ADJOINT-BASED OPTIMIZATION FOR RIGID BODY MOTION IN
MULTIPHASE NAVIER-STOKES FLOW*
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Abstract. We consider the numerical simulation of rigid body motion in multiphase incom-
pressible Navier-Stokes flow. The motion is formulated as an optimization problem and determined
by minimizing an objective function in terms of forces and moments acting on the body, constrained
by the multiphase Navier-Stokes equations. The corresponding adjoint system and boundary condi-
tions are derived and derivatives of the objective function are determined. Numerical experiments
include the flow around a NACA hydrofoil, a box and the standard benchmark KRISO Container
Ship (KCS). We obtain a considerable speedup compared to current state-of-the-art methods.
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1. Introduction. Computational Fluid Dynamics (CFD) has become a field
of enormous importance both in research and in industry, [1, 7, 29]. The range of
developments and applications is huge. We consider the numerical simulation of the
motion of a rigid body in a two-phase flow, in particular the ship position in water
for a given ship velocity. The position (or the motion) of the ship is determined by
acting forces and moments. A standard numerical approach for rigid body motion
reads as follows, [2, 32]:

1. Given an initial position of the ship, solve for velocity and pressure via the
Navier-Stokes equations. Obtain forces and moments.
2. If the resulting forces and moments are balanced, stop.
3. Else: Determine the new position of the ship by solving the equations of
motion based upon the forces and moments computed in 1.
4. Transform the computational mesh and go to 1.
Mathematically, the above approach is an iterative scheme based upon a fixed point
method to find the balance of forces and moments that characterizes the position of
the ship. It is well-known that such an approach may be extremely slow, which make
it often unfeasible in real-world applications.

In this paper, we suggest a different approach. Since the position is determined
by the minimum of acting forces and moments, this can be described as solving an
optimization problem that is constrained by the Navier-Stokes equations. Solving
such a pde-constrained method efficiently usually requires derivatives of the objective
function (forces, moments) with respect to the parameter (ship position). Such deriva-
tives are known to be computable by the adjoint approach, i.e., deriving first-order
optimality conditions yielding a system of adjoint pde’s.

Even though such an approach is in principle known and has been used in several
(mostly academic) problems [5, 8, 12, 31], we are not aware of any paper considering
the rigid body motion in a multiphase Navier-Stokes flow. The particular challenges
are:
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1. Derivation of the multiphase adjoint Navier-Stokes-system including a com-
plete set of adjoint boundary conditions.

2. Computation of the derivative of the reduced objective function via transfor-
mation to a reference domain e.g. for a Newton-based optimization method.

3. Computation of the corresponding mesh transformations.

4. Efficient realization in software, simulation.

The current paper solves the above issues. Our final result is a detailed formula-
tion of the corresponding problems combined with an efficient realization in the open
source package OpenFOAM® [11]. Tt is validated on two academic test problems,
namely the flow around a NACA hydrofoil and the flow around a box, where for
the latter one also corresponding experiments have been performed, [27]. Finally, we
consider a real-world application, namely the flow around the KRISO Container Ship
(KCS) [18, 20], which is a widespread test case in ship engineering. We observe an
enormous speedup, so that in the meantime we could perform similar computations
for a wide class of real rigid bodies. More details can be found in [27].

The remainder of this paper is organized as follows. In Section 2, we describe our
flow model, the incompressible multiphase Reynolds-Averaged Navier-Stokes equa-
tions, the equations of motion and the moving domain approach resulting in a non-
linear coupled system of pde’s used for the computation of such problems so far.
Section 3 is devoted to the detailed formulation and analysis of the pde-constrained
optimization problem including the multiphase adjoint, the corresponding bound-
ary conditions and the parameter derivatives. Our numerical results are shown in
Section 4.

2. Flow Model. We aim at describing the flow model for rigid body motion.
To this end, we consider different domains in order to suitably model the motion. Let
et C R%, d = 3, be a fixed reference domain. The motion will later be fully described
by a parameter u € U, where U C R° (6 DOF, see below) is a finite-dimensional design
space. This parameter u induces a domain mapping u — 7% : R? — R3, so that the
rigid body motion yields to a transformed flow domain

Qy = 7% (Qret)-

We denote all variables w.r.t. the moving domain €,, with tildes and those w.r.t. the
reference domain .. without tildes.

2.1. Reynolds-Averaged Navier-Stokes Equations. We consider the well-
known Reynolds-averaged Navier-Stokes (RANS) equations for incompressible, vis-
cous, Newtonian fluids on a finite time interval I := (0,7"). Then, we look for the
velocity @ : Q, x I — R% and the pressure p : Q, x I — R satisfying

(2.1a) 0 (p) + V- (po8”) = V- (fileaD(D)) + V5 = jf, on Qy x I,
(2.1b) V-9 =0, on Qy, x I,

where p: Q, X I — R is the density, fiefr : Qo X I — R with fieg (Z,t) = i+ fr (2, 1)

is the effective dynamic viscosity consisting of the dynamic viscosity constant i and

the turbulent dynamic viscosity jir (Z,t) and f : Qu x I — R? denotes the body

forces. We abbreviate by D(9) := V& + V&” the strain tensor. Moreover, we use 9,

as a shorthand notation for the partial derivative w.r.t. time. We divide the boundary

Iy := 09, into disjoint parts I'y, = I'yin U Ty out U Twnst; Tunst := T U Ty wall
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(nsl: no-slip), and impose the following initial and boundary conditions

(2.1c) B (2,0) =g, P(&,0)=po, V& € Q, (initial),
(2.1d)  ¥(x,t) =0, A Vp(@,t) =0, ¥(&,t) € Toyin ¥ I, (inflow),
(2.1e) (n-V)o(x,t) =0, p(&,t)=0, Y(&,t) € Ty out X I, (outflow),
(2.1f)  o(&,t) =0, B’ Vp(E,t) =0, Y(&,t) € Tyne x I, (wall, no-slip).

where 7 : 0, x I — R? denotes the outer unit normal at the domain boundary 9,,.
The turbulent dynamic viscosity is evaluated using two-equation based turbulence
models, namely the k-¢ model [16] or the k-w-SST model [19]. A detailed derivation
of (2.1) can be found e.g. in [7].

2.2. Multiphase Flow. For multiphase flows, the different fluids are modeled
via the Volume of Fluid (VOF) method [14]. This method is based upon a unique
velocity and pressure function for both fluids where the different fluid areas are dis-
tinguished by an additional flow variable & : Q,, x I — [0, 1], called volume fraction
or phase fraction, which is defined such that & (&,t) = 1 for areas occupied by fluid
1 (water) and & (&,t) = 0 for areas occupied by fluid 2 (air). The phase-averaged
local fluid properties are then obtained by g (&,t) = & (&,t) p1 + (1 — & (&,t)) p2 and
(&, t) =a(Z,t) p+ (1 — & (&,t)) pe with constant densities p; and ps and constant
dynamic viscosities 1 and po corresponding to fluid 1 and fluid 2. The movement of
the interface between water and air is determined via an additional scalar transport
equation for the phase fraction variable & given by

(2.2) 8y + V- (ad) = 0.

