic and parabolic problems allow for an exponential rate of convergence, [4,9, 12].

On the other hand, Trefftz discontinuous Galerkin (dG-Trefftz) methods are known to yield very efficient numerical solvers
for linear hyperbolic problems, [2]. Hence, such schemes are natural candidates to serve as a backbone for model reduction,
for example one might think to determine the snapshots forming the reduced model in an offline training phase by using
dG-Trefftz methods. Moreover, dG-Trefftz discretizations of parameterized problems lead to a variational form, where the
parameter (we use the wave speed) is contained in the bilinear and linear forms and cannot be separated from the primitive
variables space and time. On the one hand, this is challenge as such a separation (known as “affine decomposition”) is a crucial
property to ensure the efficiency of model order reduction schemes such as the Reduced Basis Method (RBM), [1, 10, 12].
On the other hand, however, this causes the fact that a dG-Trefftz method yields reduced trial spaces, which are parameter-
dependent, which means that the resulting model reduction technique is nonlinear and might not suffer from the poor decay
of the Kolmogorov n-width.

The aim of this paper is to investigate if and/or to which extent a dG-Trefftz method is able to yield a nonlinear model
reduction that outperforms existing linear ones. To this end, we consider a seemingly simple model problem of a traveling
wave in one space dimension using the wave speed as a parameter. This parameter is chosen in such a way that a reflection on
the right-end boundary occurs for certain parameters and for others, the wave stops before the right endpoint at the terminal
time. This problem has been described and investigated in [6], where also a decay of n~3-5 was observed numerically.

The remainder of this paper is organized as follows. Section 2 contains the considered model problem, a brief introduction
to the RBM and a justification that a dG-Trefftz method can lead to a nonlinear model reduction. Section 3 is devoted to
the description of the space-time dG-Trefftz formulation of the traveling wave model problem and we introduce two variants
of corresponding model reduction methods, one linear and one nonlinear one. Numerical results for the dG-Trefftz model
reduction methods are presented in Section 4. Since the performance turned out to be far off the exponential decay known from
elliptic and parabolic problems, we also consider a different nonlinear model reduction technique based upon autoencoders
known from [5, 8]. To a certain extent, this is in fact a benchmark as it is known (see e.g. [3]) that appropriate combinations of
nonlinear decoders and encoders yield an optimal compression. However, we observe that such techniques based upon neural
networks cannot outperform the dG-Trefftz method (which also shows that the chosen model problem is in fact tough). We
end this paper by some conclusions and an outlook in Section 6.

2 Model reduction for the wave equation

In this section, we introduce the considered model problem and review the main facts of (linear) model reduction by means of
the Reduced Basis Method (RBM).
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2.1 A traveling wave model problem

Following [6], we consider the following model of a traveling wave problem, namely finding v : I x 2 X P — R such that

9\ 2 9\ 2

p? <§> u(t,x;p) — (£> u(t,z;p) =0 for (,z) € IxQ,

u(t,0; ) = tanh(5t)3 vtel,

u(t,l;u) =0 vt e, @)
uw(0,2; 1) = 0 YV € Q,

0

el ) = Q

8tu(0,x,u) 0 Vz € Q,

is fulfilled in a weak sense, where the time domain is I := (0, 1), the spatial domain reads 2 := (0, 1) and the parameter
u € [0.3,2] =: P denotes the wave speed. This corresponds to a wave traveling from = = 0 towards = 1 within a time
period of 1. For i = 1, the wave reaches x = 1 exactly at time ¢t = 1. For ;1 < 1, the wave is too slow to reach z = 1 in the
given time period, and for ;¢ > 1, the wave is reflected at x = 1. These different scenarios are visualized in Figure 1 for three
different parameter values.
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Fig. 1: Plot of a%u on I x(2 for different wave speeds . The different behaviors of the wave are clearly visible.

Even though seemingly simple, (1) contains all relevant challenges for model reduction, namely a traveling wave phe-

nomenon and completely different scenarios (due to the reflection) for different ranges of the parameter.

2.2 Model reduction by the Reduced Basis Method (RBM)

The above model problem (1) is an example of a parameterized partial differential equation (PPDE). Within a multiquery,
realtime or cold computing scenario, one often wishes to solve the PPDE for different values of the parameter very often,
extremely fast or on heavily restricted computing devices. In such situations, model reduction is a must.

