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Abstract This paper is concerned with a new mathematical model for intraday elec-
tricity trading involving both renewable and conventional generation. The model al-
lows us to incorporate market data e.g. for half-spread and immediate price impact.
The optimal trading and generation strategy of an agent is derived as the viscosity
solution of a second-order Hamilton-Jacobi-Bellman (HJB) equation for which no
closed-form solution can be given. We thus construct a numerical approximation al-
lowing us to use continuous input data. Numerical results for a portfolio consisting
of three conventional units and wind power are provided.

1 Introduction

Due to the extensive rise of renewable power supply as a response to the global
climate change, electricity short-term markets like EPEX SPOT, in particular con-
tinuous intraday trading, gained more importance. This, in turn, motivates the inter-
est in mathematical modeling of such trading as a basis for deeper understanding
and optimization. Early work in that direction can be found in [4]. In [1], the au-
thors derive a Hamilton-Jacobi-Bellman (HJB) equation for determining an optimal
trading strategy by modeling the dynamics of the electricity market by stochastic
differential equations (SDEs) and formulating a corresponding value function to be
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optimized. The specific market model in [1] allows to solve the arising HJB ana-
lytically, i.e., the authors derive a solution formula. The starting point of this paper
is a statistical analysis of EPEX SPOT data, which shows that some of the model
assumptions in [1] are not satisfied under real market conditions. Thus, we intro-
duce a more sophisticated model. The arising HJB equation can no longer be solved
analytically; the value function is shown to be the unique viscosity solution of this
HJB equation. Thus, we need an appropriate numerical scheme.

From an economical point of view, the main new ingredients of our model are: (1)
Portfolio of renewable and conventional energy represented by a cost function that
reflects the stepwise merit order of a portfolio rather than a systemwide quadratic
function; (2) Pricing model using time-varying half-spread and being capable of rep-
resenting time-varying liquidity; (3) Approximation of market data for half-spread
and instantaneous price impact; (4) Variable penalty depending on the state of the
market at final time. The main focus of this paper is a novel application-related mod-
eling of the intraday trading and the determination of a numerical approximation for
this problem. We show an example of a real-world problem and compute the opti-
mal trading strategy. The remainder of this paper is as follows: In §2, we introduce
the new model and the arising HJB equation, §3 is devoted to the presentation of
numerical experiments and we finish by an outlook.

2 A New Mathematical Model

In order to take both renewable and conventional generation into account, our model
is based upon the consideration of an agent owning both kinds of power plants
and aiming at selling a combination of renewable1 and additionally conventionally
produced electricity. In detail, depending on the weather forecast and the expected
price at the final time, a combination of conventional and renewable electricity is
sold at the day-ahead market. With this sold amount, the agent starts the continuous
intraday trading aiming at maximizing her profit by determining an optimal trading
strategy as well as an optimal production of conventional power2. We are now going
to describe both involved frameworks, namely the trading model including day-
ahead as well as intraday trading and the stochastic model of the dynamics.

Day-Ahead and Intraday Electricity Trading: Consider a delivery hour h on
day d. The day before, the day-ahead auction takes place with gate closure at 12pm.
In this auction, each participant can offer (ask) or request (bid) a certain demand of
electricity at a specific price. Then, a clearing price is set and power is exchanged
accordingly. Next, the continuous intraday trading starts at 3pm on day d-1 and
closes half an hour before the actual delivery hour h, see Figure 1.

Dynamics of the Electricity Market: The dynamics of the market includes the
forecasted renewable power production and the price process. The latter one is in-

1 In our numerical experiments, we consider wind energy.
2 That means that we do not optimize day-ahead and intraday trading at the same time.
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Fig. 1 Scheme of continuous intraday trading.

fluenced by the current trading activity of the agent. We use stochastic processes
and derive stochastic differential equations (SDEs).

Forecast model for the renewable power. By D = (Dt)0≤t≤T we denote the fore-
casted production of renewable electricity during the trading session. The uncer-
tainty is modeled by means of the dynamics dDt = µD dt +σD dWt,D, where µD is
the drift, σD is the volatility and (Wt,D)0≤t≤T is a standard Brownian motion. For
the sake of simplicity, this variable is unbounded, whereas in the real world, there
are restrictions by zero (no wind) and the maximum capacity of the wind farm.