In order to model the two fluids as one continuum including surface tension forces in
the momentum equation, the so-called Continuum Surface Force (CSF) model [3] is
used assuming a transitional area of fixed thickness ¢ at the interface. In this area,
& changes smoothly from zero to one, defined by a C2?-function. Hence, the surface
tension effects can be modeled as a continuous volume force acting in the transitional
area. The Navier-Stokes equations (2.1) thus become

(2.3a) 9y(p0) +V-(pp2")+Vp* — V- (fiegD(0)) +g" &Vp — 0itVa = 0, on Qy x 1,
(2.3b) V-v=0, on Q,x1,
(2.3¢) Oa+ V- (av) =0, on Q, x 1,
(2.3d) 0(-,0) =09, p*(,0)=p5 af(-0)=ao, on Qy,
(2.3¢) =0 nlvp =0 n'Va=0, on Ty e X I,
(2.3f) (n-V)o=0, p*=0, n'Va=0, on Ty out X 1,
(2.3g) D=0y, RIVP =0, on Ty in <1,
(2.3h) a= Qin(u) on I'y in %1,

where fior (Z,1) = & (&,t) p1 + (1 — & (&, ¢t)) p2 + fir (&, t) denotes the phase-averaged
effective dynamic viscosity, & : {2, xI — R is the curvature at the interface and o is the
surface tension coefficient. Moreover, p* : ,, X I — R is the pressure part remaining
when subtracting the hydrostatic pressure pnydro = pgTx from the total pressure p,
i.e. p=p*+pg’ @ (where an initial free surface location at &3 = 0 is assumed). Thus,
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(2.3a-2.3c) are coupled differential equations, (2.3e-2.3h) are boundary conditions and
(2.3d) is the initial condition. As for the optimization we consider static positions
with static flow fields, the time dependency is only kept for numerical reasons. Hence,
the adjoint system is derived starting from the stationary system which corresponds
to the converged (w.r.t. time) primal solution and reads:

(2.4a) V- (p2") + V5" = V- (et D(®)) + g7 inis V = 0, on Oy,
(2.4b) V-2=0, on €,
(2.4c) V- (av) =0, on Qy,
(2.44) =0, a'Vp*=0 nlVa=0, on Ty nsls
(2.4e) (n-V)o=0, p*=0, nTVa=0, on Ty, out,
(2.4f) ¥ =P, N VP =0, on Ly in,
(2.4g) & — aip(u) =0, on I'y in.

We define the space of physical variables with admissible boundary conditions as
(2.5) Y(Q) :={g=(9,p"a) € V(div) x La(Qy) X La(2y,) : (2.4d) — (2.4f) hold},

where V (div) := {w € H'(Q,)?: V- = 0}. Note, that Y (Q,) does not involve
the inflow condition (2.4g) for the phase variable & since this condition is parameter-
dependent due to the domain transformation. Next, we collect the solution to (2.4)
in one vector g := (¥,p*, &), define the operator R : Y () x U — Z(€,,) with
Z(Qy) =Y (Qq)* X La(Ty in) as

(2.6) R(y,u) =0 :<= ¢ solves(2.4a) — (2.4c),(2.4g) in variational form
and denote the solution as y(u) in order to keep track of the dependency on the
parameter u. Note, that R(,w) = 0 means that (2.4a)-(2.4c), (2.4g) are tested with
a vector A = (W, ¢, 7, Yin) € Z(Qu)*.

2.3. Time-Resolved Rigid Body Motion. The motion of a ship floating in
water is enforced by the forces and moments acting on the surface of the rigid body.
It turns out that the rigid body motion computations can be separated into two inde-
pendent sub-problems for translation and rotation only by considering two different
coordinate systems. In this section, we also recall the standard numerical scheme for
determining rigid body motion by using the equations of motion and determining the
evolutionary effect of forces and moments acting on the rigid body.

2.3.1. Frames of Reference. We may neglect deformations of the ship hull.
Thus, the rigid body motion can be fully described by its components corresponding
to six directions. These directions consist of three translations in the three coordinate
directions and three rotations around the axes, which results in a total of six degrees of
freedom (6 DOF). In the context of ship or aircraft movements, the motion directions
for the translations are called surge (Ax), sway (Ay) and sinkage or heave (Az). The
motion directions for the rotation described as Euler angles are called roll or heel (¢),
pitch or trim (6) and yaw or drift (¢). Since the rotation angles are not commutative,
a consistent order of the rotations is crucial, see e.g. [2, 32]. Alternative descriptions
can be done e.g. by an orientation matrix or by quaternions. For the description of the
body motion two different frames of reference are used, in particular this is a global
coordinate system that is moving forward with the constant ship speed and a body-
fixed coordinate system with origin in the center of gravity which moves according to
the body motion.



2.3.2. Rigid Body Motion Equations. The governing equations are deter-
mined by the variations of the linear and angular momentum. For the translation, we
use that the variation of the linear momentum is equal to the acting forces

(2.7) O (mug) = f, ie. mig="F,

where m is the body mass, } the force vector, vg = @ the velocity and &g the
acceleration of the center of gravity xg. The total force f consists of surface forces
Frow, field forces fu.y and external forces f.... The surface forces are the static
and dynamic flow forces of water and air flow acting on the body. They can be
calculated by integrating pressure and shear forces acting on the body surface. In
most applications, gravity is the only acting field force. External forces can be e.g.
towing forces that act on a specific point Zext € I'y,,5. The total forces read

2.8)  f((9,5%,a),u)

/ {(p*+ png) I — fiegD(0)}ndS + mg + fexs
I'uB

= }ﬂow(gvu)—'_fﬁx? fﬁx = mg+fext7

where I is the unit tensor and fi.sD (D) the viscous stress tensor. Then, by integrating
(2.7) w.r.t. time we obtain ¢ and another integration w.r.t. time yields the position
x¢. For determining the rotations we use the relation that the variation of angular
momentum w.r.t. g is equal to the acting moments:

I:cr _Ixy _Ixz
(29) 8t (Igwg) = Th, where IG = —Iym Iyy —Iyz y
_Izz _Izy Izz

i.e., I is the inertia tensor described in terms of the global coordinate system, m is
the moment vector and w¢ is the angular velocity. Note that the equations of motion
for rotation need to be described in terms of the global coordinate system. Therefore,
I is time dependent and we use transformations between the coordinate systems
in order to describe I in terms of I, which is the inertia tensor with respect to
the body-fixed coordinate system and thus constant in time. For the transformation,
we use the matrix T of the body fixed system. This allows us to write (2.9) as
TIBTTQ'JG + wg X TIBTTwG =1m, i.e.,

(2.10) we =TIZ'TT (M —we x TIpT we),

where wq is the angular acceleration. The moments m acting on the body are
determined similar to the forces, but contain an additional multiplication with the
lever arm (& — &¢) via cross product, i.e.,

(2.11) m ((0,p%, &) ,u) =: Maow (Y, u) + Mgy =

- / & — ) x {[("+ H(6)g"E)T — fier(@) D(E)AYAS + (Foxt — F6) X Fo

u,B

where Max = Mext = (Bext — £G) X feoxt CONtains the external moments. By integra-
tion of (2.10) in time we get we and a second integration yields the orientation.
Equations (2.7) and (2.10) build a system of second-order ordinary differential
equations. In the case of translations, (2.7) can be solved as three independent scalar
differential equations which each can be transformed into a system of first order
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ordinary differential equations. In the case of rotations this is in general not possible as
the rotations are strongly coupled if more than one rotational direction is considered.
Therefore the rotational equations have to be solved as one system. Due to the specific
structure of the equations, we use the well-known leapfrog integration, [27].

2.3.3. Moving Domains. Due to the body motions the flow domain changes
in time. Hence, for dynamic computations we use the Arbitrary Lagrangian Eulerian
(ALE) formulation of the momentum equation (see e.g. [13]), which corrects the con-
vective term with the actual motion velocity v, of the domain V- (5 (0 — o,y,) 'T)T).
For all other equations the same correction has to be applied to the convective term.

There are several approaches to determine the motion or distortion of the com-
putational domain enforced by the rigid body motion, e.g. the whole-grid method,
motion of the object boundary I'y, g only or various versions of deformation strategies
like transfinite element mappings [9, 10] or a Laplace equation based mapping [30, 33],
which has been used here.

3. Constrained Optimization for Rigid Body Motion. As already ex-
plained earlier, we wish to determine the position of the rigid body (here a ship)
in terms of the minimum of forces defined in (2.8) and moments detailed in (2.11).
We combine them in a single objective function by using appropriate weighting factors
af,a,, € RT and matrices O, ©,, € R™? to select the components of interest

(3.1) T (G u) = agl|OF F (§,w) |3 + am| 7,17 (,u) |I3,

recalling § = (0, p*, &). We also use the multidimensional function T (§,u) : Y(Qy) %
U — R% defined as J (9, u) := (0L m (g, u) ,@?f (g,u))T. Using the latter turns
the optimization problem into finding roots of J, which will be used for the efficient
numerical solution in Section 4 below. For details, we refer to [27].