Roughly speaking, the recipe of the RBM can be summarized as follows, [1, 10, 12]:
1.

Construct a well-posed (variational) formulation of the PPDE of the form: find u(x) € U such that a(u(p),v; u) =
f(v; ) for all v € U, where U is an appropriate trial and test space', a(-,-; 1) : U x U — R is a parameter-dependent
bilinear form and f(-;u) : U — R a parameter-dependent right-hand side (e.g. a force). Well-posedness includes
existence, uniqueness and stability of solutions.

. The second ingredient is a sufficiently detailed numerical solution, e.g. by a finite element or finite volume method on

a sufficiently fine grid. The arising approximation u™ (1) of u(yu) is assumed to be sufficiently accurate and can be
computed in complexity O(N) with N € N large.

. In an offline training phase, a subset of parameter samples x(1), ..., (™ C P, n < N, is selected (by a greedy

scheme w.r.t. the error estimator A,,, described below, on a finite training set Py,n C P) and the reduced space
U, = span{u¥ (u™), ..., uN (™)} is determined by the “snapshots” u™ (")) computed through the detailed solver.

. In the online phase, given a new parameter value p € P, the reduced approximation u,, (1) is computed by the Galerkin

approximation of the variational problem onto U,,.

. In order that all this works efficiently, one needs two major ingredients, namely

* an error estimator A, (x), which is computable in a complexity depending on 7, but not on N (“online efficient™)
such that ||u™ (1) — w, (p) |l < Apn(u) and

‘We omit the case of different trial and test spaces for the sake of brevity.
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* that parameters can be separated from the primal variables (here ¢ and x) in the sense that

Q¢
a(u,v;p) = Y Dg() ag(u,v),
q=1

also known as “affine decomposition”, where Q¢ € N, 97 : P — Rand ag : U x U — R (and similar for fG ).
Apparently, this is a linear model reduction technique as we use a linear subspace U,, of dimension n € N. The best
possible error of such a linear method for all parameters is given by the Kolmogorov n-width

dp(P) = inf  sup inf |[[u™(u) —w,,, . )
" Y uep un<Un [u™ (1) = wa,,

It is known that d,,(P) < e~ eN/Q for elliptic and parabolic problems, [9, 12]. On the other hand, it is also known that
d,(P) = N—1/4 has to be expected for wave-type problems, [4]. For the above problem (1), it was observed numerically
in [6] that d,,(P) = N~7/2.

The strong greedy method. As we are mainly interested in the question if a dG-Trefftz method can be used to improve
the poor decay of the Kolmogorov n-width, we do not use any a posteriori error estimator A, (). Instead, we use the
error ||u™N (i) — w, ()| v itself, which is if course computationally demanding. Putting this into the offline greedy method
maximizing over a finite training set Py, C P is called strong greedy method, whereas using an appropriate estimator A, (1)
is known as week greedy method.

2.3 Parameter-dependent trial and test spaces

The poor decay of the Kolmogorov n-width is the motivation to consider a dG-Trefftz method for (1). Following the same
recipe for the RBM as above yields parameter-dependent trial and test spaces, i.e. U, (1), so that d,,(P) is no longer the best
possible error. Our aim is to investigate to which extent such a nonlinear dG-Trefftz model reduction is able to overcome the
shortcomings of linear model reduction.

3 A space-time discontinuous Galerkin-Trefftz formulation

We start by a weak formulation of the wave equation that was introduced in [2], which refers to the first-order system wave
equation with homogeneous right-hand side. On a space-time domain Q = (0,7")x€) with an open, bounded Lipschitz
polytope Q2 C R, using the wave speed p > 0 and initial and boundary conditions in terms of functions

U(]ZQ%R, O'()ZQ—)R and gD:(O,T)XBQ—HR,

the problem is to find v(uz) : @ — R and o(u) : @ — R that satisfy (in a weak sense)

0 0
aa(ﬂ) + %U(M) =0 in @,
0 0
pgpvm) + 5ooln) =0 in Q, 3)
U(077/j/) = Yo, U(O,,,U/) = 0o on Q,
v(p) = gp on (0,T)x0 .
This includes the second-order wave equation, since (1) can be reformulated as (3) with v(u) = %u(,u) ando(u) = — %u( ).