Agent’s position. The financial position resulting from the agent’s trading activity
is denoted by X = (Xt)0≤t≤T . The agent participates in the intraday market with
continuous trading at rate qt ∈ Q ⊂ R (qt > 0 means buying, qt < 0 selling), i.e.,
dXt = qt dt and we denote by Xq,t,x the solution of the SDE starting from x at t (for
t = 0, x0 is the amount of electricity sold on the day-ahead market).

Price model. The execution price is the price the agent pays (receives) when
actually buying (selling). We require a more advanced approach of the pricing model
as in [1], where the half-spread and its time variability as well as the time variability
of the immediate price impact are ignored. Incorporating these effects, the execution
price depends on a number of quantities to be introduced now. First, we denote by
Y = (Yt)0≤t≤T the sum of the mid price of energy and the permanent impact of the
agent’s trading modeled by some function ψ : R→ R. Its dynamics is modeled by
the SDE dYt = (µY +ψ(qt))dt +σY dWt,Y , where µY is the drift, σY is the volatility
and (Wt,Y )0≤t≤T is a standard Brownian motion. We denote by Y t,y the solution of
the SDE starting from y at t. The next ingredient is the half-spread h : [0,T ]→ R,
i.e., the half of the distance between the best ask and the best bid price. This is
data which can be retrieved from the market. With all these quantities at hand, the
execution price Pq,t,y = (Pq,t,y

s )0≤s≤T is modeled as

Pq,t,y
s := Y t,y

s +
|qs|
qs

h(s)+ϕ(t,qs), (1)

i.e., the permanently impacted mid price plus (minus) the half-spread and the in-
stantaneous price impact ϕ : [0,T ]×Q→ R.

Conventional production/payoff. At the end of the trading session T , the agent
chooses how much electricity ξ ∈R+

0 she will produce during the delivery period. In
doing so, she also has the option to place a final buy or sell market order, potentially
resulting in ξ 6=−ZT , with Zt := Xt +Dt being the sum of the forecasted production
from renewables and what has been sold by the agent so far. For example, she could
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further increase her sell position and production. The final market order goes along
with costs due crossing the half-spread h(T ) and potentially executing limit orders
whose prices are worse than the best bid/ask price due to a penalty α : R→R+

0 . The
arising cost per unit depends on the state of the market at T . The terminal payoff is

g(ξ ,YT ,ZT ) :=−c(ξ )+(ξ +ZT )

(
YT − (h(T )+α)

|ξ +ZT |
ξ +ZT

)
, (2)

where c : R+
0 → R+

0 models the cost of the conventional generation.
Value function. The value function corresponds to the agent’s cash, so that an

optimal strategy yields maximal cash. The total running profit from the continuous
trading in the intraday market is given by f q(s; t,y) :=−qs Pq,t,y

s . Denoting by Zq,t,z

the solution of the SDE dZt = dDt +dXt = (qt +µD)dt +σD dWt,D starting from z
at t, the resulting value function V : [0,T ]×U → R reads

V (t,y,z) := sup
(q,ξ )∈Q×R

E
[∫ T

t
f q(s; t,y)ds+g(ξ ,Y t,y

T ,Zq,t,z
T )

]
, (3)

where U := Y ×Z ⊂ R2 is a rectangle (in order to ensure well-posedness of the
optimization in (3), [3]). We prescribe Dirichlet conditions on the boundary ∂U .

Hamilton-Jacobi-Bellman (HJB) Equation: Following the well-known dy-
namic programming principle (e.g. [6, Ch. 4]), we derive the HJB equation: Find
W : [0,T ]×U → R, W =W (t,y,z), such that

∂tW +µY ∂yW +µD∂zW +
1
2

σ
2
Y ∂yyW +

1
2

σ
2
D ∂zzW (4)

+ sup
q(t)∈Q

{
−
(

y+h(t)
|q(t)|
q(t)

+ϕ(t,q(t))
)

q(t)+q(t)∂zW +ψ(q(t))∂yW
}
= 0,

for (t,y,z)∈ [0,T )×U with terminal condition W (T,y,z)= g(T,y,z), (y,z)∈U . One
can show that this problem is well-posed and that the unique viscosity solution W
is the value function V in (3). Due to the form of (4), we cannot expect a first-order
condition for the control q(t) and we have to resort to numerical solvers.