A closer look to (2.8) and (2.11) shows that the functional Jrpy for the specific
case of the rigid body motion consists only of a body-related part acting only on the
boundary I'y, B, i.e.,

(3.2) JIreum (9, u) = VAt (U,u) = / Jo (9, u) de.
Tu,B

At this point, we wish to keep the considerations slightly more general by allowing
contributions in the objective functions on all of 2,, and I'y, i.e.,

(33) T (@u) = T (@) + T (§.u) = / T (§,u)dz + / 7 (§,u) d,
Oy Qo

since this allows us to derive the adjoint also for other applications.

Note, that J acts on Y (§2,) XU, i.e., on the physical domain. We will also consider
its transformation to the reference domain which will be denoted by J : Yier XU — R
and will be detailed later. The same holds true for the PDE-system R in (2.6) acting
on Y (Q,) x U and its analog R on Yie x U. With these preparations at hand, we
consider the following constrained optimization problem

(3.4) J(g,u) » min! st. R(y,u) =0, u € Uyg.
The mathematical theory of such pde-constraint optimization problems is well-
established. As an example, we recall well-known first order optimality conditions.
~ LemmaA 3.1. Assume that (1) Usa C U is nonempty, conver and closed; (2)
T: Y (Qu)xU =R, R: Y(Q) xU — Z(Qy) are continuously Fréchet-differentiable;
6



(3) The design-to-state operator S : Uyg — Y (Qy,), S(u) := g(u) exists in a neighbor-
hood B (Uaq) C U of Uaq and is continuously Fréchet-differentiable. Then, an optimal
solution (Q*,u*,x*) € Z(Q) of (3.4) satisfies the following first-order conditions

D (% s\ T
5\( ):R(y U ) =0,
Loy uw' X)) =Tp(y" u’) + < ,7? U, u")) 200 2(2u) = 05
<EU(Q*,u*75\*)T,u - u'*>U*,U = <c7’u,(y , U )T ( , U )TA u—u >U*,U 2 0,
for all u € Uyqy. 0

Defining Zyer := Yier™ X La(Trer,in), the general strategy for computing derivatives
for our pde-constrained optimization problem can now be described as follows:

1. Constraint/state equation: For a given parameter u € U,q, compute the corre-
sponding state ¢ (u) € Y () by solving the state equation R (¢ (u),u) = 0
in (2.6) on the physical domain €Q,,.

2. Adjoint equation: Given the state ¢(u), determine the adjoint state A €
Z(Qu)" by solving the adjoint equation (X, Ry (¥ (u),u )[(5y]>Z(Q ) A Q) =
~TJy (@ (u) ,u) [(5y] on the physical domain €, for all (§ + 0y) €Y ().

3. Reduced derivative: Evaluate the derivative of the reduced function j(u) :=
J(y(u),u) with respect to u by j/ (u)’ = Vuj(u) = VuJ (y(u),u) +
(VuR (y (u),u), ) z,.;, 2.+ Note, that this computation is done on the ref-
erence domain Qpef.

The next section is devoted to the detailed derivation of 2. (including the adjoint
pde in §3.1 and boundary conditions in §3.2) as well as 3. in §3.3.

3.1. Multiphase Adjoint. We are now going to derive the adjoint system.

3.1.1. Adjoint System for Multiphase Flow. We now detail the adjoint
system for the specific case of multiphase incompressible Navier-Stokes flow (2.4) and
a general objective function J consisting of contributions from the domain €2, and
the domain boundary 0€),,. For the derivation of the adjoint system we consider the
change of turbulent quantities due to parameter variations as negligible which is a
common approximation called 'frozen turbulence’ in literature (cf. [6, 21, 23]).

PROPOSITION 3.2. For the optimization problem (3.4) with J as in (3.3),

defined by (2.6) and Y () as in (2.5), the adjoint system amounts finding X :
(,a)a675/7'7in) S Z(Qu)* such that

i ?\]w

(352)  —pD(@)d V- (fiegD(@)) —Vi—aVy + T3 (§,w)" =0,  on Qy,
(3.5b) Vow=-J5(g,u), on Oy,
(fin — fi2) (D(9) : V) — (p1 — pa) 07 (V) 0+
(3.5¢) +(pa—p1)g" (@ +&V-w) - 8" Vy+ T (@,w) =0, on Q.
(6v" (pnw" o + pwdTn + figD(W)R + g+ G R)
Oy
(3.6a) — w7 fiogD(0v)R}dS + T (§,u) [bv] =0,  on 99,
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(3.6b) / op (W) ndS + T2 (§,u) [6p) =0,  on Iy,
(o9}
[ Gal= G = a) & D@ + (1 ~ o) 7 55"k
O

+(p1 — p2) gF W™ + 40 n)dS+/ §0in dS+
T'u,in

(3.6¢) +72% (g,u)[6a] =0,  on Oy,

i.e., (3.5) are the multiphase adjoint Navier-Stokes equations and (3.6) are the mul-
tiphase adjoint boundary conditions.
Proof. For the directional derivative of R (¢ (u),u) w.r.t. the flow variables

= (#,p",a) we have Ry (§ (u),w) [0y] = Rspa) (,5d), )[(55,51),554)] =

Y
R ((0,5%, &) ,u) [0v] + Ry (9,5, ), u) [6p] + Ra (9,5, &) ,u) [0a]. Abbreviating
R. =R, ((9,p%,a),u) [0z], we get
—~ —~T — ~
V- (36vd") + V- (ppdv ) — V- (geﬁp(év)) Vép
72,5 = v STU/; s 7?,13* = O
V- (6ov) 0
0 0
and
V- (50 (1 — 2)087) = V- (30 (fir — fi2) D(B) ) + " EV 0 (51 — i)
Ra = 0_
V- (dad)
da.

Then, we obtain

<(ﬁja6?’? Yin ) R(v,p ,&) ((’TJ ﬁ* d) )[(6’0 6p7 (SCY)D (24)*,2(Q4) —

= [ @'V (povdT dw—i—/ W'V (p'ué'u )dz
Qo

—/ w7V (geﬂp(au) d5c+/ wTVépd

Q. Qa

+/ w'V- (‘%‘ (p1 — ﬁz)f”?T)di _/ w'V- (SE (fi1 — ﬁz)D(V@)>di~U
Qo Qa

+ / wTgTaVoa (51 — po)ddE + /
Qu

Qo

V- v dz +/ AV (a6v)dE

Qaqy

+/ W.(Zsaf:)dfw/ Findar dS.
Q

u w,in

Next, we use Gauss’ theorem, integration by parts and Green’s identity to obtain in
a straightforward way

(3.7a) / W'V (povd”)di / Vb - (p(sm; )daz+ / T podo mdS
O

—/ v ﬁ(Vﬁ))i)dﬁH—/ 5o e’ ds,
Qu O
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(3.7b) / w!'V- (pv§v ) 5;:—/ Vw : (ﬁ@%T) dz + @” povdT ndS
Qu Oy

~T __ .
/ 6’0 p(V vdaz+/ v pwv ndS,
Oy
~ T ~ o ~ —~T ~ ~ ~
37¢) — | @ (v- (uegD(&v)))dw:— §v (V- (oD ())) dZ+
Qo Qo
+ [ & haD@)ads - [ @7 paDGo)nds,
O O

(3.7d) / w’ 504 (p1 — pg)v'uT)d:i =
Vi (5a (51 — ﬁg)'ﬁf]T) 4% +/ w7 o0 (51 — fn) 99 R dS
Qu Oy
/ Sa(pr = o) 87 (V) 5da+ [ Gy~ o) @755 S,
o0
(3.7¢) —/ @7V <5a (jir — ﬂg)D(fJ))d:i -
Qo
:/ o (fiy — fig) Vo : D(9) d& = —/

(3.71) / w!gTE Vi (p1r — p2)da

/ o (p V- (¢"zw) da:+/ Sa(py — p2) g w R dS

Qa Oy

/ o (p p2) (w'g+g7E V- 'w)dw+/ s (pr — p2) gT@wT R dS,
Qu 0y

(3.7g) / @ Vépdi= — / 5pV-wda + / spw’ R dsS,
Qu Qo 0N

(3.7h) / 7V (a0v)d@ = — / v avidz + | v aynds,
Qa Qa 121999

(3.71) /w.(sa@)d@:/ %fyTvadi+/ sa7dTRdS.
Qu Qa O

Combining (3.7a) - (3.71) with the objective function we get

2
ol
<

( (¥, u) [@Dz(m)*,z(szu) =
= Jwpa (0,57,0),u) [(6v, op, &)]
Ro,pe.a) (0,5%, @), u) [(0v,0p, @)]) z0.)* 220)