3.1 Trefftz spaces

A discretization of (3) is constructed on a mesh 7y, on which a local (parameter-dependent) Trefftz space on a single element
K € Ty, is defined as

0 0 o b
T(K;p) = {(w,r) e (K| ST+ 52 =0, p228 4 0T

ot ' or =0

ot " or
Ow 0T 01 Ow
2 ow o7 o1 oW 2
and 7lox € LAOK), S, S5 5T 22 € LK) }
and the global Trefftz space is then defined as
T(Tuip) = {(w,7) € L2(Q) | (wlie,7lxc) € T(K: 1) VK € T} .
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Local Trefftz functions have a certain regularity and solve the wave equation locally exactly (in a weak sense), which is called
the “Trefftz property”. Globally, they do not even have to be continuous. Here, we will consider piecewise-polynomial Trefftz
functions: For a polynomial degree p € Ny, the respective space reads

T (Tasp) == [[ TP(K;p) with TP(K;p) = T(K; ) NPP(K)?,
KeTh

where PP (K) denotes the space of polynomials on K with degree at most p. Clearly, TP (Ty,; 1) C T(Tp; ).

3.2 Weak dG-Trefftz formulation
Testing trial functions (v, o) € TP(K; i) on a mesh element K € 7T, with test functions (w, 7) € TP(K; u) yields

[+ 5+ )] a=o
K

due to the Trefftz property. With the unit outer normal vector (nt;, n% ) € R?, integration by parts gives

/ (o7 + p2vw) nly + (v +wo)nf] d(OK) = 0,
0K

as the second volume term also vanishes because of the Trefftz property. Summing over all elements results in the dG-Trefftz
weak formulation.

As Trefftz functions do not have to be continuous across element boundaries, one replaces the unknowns on the element
boundaries by numerical fluxes, also in order to ensure global continuity of the approximation. To this end, the mesh skeleton
F}, is subdivided into the internal faces Fi™ parallel to the time axis, all other internal faces 7,7, the temporal outer faces
JF) att = 0, the temporal outer faces F; at the terminal time ¢ = 7" and the Dirichlet faces 7. With the spatial outer normal
vector n, the average {-}, the temporal normal jump [[-]J¢, the spatial normal jump [[-]], and the trace of the function v at
earlier times v, the chosen fluxes read

(vf, a*) on ‘F}slpace’
({0} + 301z, {o} + 5l[0]l2) on Fime,
(vo, 00) onfﬁ,
(v, o) on F},
(9p, 0+ 3(v—gp)n) on FP |

These terms correspond to upwind fluxes on F,7* and centered fluxes with jump penalization on Fi™. Eventually, the

space-time dG-Trefftz problem then amounts finding (v™ (1), o™ (1)) € UN (i) := TP(T; i), where N = dim(T?(T; 1)),
such that

A(@N (1), o™ (1)), (w, 7)) = L((w, 7)) Y (w, 7)€ UN(n), )
with
A0, ), 0= [ [0 00) e 72 (0 0) e (0 () Ll + () [17)] a7
Fimes
+ / [{oM ()} I)]e + 5 [N W]], [I7]]e + {o™ ()} (@]l + 5 [0V ()], [[w]le] dFn
Fine
+ / (20N (pw + o™ (w)7] dF, + / (20N () + o™ (p)nd) wdF,
T TR
and

C((w, T);p) = / [,u_Qvow + UOT] dFn, + /gD (%w—Tna) dFy .
Fo FD

Well-posedness of (4) is proven in [2] with respect to a specific Trefftz space and a dG-norm depending on the wave speed .
Note that in (4), not only the bilinear form and the right-hand side, but also the spaces are parameter-dependent, i.e. U™ (1)
instead of U in the above described RBM framework.
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3.3 Linear dG-Trefftz model order reduction

The starting point is that dim (T?(75; 1)) =@ N becomes large with finer discretization 7}, and larger polynomial degree p.
Then, (4) is a high-dimensional problem that is costly to solve. If we would follow the standard RBM recipe mentioned in §2
above, one would determine 7 < N wave speed parameters 11 ..., u(™) € P by maximizing an a posteriori error estimator
A,, over a finite training set Pyin C P and determining the snapshots by solving the high-dimensional problem (4) with
respect to the sample values (), providing