S
=
B
g
_|_

+
T _
(3.82) — /Q 50 (—pD(Vid)o — V- (jieaD(Vid)) — Vi — GVA) % + T2 (5, w) [50]
(3.8b) + /Q opV-w dz + T3 (9. u) [0p]

T
(38c) + /Q 50" (i — ) (D(VE) : Vi) — (1 — ) 87 (Vi) &

— (51— p2)g" (@ + V- @) — 8" V5)dz + T2 (§,w) [da]
9



(3.8d) + / 5o (ﬁﬁﬁ;T'B + pwd" A + flgD(Vw)n + g + own)
O

— " fieg D(Vov)ndS + J2 (5, u) [0v]

(3.8¢) + /a . op (w"R) dS + T2 (g, u) [5p)
(3.8 + /an 50 ( — (i — ) WTD(VRYA+ (51 — o) " 00"

+ (71— p2) g7 @@ R + 757R) dS + / b0 dS + T (3, u) [60]

w,in

=0.

This needs to hold for all (v + dv,p* + 6p, 6 + c%z) € Y (). Hence, the terms
(3.8a)-(3.8f) have to vanish individually, which yields (3.5),(3.6). O

REMARK 3.3. For the terms arising from the differentiation of the convection
terms in the momentum and phase fraction equations we could also apply a different
treatment than the application of Gauss’ theorem in (3.7a) and integration by parts
n (3.7h). Alternatively, we could just dissolve the divergence and cancel the terms
containing V- 0v due to the continuity equation. With this modification we no longer
get boundary contributions from those terms and in the adjoint equations the term
—p (V) is replaced by (V)W + w9V and the term —aV7 is replaced by
AVa. This alternative treatment for convection terms is pursued for instance by
[1, 4, 12, 28], the treatment presented first is utilized e.g. in [17, 21, 26]. O

3.2. Adjoint boundary conditions for rigid body motions. Now, we are
going to detail the adjoint system (3.5), (3.6) for the specific case of the rigid body
motion, i.e., with the function Jrpnm defined in (3.1). First, this implies that 7% = 0,
so that (3.5) reads

3.92) —AD(®)% — V- (legD(®)) —Vi—aVi =0, on Qu,
(3.9b) V-w =0, on ,
(n — fi2) (D() : Vi) — (7 — o) 7 (Vi) i+

) +(p2—p1) gt (w+aV-w) —0'Vy=0, on Q.

In particular, (3.9b) then implies that w is divergence-free, which will frequently be
used in the sequel. Moreover, as y = (v, p @) € Y(S2) we have that V- v =0, and
equally v is divergence-free if (v+ v, p* + 0p*, & + 6a) €Y ().

The boundary conditions in (3.6) so far do not have an appropriate form as the
perturbations %, 5}3 and da still appear. Thus, we detail these conditions. Recall the
relevant boundary conditions for the primal multiphase system in (2.4d)-(2.4f). In a
first step, we use standard tools (mainly the product rule) in order to simplify the
first multiphase adjoint boundary condition in (3.6a).

LEMMA 3.4. Let v and @ be sufficiently smooth divergence-free vector fields.
With %, := 270 as the coefficient of the normal component of some %, we have

(3.10) /a ) (%Tgeﬁvw - szueﬁVSB) AdS = — /a ) Vily (wSB - Eiw) ds.

10



Proof. We start by applying the usual product rule to V (fiegw) and obtain
~T _ o ~T_ ~T_ g
/ v jieg (VW) ndS= v V (flegw)ndS — 0v Viegw' ndS.
A, O, O,

Next, we apply Green’s first identity twice and get:

/ 50" V (fiegr) 71 dS= / Vov : V (jieq) A + / v (v (V(ﬂeﬂﬁff))da;
o0 Qo Qu

:/Qu V (fiev)” : Voo di + /Qu 5o (v (V (ﬂeﬁcﬁ))T)) 4%

- / fien” (Vov) 7 dS — / (@™ (V- (V60 ) +00 (V- (V(jieriv)")) }de.
1979 Qu N————’

=V (Vdv)=0
For the remaining term we apply the relation V- (V(jiegw)?) = ( - (flegw)) =
V(@ Viieg) + V(jieq(V- w)), where the last term vanishes since V- = 0. Then,
integration by parts yields
=T - T~ - T - <\ s 1 T
dv (V(w' Viig)) dz=— [ Vilgw (V- 51)) dz — Viggwdv ndsS,
Qu, Qu, N , 0,
=0
which leads to
~T _ . ~T_ ~T _ 5
v jieg(Vw)ndS = v V(iegw)ndS — 0v Viegw ndS
[2192% O 1929

:/ ﬁeﬂwT(v%)ﬁdS—/ 50 (V- (Viieg ®)"))da —/ 50 Ve @n dS
Oy, Q (24929
~ ~ T TN~ —~T ~ T ~ —~T ~ ~
= feggw” (Vov)ndS — v (V(W* Viieg))dx — 0v  Viiegw, dS
Oy, Qu (2929
S ToT ~r T T or
= flegw” (Vév)ndS + Viiggw dv ndS — 0v Ve Wy dS
0 Oy (21929
= / W fieg Vv R dS — Vily (060 — dv,t)dS,
a0 0

which proves the claim. O

As already pointed out earlier, the assumption of Lemma 3.4 is fulfilled for rigid
body motions so that we can further simplify the first multiphase adjoint boundary
condition (3.6a) for the rigid body motion as follows

—~T —~
/ {6v (pRw"© + pwd" A + fieg(VD) R+ R G+ aTR)—W fien(V(50)) 1

(3.68°) Joqu

—VﬂZﬂ(wn% — 6u, @) }dS + F7 (9, w) [50] = 0,
Recall that J%(y fr . J‘m (¥, u) de, which means that

jaﬂ(gv u) =0 on Iy \ 1—W'u,,B = Fu,in U 1—"u,,out ) I‘u,walb

We will now consider the different parts of the boundary individually.
11



3.2.1. Inlet Boundaries. We start by investigating the inlet boundaries I'y, is.
As usual we assume that the inlet boundary is sufficiently far from the object so that
reflections do not occur, i.e., we obtain ’FLTVS’IV)t = 0. Since y + 55 €Y (Qy), we get
V- (bv) = 0 and %‘puﬁm = 0. Hence, the boundary condition in (3.6a’) reads

(3.6a7) @ it (V(60)) TR dS=0.
O

We will first show that the following condition is always satisfied. For any vector z
and a normal vector n, we define its normal components as z,, := 2, n = (zn)n and
its tangential component as z; := z X n. The following relations are then well-known

V-z; =n"(Vxz)—27(V xn), V- -z, = (V') "'n+ (z"n)V-n.

Applying this to z = sv and recalling that V - ((571) =0 as well as %‘pu‘in = 0 yields
V- (6vy) =0 and thus 0 = V - 6v = (V(6v,,)) 7R, so that V(5v)T7 = (V(6v,)) R +
(V(g;t))T = (V(g{)t))T, which vanishes since we assumed that I'y, 3, is sufficiently far
from I'y, 5. Hence (3.6a”) holds.

Next, we consider (3.6b), which reads here fl“u " 5~pwn dS = 0 for all (%, ie.,

wy, = 0 on Iy jy. Finally, we insert the primal boundary conditions (2.4f, 2.4¢) into
(3.6¢) to obtain (recall @’ 7 = 0 as well as J??(-,u) = 0 on Ty in)

/ 50 Fin dS = 55( (fir — fi) @ D(®)71 — (51 — po) W 90 70
Iy

w,in F'u,,in

— (1 — po) g FDT R — '713Tﬁ> as

- / SE( (fir — fi2) WE D(Bin)7 — (p1 — o) W DL — %ﬂﬁ) ds.
T'u,in

Since this needs to hold for all 5\0/[, we get the condition
Fin = (fin — fi2) W D(VOin)7t — (p1— po) @7 Din®fy7 — J05,m,  on Lapin.

Note, that we obtain no conditions for the tangential part of the velocity w;, the
adjoint pressure ¢ and the adjoint phase fraction 7. Therefore, we choose homogeneous
Neumann conditions for those variables in order to ensure well-posedness:

(ﬁ‘ ’ v) w; =0, VQTﬁ =0, VS/T":L =0, on Fu,in~

3.2.2. Wall boundaries. Next, we consider the boundary part I'y, wau, where
JrBM also vanishes. As above for the inlet boundary, we have that V - (6v) = 0 and

due to the no-slip boundary conditions on I'y, wan we get 6v|p = 0. Hence (3.6a)

reduces to

(3.11) 0 :/F

where the last step is exactly as in §3.2.1 above. For arbitrary vectors w and z, the
following relation is also well-known

w,wall

far@” D(Fo) S = [ e’ V(6" A ds,
I

w,wall w,wall

wl(Vz)"'n = (wn)n” (V(z xn))"n = (wn)n’ (Vz) xn+2zx (Vn)'n
= (w'n)n’(z x (Vn))'n =0

12



due to orthogonality of tangential and normal vectors. Applying this for z = 5v yields
(Vdvt) 7 = 0 since 5v|p = 0. By splitting @ = w; + Wy, (3.11) now reads

w,wall

(3.12) 0:/ floff W7 V(évt) ndsS.
r

w,wall

From the well-known boundary layer theory (see e. 8- [24]) it is known that on no-slip
wall boundaries we have Vo] 7 # 0 and thus V(évt) n # 0, so that (3.12) implies
that w; = 0 on I'y, wan. Next, we obtain by (3.6b) as in §3.2.1 that w,, = 0 also on
I ~wall, SO that ’l])|[‘u wall = 0.

Finally, inserting the homogeneoub boundary condition on w into (3.6¢) results in

0=,

T, wall
ie., vr, .., = 0, the latter condition is automatically satisfied so that we do not get
any further requirements for § and 4. Consequently, we choose Neumann boundary
conditions on I'y, wan for these variables, i.e.,

5owy'v 7.dS for all da. In view of the primal boundary conditions (2.4d),

Vi'n=0, ViTh=0 on Ty wall-
3.2.3. Body boundary conditions. Next, we consider I'y, g, i.e., the boundary

of the rigid body. Using Lemma 3.4, sv = 0 and recalling that J9%(g,u) # 0, the
remaining boundary conditions of (3.6) on I'y, g are:

(3.13a) - / T fiegVov 7dS = — T2 (g, u) 5],
T'u,B
(3.13b) [ o (@ma)ds = 77 (g.u) 6],
T'u,B
(3.13¢) / sa((fiz — )" D(®)i + (51 — po)g” &id" 7) dS = —TF(y,w)[dal.
Fu B

As opposed to the previous cases, the derivatives of J%? appearing in (3.13) do not
vanish. Recalling the definition of J (g, u) in (3.1), (2.8) and (2.11), we immediately
get that for g = (0,p*, &) and z € {v,p*,a}

T.(§,w)[02] = 2{a; f(9,u)" 0,07 f_(§,)[02] + amm(,u)" 0,07, . (§,u)[02]}.

Next, F5(§.w)[00] = [p, ~fien D(50)AdS, F;(5,w)[6p] = [;,, , (6pT)7vdS as well as
s G wlio) = [ (@ - d0) x (~uaD(E))S
(1, w)[op] = /F (@ — &) x (pI)RdsS.

Using fieg = ap1 + (1 — &) pio + fir, we get

Fa@u)lal = [ (501~ p2)g"aT - 5a (s - i) DIV5) )

e (5. w) o) = |

T,

(@ — #6) x (6o (1 — p2) g7#1 — 5a (jin — i2) D(V®))7) dS.

13



Inserting these into (3.13a) and (3.13b) leads to

(3.14) / @7 fieg(Vov) TR dS = 2a; f(g,u)TO,;07 / —fiet D(6v)7 dS+
Fu,B

F'u.,B

+ 2a,, m(y,u)’0,,0% /(5: — &g) X (= fierD(6v)R)dS
Tuw.B

(3.15) /F op (0"R) dS = —2af}(g,u)T@f@§/ (&;I)hds

w,B I'uB

— 2ami(§,u) 0,07 / (& — &) x (5}31) A ds.

Fu.B

Next, we aim at proving that

(3.16) / @ fiegV (6v) R dS = 0.
Fu,B

— — T —
In fact, since dvyp, , = 0, we obtain on I'y, g that V(év)n = V(év n) - (Vn)év =
V(érz\);) Exactly as in §3.2.1, we get 'fLT(V(gQ\J;)) = 0. Then, by orthogonality of
normal and tangential components we get

w” (V(6v)7) = @ (V(6v,)) = (0] + @] )(V(6v,)) = W} (V(6vy,))

=2a; f(g,u)7 0,07 /—geHD(SE)ﬁ as

IuB

+ 20, (g, u)T0,,07T, / (& — &¢) x (—ﬂeﬁp(%)ﬁ) ds.

Fu,B
Using u” (v x w) = (u x v)T w we now obtain the boundary condition
W (&) = —2a;0,07 f(§,u) — 2am (OmOLMm(F,u)) x (& —2g), & €Tus.

Starting at (3.15) yields exactly the same condition.

REMARK 3.5. If we would have an objective function including only forces, we
would get a constant Dirichlet boundary condition for w. However, if moments are
also involved, the boundary condition depends on the specific position of € € I'y, 5. O

Like for the preceding paragraphs, we do not obtain a boundary condition on ¢
and therefore we choose a Neumann condition:

Vi'n =0, VZ € Ty wall-

14



3.2.4. Outlet Boundaries. Finally, we consider the outlet boundary I'y, out. It
turns out to be quite convenient to assume planar boundary patches of I'y out, i-€.,
Vi = 0 and Vi for any tangential vector t. Moreover, we assume that I'y o is
located in the far field, so that we may assume Vjip = 0, where fieg = i + fip.

We are now going to derive the corresponding boundary conditions. First, for
Y+ 0y € Y(Qu), dy = (0w, (%, dar), we obtain

(R-V)ow=V(Ew) mn=0, op=0  (a)TA=0,  onTlyou.

Since (5~p|ruwt = 0, the equation (3.6b) is always satisfied. With the application of
Lemma 3.4 the remaining conditions in (3.6) reduce to

)_

(3.18a) — T e (V(60)) TR — Vil (wn% - Suvw) 1dS =0,

h

—~T
/ {6v (pAw" o+ pwd" R + fiea(VD) TR+ R G + &7
r

w,out

[ a(= - ) &7 (Vo) + (51— o) w00
L out
(3.18b) +(p1 — p2) g" @@ R + 49" 1) dS = 0.

Next, we will simplify (3.18a). First, note that Viiegs = Vi + Vir = V(a1 + (1 —
&)fiz) = (fu1 — fiz)Va. Then, recall that dy € Y (€, ), which implies that from the
primal problem we observe that

V-dv=0 V-(@v)=0, aT(Va)=0  onTyou.

Hence, on Ty oy, it holds that 0 = V - (& dv) = (V&) 7 (0v) + &(V - 0v) = (V&)L (6v).
The next step is

(Viierr) " (10, 60 — (80,)@) = (i1 — fiz)(V&)" (0 60 — (50, ))
= —(fir — f12) (V&) (6vn)w = (fiz — fir)((60)TR) (V&) oy,

where the last step follows from (Va)'w, = w,(Va)'n = 0 on I'y ou. Hence,
(3.18a) is equivalent to

/ (60){(pw" D + G+ 67 + (jin — fi2) (V&) ") 7 + fiear (Vi) 12+ priw}dS =0
T

w,out

for all dv such that g?; € Y (Q,). Thus, the term in {---} vanishes, i.e, on I'y out,
(319) 0= (p@0 o+ q+ay+ (ju — f2)(Va) W) A + jien (V@) R + o, w.
Using the same reasoning to (3.18b) yields

(3:20) 0= (o — i)@T (Vo) + (71 — )@ 567 + g7 i + 5(57 7).