&= (0N (M), N (M) € TP (Ta; M), o, &= (0N (1), N (1)) € TP (Ths ™). ©)

These n high-dimensional (detailed) solutions are used as a basis for a reduced space U,, = span{{, ..., £, } spanned by
them. Apparently, even though we used the dG-Trefftz method on parameter-dependent spaces U™ (u(i)), we would obtain
a parameter-independent (i.e., linear) reduced model. Hence, we have to expect to fall back into the poor decay of the
Kolmogorov n-width. In fact, for any p € P, this reduced problem takes the form

(vn (), on(p Zm pD), o™ (D)) with pi(p),... N (p) ER. ©)

However, doing so, the reduced approximation is searched in U,, = span{¢y,....&,} C TP (Tp; uM) @ - - @ TP (Tp; ™),
which is in general not contained in TP (7y; ), i.e. u, () & TP(Tp; ) for an online given 1 € P! Therefore, (4) does not
hold true in the reduced space. In order to still obtain a reasonable reduced approximation, we optimize the L?(Q)?-norm
distance of (6) to the high-dimensional solution, i.e. for . € P we set

(N

Ne2(gye

Un y On = argmin ’UN 7o‘N — - i
(a0 on(p)) o= arguin || (0¥ (), 0 () >

As (7) is equivalent to a system of linear equations consisting of the Gramian matrix of (5) with respect to the L?(Q)?-norm,

it has a unique solution.

The Trefftz space specific dG-norm depends on the wave speed and is therefore only meaningful for functions from the
Trefftz space corresponding to that parameter value. Clearly, (7) is only sort of a “workaround” and is used for comparison,
also since it requires the high-dimensional solution.

3.4 Nonlinear model reduction via exchanging bases

As an alternative, we consider a nonlinear model reduction by using parameter-dependent reduced spaces. To this end, for
w € Plet

span{(@ff{,wff)) . (@ff - @fj’}v)} = T?(Th; 1)

be a basis of the N-dimensional u-dependent space T?(7y; ). The representation of the high-dimensional solution with
respect to u then reads

(N (), o ZQ ) (¢ @) with Ca(w),....Cn(p) €R

Let us now assume that we are given a new parameter ji for which we aim at determining an approximation. The idea is to
transform the detailed solution with respect to p1 € P from TP(7y; u) into TP(Ty,; i) by keeping the expansion coefficients
but replacing the basis elements. The resulting function

(W, oV ZQ ) (¢, o)) € T (Ths 1)

uﬂu

is of course different from (v (i), o™V (f1)), but we could hope that it is a good approximation of the latter.
For 4+ € P, a reduced solution is now defined as the superposition of transferred detailed solutions with regard to given
sample values ™). .., u(™ € P, ie.,

(vn (@), on(p)) = an‘(ﬂ) (UN, UN>u(i)_m with 91 (p), ..o, ma(p) €R. 3
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Doing so, we obtain an approximation from a reduced space defined as
. N _N N _N )
Un() = span { (o7, ™) o oos (08, 0Y) s, b € T (T,

so that the high-dimensional problem (4) can be shifted into the low-dimensional space U, (x). The corresponding reduced
approximation is obtained by finding (v, (1), on(t)) € Up (1) such that

A((vn (i), on(p)), (W, 7)) = £((w, 7)ip) Y (w, 7) € Un(p)

and can easily be solved for small sizes n. Note, that for every p € P the reduced approximation is determined in a different
(u-dependent) reduced space. Hence, the Kolmogorov n-width is no longer a meaningful benchmark.

As above, we use the strong greedy method to determine the samples 1(9) and the corresponding snapshots. The error is
determined in L2(Q)? as different p-dependent norms cannot be compared.

4 Numerical results

We describe results of some numerical experiments in order to examine the decay rate for the introduced model reduction
techniques as n increases. To this end, we consider two cases.

Case 1. We determine a reduced approximation for the entire parameter set P = [0.3, 2], incorporating distinct behaviors
of the problem (with and without reflection of the wave).

Case 2. In order to take the different behaviors into account, we follow [7] to partition the parameter set. We investigate a
split of P into P; = [1.3, 1] (the pure transport behavior) and P2 = [1, 2], where the wave is reflected.