Since (possibly by modifying the position of I'y, oy ) We may assume that Tn=uv, #0
on I'y out, We obtain from (3.20)

(3.21) 7= ——{(in — ) @" (V8) 2 — (1 — o) (@795 2 + g7 2" ) }.
vn



Obviously, the latter one is a scalar equation, wheres (3.19) is vector-valued. Hence,
we consider normal and tangential parts of this equation. Taking the inner product
with any tangential vector t (i.e, n’t = 0) yields
(3.22) Uy + flo(Vaiy) TR = 0
since (Va)n)Tt = n(Vw)Tt = (Vii;)Tn. For the normal component, we get
(3.23) 0=pw o+ G+ ay+ (in — fi2)(Va)Twy + poniin + fies(Vin) TR,
where the last term can be seen as follows (using Vi = 0)

(Vw)"n)Tn =a" (Vw)n = a’ (Vi,) = (Vi) Tn

Altogether, we obtain the boundary conditions (3.21), (3.22) and (3.23) on I'y, out. The
tangential part of w, i.e., w; is determined by (3.22), the adjoint phase fraction 4 by
(3.21) and the adjoint pressure g by (3.23), where, however, the last two equations
require the knowledge also of w,, which is determined by the pde-system using the
adjoint flux.

3.2.5. Multiphase adjoint boundary conditions. Collecting the previous
findings, we obtain the following multiphase adjoint boundary conditions:

(3.24a) W, =0, (n-V)w;=0, Vi@n=0 V31 =0,onTyi,
(3.24b) A = (ji — fiz) @ D(Voin)7 — (p1— p2) W D0 — A0L 7, on Ty in,
(3.24¢) w=0, Vi'n=0, ny n =0, on I'y wa,
= —2a;0,;07% f (§,u) — 24 (0,0 m (§,u)) x (Z — Zg), on Ly p,
(3.24d) Vi'n =0, VAT =0,onT,sp,
(3.24¢) PUnto; + fiegr (Vivy)” 7 =0, on Ty out,
(3.24f) G = —pwT D — gty — fiesr (Viin)' 7 — a5 — (i — fiz) Va @, on Ty out,
(3.21g) 5= PR ((VO)A (ﬁ{; £) (@ oo’ + g aw ) , on T out.

vn

3.3. Parameter Derivatives. In the last step of our general procedure, we
have to determine the derivative of the reduced cost function

Jou (W) [50) = (T (G, 0)" , 6u) e 1 + (X, Ry (8, 1) 58) 7000 ) 2060

with the solution g = (v, p*, @) of the multiphase Navier-Stokes equations (2.3) which
is equivalent to the solution of the stationary system (2.4) for converged flow variables
and the solution A = (W, q,%,%mn) of the corresponding adjoint system (3.5) with
adjoint boundary conditions (3.24) for given w € Uyq.

We start with the transformation of the multiphase constraint system to the
reference domain and its differentiation w.r.t. «. Then, we present the transformation
and differentiation of the multiphase objective function.

3.3.1. Multiphase Constraint System. Using standard formulas for changing
variables in integration, we get

(U, w) Z00)*, 22) = (W, 3,7, %in), R ((D,0", &) , %)) z0.)", 200)
16
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:/ ﬁJT(ﬁ(@-V)f)+Vﬁ*—V'(ﬂeffVﬁ)+gTzEV,5)d5:+/ Gv- v da
Qa

+/ &(wa)o?diH—/ Fin (@ — Gin) S
Q

w Tu,in

- /Q wT{vUT((vT“)—l)Tv + (V) pt = Vol (Ve T (VEY) T Ve
e V0T A7) (121 03) () T (07 )|

+glrv (x) (VT“)*1 Vp} |det Jru ()| de

ref

r AV T (V) T et Jru ()| dx
+/Q{qt (V7)™ Vo) +9VaT (V7 " v} [det Jpu ()] d
_|_

/F Yin (@ = ain (7% (2))) [det Jru (@)|dS =: {(w,¢,7), R (0,0, ) ;1)) 7,0t Zrer

with |
R ((v,p,a),u) =
{VUT (V) T+ (V) vpt — Vol (Ve T (Vr) ! Ve
Vo7 Ba (7)) + [ir (1 ) ()T @)
_ + gl (2) (V) ! Vp} \det Jpu ()]
tr (V™)' Vo) |det Jru (2)]
Val (VT“)fT v|det Jru (x)]
Yin (@ = Gin (7% (2))) |det Jru ()]

Note, that we kept the “~” for the phase fraction inlet value &y, (7* (x)). This is
due to the fact that this variable is a given input function and not the result of the flow
calculation. Therefore its dependency on w is explicit and not implicit through the
state equations. This is relevant for the derivative w.r.t. u later. By using standard
arguments for differentiation (see [27, §4.3.2, 5.3.1] for details), we then obtain

(3.25a)

<vuR ((’Uap*a Oé) 7’U/) ) ('LU, q, ,y:’yin»sz,sz* -

[ A G e ) v (o (o)L
- [P ) e 9 T (o el

_ Meff[ (Vu (Aaz((Tu)—l)) V'u) + <[tr {H (vj) (Q(VC{;;:)_T (VTU)—l n
+(vr) T W)H ! >j_1,...7d}+

O i=1
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O (G (T T @) g
+(VT™) - (3?11 7% () )Tg)} j_l}det Jru ()| }w dx

+/Q |det Jru ()] ({tr (a(vat:)le)}j_lq + [VaT 3?”

n

(V)" } v’y) dx

ref i=1

_ /F mf’iiw&in (r (@)" aii ™ <””)r

1=

|det Jru ()| Yin de.
1

REMARK 3.6. In the above calculations, we assumed two fluids with a smooth
phase fraction. i.e., a C?-transition area of finite thickness. This is relevant for the
differentiation of the phase fraction variable o and its inlet condition &, (7% (x)) as
the term —eref [Vadun (T ()" %T“ (:I:)]j:l |det Jru (x)| vin d is only nonzero in
the very small transition area of the interface.

However, this transition area should be small which induces steep gradients that
may not be resolvable by the numerical scheme. This, in turn might cause errors in the
gradient of the objective function. If the discretization cannot be chosen sufficiently
fine to reproduce such steep gradients, it might be better to neglect the correspond-
ing terms as the numerical error might exceed the modeling error by neglecting its
contribution. O

3.3.2. Multiphase Objective Function. For the transformation of the terms
f((v,p*, @) ,u) and m ((v,p*, @), u) a change of variables gives

f((v,p%,0),u) = /F_( (7 +pg" " (®)) I - peee[(VT™) ™' Vo + Vo' (V)77 ]))-

-0 (7% (2)) [det Jru ()| dS +mg + fex,
m ((v,p",a) ,u) = /FB{ (1" (@) = 7 (@a)) x ([ (0" + pg" 7 (2)) T
~ per{ (V1) Vv + VT (97T }]A(r (a:)))} |det Jru ()| dS
+ (Tu (:BEXt) -7 (mG)) X fcxta
so that

(3.26)

fu(('U,p*,Oé),U)T:/F {(

9 uy—1 Ta u\—T
Meff<8Ui(VT) Vv + Vv 8ui(VT) ))

0
3ui

A (r @) ("5 (r (@)1

n

+Vu (n (% (2)))-
i=1

. ( (0" + pgT % (@) I — pe((VT) " Vo + Vo (V7)™ ))) |det Jru ()]

n

+ sgn (det Jru (x)) [tr (adj (V") 8?% (vr") )] n(r (z))" -

i=1
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) ( (p* n pgTTu (m)) I — jieg ((VT")_l Vo + Vol (VT“)_T) )}dS
(3.27)

o= [ [l e o)

x (((p* +pg" 7 (@) T pea (V7)™ Vo + Vol (vr) ™) ) (7 () )ﬂ

n

i=1

(T*(x) — 7" (zg)) X (— ueg(% (Vru)fl Vv + Vol 6‘?“ (VT“)*T )ﬁ, (T (x))
+ (0 + pg" @) I = pea (V%) Vo + Vol (77)77))-
. 3iiﬁ (r* (:c))))T] j_ll |det Jru ()]

2 9r)) [ @) - (e x

du; i=1

+ sgn (det Jru (x)) (tr (adj (V1)

X (( (p* + pgT T (@) I — pregi( (V) ' Vo + Vol (VT“)_T))fL (r (m)))]dS

(2o o) <5 |

This concludes the calculation of all terms required for our general approach
outlined at the beginning of this section.

n

+

i=1

4. Numerical Experiments. Now we report on our numerical experiments.

4.1. Discretization. The discretization of the partial differential equations of
this work is carried out by means of the finite volume method. For the multiphase
calculations the phase fraction equation is solved using the Multidimensional Universal
Limiter with Ezplicit Solution (MULES) algorithm [25], where an additional artificial
compression term is introduced into the phase fraction equation in order to keep the
interface sharp. Moreover, the primal equations are decoupled with the well-known
schemes SIMPLE [22] and PISO [15] where the latter one is also adapted to be used
for our adjoint equations (for details see [27]). The implementation is realized with
the software library OpenFOAM® [11, 23] which is an open source software toolbox
especially for CFD.