All experiments were carried out on a Cartesian mesh with mesh width Ay, = 0.005. All three parameter sets were
discretized by 60 equidistant points. The polynomial degree of the Trefftz spaces was set to p = 3. The high-dimensional
problems were solved with NGSolve using the add-on NGSTrefftz, [11].

Figure 2 provides the results. The exchanging bases approach demonstrates a convergence behavior that is comparable to
the linear one, it does not perform better than the linear approach in terms of its rate of approximation. This applies to the full
problem as well as to the ones with split parameter set.
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Fig. 2: Strong greedy error of the linear and the exchanging bases approach regarding parameter sets that cover various problem scenarios.

The strong greedy error of the nonlinear transforming-bases approach applied to the full parameter set P = [0.3, 2] seems
to first form a plateau and then converges at a polynomial rate. In fact, Figure 3 suggests that the convergence rate is between
n~3 and n=3°. This is supported by the fact that the least-squares rate for n between 10 and 40 is n~3:°7 and for n between
20 and 40 is n~34%, This is in line with the results in [6], where a rate of 7~ 7/2 has been observed numerically.

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 7

100 L

100 L

1071t
1071 E

(UN(N)v UN(FJ)) = (va(p), O'n(/i))HLz(Q)z

102}
el
g

102

peP
HEP

max H (UN(M)7 UN(N)) — (vn(p), Gn(ﬂ))HLz(Q)z

Reduced dimension n Reduced dimension n

Fig. 3: Strong greedy error of the transforming-bases approach applied on P = [0.3, 2]. The plot on the right shows the indicated cutout of
the plot on the left.

S Nonlinear model reduction using an autoencoder

In order to compare the results of the dG-Trefftz model reduction, we also pursued a second nonlinear model reduction
strategy, which has been shown in the literature to yield good results. The starting point is that every model order reduction
scheme can be formulated on an abstract level as a composition of an encoder and a decoder function, see [3]. Moreover, in
that paper it was also shown that combinations of encoder and decoder exist such that the resulting nonlinear model reduction
can outperform the Kolmogorov n-width.

5.1 Model reduction through encoder and decoder

An encoder is a mapping F : RN — R” so that F(u¥ (1)) can be described in terms of n < N degrees of freedom forming
the reduced model. The decoder D : R™ — R” maps a reduced approximation back to the high-dimensional space. Hence,
one would want that u™¥ (1) ~ D o E(u™ (11)) and the reduced approximation reads u,, (1) := E(u” (11)). In the online phase,
one would evaluate the mapping p — E(u” (1)) without going to the high-dimensional representation.

A corresponding model order reduction framework was introduced in [5] and modified later in [8], that aims to project
dynamical systems onto low-dimensional nonlinear manifolds and approximate the corresponding encoder and decoder func-
tions using deep convolutional autoencoders. In [5], the considered state is the solution of the underlying problem, evaluated
in the spatial domain {2 at a specific point in time and for a specific parameter value. In that setting, IV is the number of spatial
discretization points. Then, a convolutional neural network (CNN) is trained to derive encoder and decoder. This framework
was modified in [8] for problems in space and time. For this purpose, a deep feedforward neural network M : I x P — R”
w.r.t. time and parameter has been used to reflect the dynamics on the low-dimensional manifold.

We adapt this to the problem (1) we are considering here. To this end, let as before (v (11), o (11)) be the high-dimensional
solution of the wave problem w.r.t. 1 € P. We used two different instances of the CNNs yielding E,,, M, D,, for v™¥ (1) and
Ey, M, Dy w.rt. oV (). We detail our proceeding for vV (1) and remark that o (11) can be treated in an analogous fashion.

With discretizations of the time interval {¢1, ..., ¢y, } C [0, 7] and the parameter set {11, . . ., i, } C P, the loss function
for the training reads

N, Np
SN0 (i s 15) = Do (B (08 iy 1)) |3+ 1 Eo (08 (tis5109)) — Mooty )5 ©)

i=1 j=1

where v (ti,sp5) € RY is the evaluation of the high-dimensional solution on the entire spatial discretization at time ¢; for
the parameter value y; and || - ||2 denotes the Euclidean norm on RY. The idea behind the loss function (9) is to train the
autoencoder property of D, (F,(-)) and at the same time also the representation of the dynamics on the manifold by M,,.

In the online phase, only the map D, (M,) : [0, T]xP — RY defined by (¢, 1) — D, (M,(t,u)) is evaluated and this
provides the evaluation of the reduced solution w.r.t. the parameter value  on the full spatial discretization at time ¢.

5.2 Numerical results

We adopted the architecture of the NN, the learning strategy and their implementation from [8]. The spatial domain €2 :=
(0,1) and the time domain I := [0, 1] were both discretized with 256 equidistant points, so that N = N, = 256. For the
training, the parameter set P = [0.3, 2] was divided into 20 equidistant points, i.e. Np = 20.
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The training data was chosen to consist of N;-Np = 5120 triples (t, w, vV (¢, - ,u)) for the first component of the solution
and (¢, 1, oN(t,50)) € {t1,. .. tn,} x {p1, ..., e} X RY for the second one. We chose a learning rate of 0.0001 either
until 10000 learning steps had been completed or 500 consecutive learning steps had not resulted in a change in the solution
to the minimization problem. For the validation, 21 equidistant parameter values between 0.35 and 1.95 lying in-between the
parameter values for the training were selected.

Figure 4 shows the L?(Q)?-errors at the validation points for instances of the framework with different reduced dimensions
n. Note, that the training involves randomized steps and the displayed errors refer to instances of the framework that were
only trained once.
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Fig. 4: Reduction error of the autoencoder model reduction for different sizes n of the reduced system, evaluated at the validation points.
The plot on the right shows the indicated cutout of the plot on the left.

It can be seen that the approach struggles with the pure transport behavior, whereas for the reflective behavior the error
is consistently better. The reduction error only improves slowly for increasing reduced dimension n and occasionally even
gets worse. Moreover, we see that the method does not converge monotonically as n grows. Finally, comparing the achieved
accuracies with the previous approaches, we observe that the nonlinear autoencoder method does not outperform the dG-
Trefftz methods.

6 Conclusions and outlook

In this paper, we introduce linear and nonlinear model reduction techniques based upon a dG-Trefftz discretization for a
model problem of a traveling wave. We show results of numerical methods and also compare the dG-Trefftz approach with a
nonlinear model reduction technique based upon autoencoders. We summarize some of our observations:

e The nonlinear dG-Trefftz model order reduction approach via exchanging bases shows a convergence comparable to
linear approaches. This applies for the whole parameter set (representing waves with and without reflection) as well as
subsets. Hence, using dG-Trefftz alone cannot overcome the obstructions of the slow decay of the Kolmogorov n-width.

* We do observe faster convergence than predicted by the (worst-case) analysis, but still only a polynomial decay.

* The autoencoder-based model reduction does not reach better accuracies than the dG-Trefftz method. This also confirms
that the considered model problem is in fact a challenging one.

* The autoencoder approach displays a considerable reduction power for very small reduced dimensions. However, for
larger reduced dimensions the reduction errors decay slowly and soon appear to reach a level at which they no longer
improve substantially.

We conclude that both approaches, just as they are, are not suitable for model reduction of linear hyperbolic problems.
Moreover, we also see that using a dG-Trefftz method “just” as detailed solution does not even allow for a subsequent model
reduction by a standard approach as the parameter is deeply involved in the discretization and cannot be separated easily from
the primitive variables space and time.

On the other hand, it still seems to be promising to use dG-Trefftz methods within the model reduction chain as they

are known to yield highly efficient solvers for linear hyperbolic problems. One approach might be a combination of the

Copyright line will be provided by the publisher



PAMM header will be provided by the publisher 9

autoencoder and the dG-Trefftz method. In fact, so far, the autoencoder approach is purely data-based and does not exploit
any knowledge about the structure of the underlying problem. However, if one chooses the reduced solution to be a Trefftz
function and employs a similar autoencoder scheme to the coefficients of its basis representation, one might be able to take
advantage of the information about the underlying problem contained in the Trefftz property.

Moreover, we will investigate the question if a dG-Trefftz method can be used to learn the nonlinear mapping u” (1) +
u™ (f1), which would yield a possibly efficient model reduction technique as it is known that the solution of the traveling wave
problem follows the characteristics of the equation.
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