4.2. Validation. We start by showing some numerical experiments in order to
validate both the derivation of the equations as well as our implementation in the
following cases:

e calculation of single- or multiphase adjoint flow fields,

e evaluation of the adjoint gradients and validation with finite differences.
Of course, we have also performed several tests for validating the primal flow calcu-
lations, [27]. We consider different test cases, namely

e NACAO0012 single phase: single phase flow around a NACAO0012 hydrofoil;

e Box multiphase: two phase flow around a box;

e KCS multiphase: two phase flow around the KCS ship, [20].
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4.2.1. Adjoint Flow Fields.

NACA0012 single phase. We start with the single phase flow around the well-
known NACAO0012 profile using the drag (z-force) as objective function for deriving
the adjoint system. This objective function leads to a boundary condition at the
hydrofoil boundary I'g with the adjoint velocity specified by the unit vector in z-
direction (see §3.2). A typical result is shown in Figure 4.1 indicating the expected
behavior of the adjoint velocity having the opposite direction as the primal flow field.

Fig. 4.1: Adjoint velocity vectors adapting to the adjoint boundary condition in the
vicinity of the leading (right) and trailing (left) edge of the hydrofoil.

Multiphase box. Next, we consider the two-phase flow around a rigid box. This
case has also been validated by experiments at Voith, Heidenheim, [27]. For stabiliza-
tion purposes, we neglected some cross-coupling terms, see [27] for details. We use
the multidimensional objective function consisting of z-forces and y-moments. The
tests were performed for two different parameter combinations. The first one corre-
sponds to the initial parameter combination for the optimization algorithm, namely
a trim angle of 0° and a sinkage of 0 mm, and the second parameter combination is
located close to the optimum (4°, -11mm). The residual plot in Figure 4.2 shows fast
convergence using the mentioned stabilization. We stopped at a residual below 1078,
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1e-09
1000 2000 3000 4000 5000 6000

Iterations
Fig. 4.2: Box: Example of residuals for the segregated multiphase adjoint equations
in the iterative solution process (4°, -11 mm).

Figure 4.3 shows the adjoint velocity field (glyphs) adapting to the boundary
condition resulting from the objective functions. The symmetry plane of the compu-
tational domain is colored by the adjoint phase fraction. Some high velocity values
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appear at the edges of the box, which could possibly affect the accuracy of the gradi-
ents. This will be validated in the next section. Figure 4.4 shows the adjoint pressures

w (magnitude)
1

iy

)

I ATEERR

Fig. 4.3: Box: Adjoint velocity field (glyphs) and adjoint phase fraction (background)
in the vicinity of the box for the y-moment (left) and the z-force (right).

for the two objective functions.

q

-80-40 O 40 80
=

-100 100

Fig. 4.4: Box: Adjoint pressure in the vicinity of the box for the y-moment (left) and
the z-force (right).

KCS multiphase. For the KCS ship we used the y-moment objective function and
the hydrostatic equilibrium position with a trim angle of 0° and a sinkage of 0 mm.
Employing the modifications in the cross-coupling terms mentioned above, stable and
fast convergence of the adjoint system could be achieved, as we can see in the residual
plot in Figure 4.5. The stopping criterion was residual below 1078,

1e+00 T
le-01 -
le-02 — Wz
1e-03 ~ i
le-04 RS
—

tes \%
1e-06 \\
1le-07 \\
1e-08 N
1e-09 T~~~
le-10

0

Residuals

200 400 600 800 1000 1200 1400 1600

Iterations

Fig. 4.5: KCS: Residuals of the segregated multiphase adjoint equations in the itera-
tive solution process (0°, 0 mm).
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Figure 4.6 shows the adjoint flow fields for adjoint phase fraction, adjoint velocity
magnitude and adjoint pressure in the symmetry plane of the ship.

Fig. 4.6: KCS: Adjoint phase fraction for y-moment (top left), adjoint velocity for
y-moment (top right) and adjoint pressure for y-moment (bottom).

4.2.2. Adjoint Gradient. Next, we test the computation of the adjoint gradi-
ent and use two variants of finite differences for the validation. By “FD” we indicate
a standard finite difference approximation of the adjoint gradient. The second variant
is based upon the splitting

7' (w) [0u] = Tu (y (u) ,u) [u] + Ty (y (u), w) y' (u) [0ul,
(1) (2)

into the explicit dependency on u (1) and the implicit dependency in y (u) (2), where
only (2) is approximated by finite differences, whereas (1) can be directly evaluated
with the transformation approach (see §3.3.2). This method is indicated as “SemiFD”
and allows us to separately validate the two components of the adjoint gradient.

NACA0012 single-phase. We used the non-dimensionalized drag as objective
function, i.e., the quotient of the forces (divided by the density) and the term %’U?HA =
% -0.332.0.5 = 0.02723. The evaluations were performed for parameter values in the
range of 0° to 10.5° with increments of 0.5°. The results for the drag coefficient and
the three gradient alternatives for the selected validation range of 4.5° to 9.5° are
illustrated in Figure 4.7.

It can be observed that the SemiFD values are very close to the values of the FD
calculation and the adjoint gradient value is a little bit below. This is reasonable as
the FD and SemiFD approximations have the same order of accuracy. Moreover, finite
differences over-predict the gradient for functions with increasing slope. As the values
for FD and SemiFD are almost the same we can also conclude that the computation
of the explicit term (1) is correct.

Box multiphase. The adjoint gradients for multiphase flow are evaluated using
(3.25)-(3.27) with the derivatives for a whole-grid transformation. Using this trans-
formation approach we observe that for derivatives w.r.t. translational directions
nearly all terms containing adjoint flow variables vanish as Biui (Ve (2,u)) =0 for
1 =4,5,6. The parts that remain are terms that only exist in the artificial transition
area of the interface between water and air. As already mentioned in Remark 3.6,
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Fig. 4.7: NACAO0012 gradient; left: drag coefficient, right: gradient of the drag.

these terms cannot be evaluated accurately and are therefore neglected. This speeds
up the computation as only an adjoint system for the y-moment needs to be solved.

We used the parameters (0°, 0 mm) and (4°, -11 mm). For the first parameter
we also performed FD calculations with disturbances of 0.2° and -0.2 mm. We have
four different relevant derivatives resulting from two different objective function com-
ponents (y-moment and z-force) and two parameters considered (trim and sinkage,
denoted by us and ug). Note, that the main influence on the y-moment results from
the trim angle and the main influence on the z-force results from the sinkage. There-
fore the validations were performed for these derivatives 8%‘(“ i € {2,6}. Figure 4.8a
shows the convergence for the adjoint derivative of the y-moment w.r.t. the second
parameter, the corresponding values are given in Table 4.1.

0.4 T T T T 1000 T T T T T T
\ — 9j2/uz = Imy[Aur+ < IR [Iuz, A > \ 0 [ — 02/ = dmy/dur+ < 9Rduz, A > L
03
02 A -1000
H 2000

s 01 N \
2 ’ \\ Z 3000
£ 0 E |
£ N \ £ 4000
° o \ ° 5000 \

e\ bV

0.3 7000 —

04 -8000

0 1000 2000 3000 4000 5000 6000 0 200 400 600 800 1000 1200 1400 1600 1800
Iterations Iterations
(a) Box: w.r.t. (4°, -11 mm). (b) KCS: w.r.t. (0°, 0 mm).

Fig. 4.8: Convergence of the adjoint derivatives of the y-moment.

’ U ‘ ug H 8%27752“) (FD) ‘ 8”(“ (SemiFD) ‘ 872(" (Adjoint)

0° [ 0 mm -0.328 -0.344 (+4.6%) -0.329 (+0.3%)
4° [ -11 mm 0.365 | -0.360 (-8.9%) | -0.338 (-7.4%)

Table 4.1: Box: Multiphase derivative validation for 6” ).
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For agﬁ:)’ the terms existing only in the artificial transition area of the inter-
face between water and air are neglected. Therefore we analyze if the accuracy is still
acceptable. In Table 4.2 the results are compared with the FD derivative. The approx-

imations are quite good so that we use this approach for all subsequent computations.

’ Ug ‘ ug H aj;u(:) (FD) ‘ 8,]86u (Adjoint) ‘
0° 0 mm -1.064 -0.978 (-8.0%)
4° | -11 mm -1.013 -0.985 (-2.8%)

Table 4.2: Box: Multiphase derivative validation for

KCS multiphase. For the KCS we use the parameter combination (0°, 0 mm),
as this is the initial value for the optimization algorithm. The values of 632(“) are
presented in Figure 4.8b. Convergence is attained within about 1.000 iterations,
which has to be compared with the primal flow simulations using 7' = 100s with
about 100.000 iterations. Thus, the overhead due to the adjoint approach is almost
negligible.

In Table 4.3, the comparison with the finite difference approximations are shown.
We observe deviations below 20% which —for derivatives— we consider as good.

’ Ug ‘ Ug H 8];715;) (FD) ‘ 8]2(u (SemiFD) ‘ aj"’(u (Adjoint) ‘
0° T S5 300 (+10.0%) | 4. 5 (+17.9%)
0.05° | Omm | -3.150 | -3.283 (43.9%) | -3.333 (45.5%)
0.05° | -10 mm -3.360 -3.337 ( 0.7%) -4.012 (+19 4%)

Table 4.3: KCS: Multiphase derivative validation for @8275:)

The results for E)J;T(“) are presented in Table 4.4. Although the contributions of
the artificial transition area of the fluid interface were again neglected, the deviations
are less than 6% which is by all means sufficiently accurate.

’ U ‘ Ug H 8%67756“) (FD) ‘ 8]6(" (Adjoint) ‘
0° o 5570 | o105 (15.4%)
0.05° 0 mm -59.996 -60.597 (+2.3%)
0.05° | -10 mm -59.979 -60.597 (+1.0%)
Table 4.4: KCS: Multiphase derivative validation for 8];15:).

4.3. Gradient-based Optimization. Next, we present our results for the gradi-
ent-based optimization. We also validate our numerical realization in terms of finite
differences. We use the same test cases as for the validation above.

NACAQ012 single case. We aim at determining the angle of attack (rotation
around the z-axis) that minimizes the drag coefficient (which is a similar setup as
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forces minimization for ship motion, see below), i.e., the objective function is given

fo (Y (u),u)

() =ep(w) = =5 L e

, with parameter u = uz = 1.

In order to optimize, we use a gradient descent scheme. The initial parameter value
was set to () = ugo) := 10°. The gradient was calculated by the adjoint approach
for the objective function p~'f, (y (u),u), which was later non-dimensionalized by
the factor 2 |lv]|”> A~!. The stopping criterion was set as |j(u®) — j(u*)| < 1075,
where u* is the optimal solution that is known to be u* = 0 with j (u*) = 0.0255289.

The results for a fixed step size 0.5s as well as for an Armijo search are shown in
Figure 4.9. we observe convergence which, however, is not guaranteed by the theory.
For the line search, the step in iteration 1 and 2 is rejected once, whereas for the
initial and last step the Armijo criterion is directly fulfilled.

& fixed step size: s =05

Logarithmic error [-]

0 1 2 3
Iteration [-]

Fig. 4.9: NACA0012: Convergence with fixed step size (s = 0.5).

Box multiphase. For this case, we search the multidimensional root of the y-
moment and the z-force and determine the corresponding trim angle and sinkage
value. Thus, in these test cases the objective function is given by

j(u)= (7}1((5((3)) ::j;) with the parameter u = (ZZ) = (Ai) .
Here, we perform a multidimensional root search using Newton’s method instead of a
minimization as in the single-phase case (which is beneficial due to the almost linear
dependence of the components of j w.r.t. their respective dominating parameters).
The corresponding Jacobian and its inverse can easily be computed. Moreover, there
is an additional output functional of interest, namely the resistance f, (y (u),u) of
the ship.

It turns out that the Newton iterations require only one additional adjoint calcu-
lation since %my and 85 = can be evaluated using primal flow fields only. The results
of the Newton iterations for some alternatives are presented in Figure 4.10.

After only one iteration the output value of the resistance is already accurate up
to 0.5% accuracy. The values for trim and sinkage are less accurate with 7.1% and
14.5% deviation. However, with the second iteration this deviation already reduces
to under 3% in both cases.

As mentioned above the dependency on the main parameter component is almost
linear and therefore the respective derivative values for aiwmy and %6 f» do not
change much during the iterations. Hence, in further iterations the derivative values
calculated accurately in the initial iteration are reused. This means that the additional
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Fig. 4.10: Box: Convergence of Newton iterations using adjoint derivatives in the
initial iteration and finite differences derivatives in further iterations with the previ-
ous parameter as approximation (left), using adjoint derivatives in all iterations and
the previous parameter as approximation (center) and using adjoint derivatives in
the initial iteration and old derivative values in further iterations with the previous
parameter as approximation (right) (background color: quadratic error).

accuracy of the parameters is achieved without further effort. The results of this
strategy are shown in Figure 4.10.

KCS multiphase. We use the same approach as in the box multiphase case above.
The stopping criterion was again set to [j(u®)[3]j(w(®)||3? < 3.0 - 1072, The
results are shown in Figure 4.11.
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Sinkage [mm]
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Fig. 4.11: KCS: Convergence of Newton iterations using adjoint derivatives in the
initial iteration, old derivative values in further iterations and the previous parameter
as approximation (left) and using adjoint derivatives in all iterations and the previous
parameter as approximation (right) (color: quadratic error).

After only one iteration we obtain very accurate resistance results (f;) that are
within the accuracy of the dynamic oscillations of a time-resolved reference computa-
tion (equations of motion). Using the additional evaluation for the parameter values
of the next iteration (without the corresponding flow solution) the trim and sinkage
parameter values are equally accurate. As already observed in the adjoint gradient
validation of §4.2.2 the value of %my for 0° and 0 mm is slightly over-estimated,

which results in a value for uél) that is further away from the final value than in

a corresponding finite differences calculation. However, even if this value is reused
for the parameter evaluation at iteration 1, the value ug) already has a deviation of
under 1%. Furthermore, especially for this test case with a real ship the effort for the
adjoint calculation is very low in comparison to static flow calculations of the ship.
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Therefore even performing a new adjoint derivative calculation does not have a major
impact on the overall efficiency.

These results clearly show that we are able to calculate the resistance of a ship
considering trim and sinkage with only one additional static flow calculation and
one or two adjoint evaluations depending on the required accuracy. Moreover, in
comparison to dynamic calculations, static calculations are more robust and therefore
need fewer inner iterations per outer iteration and the adjoint can be solved at an
expense that is negligible as compared to primal computations.

5. Summary and Outlook. We observe an extremely fast numerical scheme
for solving the rigid body motion in a two-phase flow. The overhead of the adjoint
computations is almost negligible compared to the flow simulation which means that
the full pde-constraint optimization problem can be solved with the complexity of
about two static flow simulation (one for the initial position at the construction wa-
terline equally needed for the dynamic calculation via equations of motion and one
additional static computation in the optimization).

Since all equations are completely detailed, corresponding simulations can imme-
diately be done for other rigid bodies as well, which we already did for a variety of
real ship geometries.
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