3 Numerical Experiment

Finally, we report on results of a numerical experiment concerning (4) using the fol-
lowing data: U := [−50,250]× [−1645,145] ⊂ R2 and T = 17.5h. We use a finite
difference discretization from [5] with 56× 301 points in space and 100 points in
time. In particular, central differences are used for the approximation of the first-
order terms with additional artificial diffusion, which results in a stable, consis-
tent and monotone scheme converging to the viscosity solution, [5]. We use the
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well-known policy iteration in every time-step and the control is maximized over a
discrete set (as no first-order conditions are available). Finally, the optimal conven-
tional generation is computed as the maximum value of (2) w.r.t. ξ using Matlab’s
intlinprog with the interior point method.

Boundary conditions: Similar to option pricing, the choice of appropriate
boundary conditions (here for y and z) is delicate. Here, we use a similar but easier
HJB allowing for a closed-form solution on some U ⊂ R2. Then, we prescribe the
boundary values of this function as Dirichlet conditions on ∂U .

Data: We use the data µD := µY := 0.0, σD := σY := 0.1. The functions ϕ(·, ·)
and h(·) are least-squares 5th order polynomial approximations of market data from
Q2/2015 (ψ(t) = 0). The penalty is given by market data as α(x) := 0.5 · (|x| −
20)χ20<|x|≤45+((|x|−45)+12.5)χ45<|x|≤145. We consider three conventional units,
namely a hard coal plant with 25 e/MWh variable cost and min-max capacity of
250-500 MW, one combined cycle gas turbine (CCGT) unit (35 e/MWh, 100-400
MW) and open cycle gas turbine (OCGT) unit (60 e/MWh, 60-600 MW).

Our results for the optimal conventional generation ξ are displayed in Figure
2. Let us comment on the case where ZT = −500 MWh. As long as the final mid
price is below 25e/MWh, the agents buys the maximal amount of 145 MWh (recall,
that y∈ [−1645,145]) and uses the power plant with the lowest marginal costs (hard
coal) accordingly, i.e. the remaining 355 MWh. Once the final mid price is 25 to
35e/MWh (i.e., above the marginal cost of hard coal, but below the marginal cost of
CCGT) it is optimal to produce at maximum capacity with the cheapest conventional
power plant (i.e. 500 MWh by hard coal) and no final market order is required. If the
final mid price exceeds 35e/MWh, the agent sells as much electricity as possible
(145 MWh) and produces exactly that amount with the CCGT plant at 35e/MWh,
which is possible because its capacity is 100-400 MW. Finally, no matter how high
the final mid price is, the OCGT unit with the highest marginal cost is not used, since
there is not enough sell volume on the market. These results are clearly reasonable.
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Fig. 2 Optimal conventional generation ξ as a function of YT and ZT (left) as well as for some
values of ZT (right; the lines correspond to those on the left graph).
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Trading rate: Figure 3 shows the optimal trading rate over the trading win-
dow t ∈ [0h,17.5h]. In both cases, we fix Zt ≡-499.4 MWh (the non-integer num-
bers arise from the discretization w.r.t. y and z). For the mid price, we choose
Yt ≡59.25 e/MWh (left) and Yt ≡13.98 e/MWh (right). In the left plot, the trad-
ing rate is negative (selling), which is reasonable since Zt ≡-499.4 MWh means that
the agent has only marketed the cheapest power plant and Yt ≡ 59.25e/MWh means
that the execution price is above the marginal costs of the second cheapest power
plant. Note, that the absolute value of the trading rate substantially increases around
15h, since half-spread and immediate price impact are minimal there. In the right
plot, the execution price is below the marginal costs of the cheapest power plant, the
agent buys electricity and reduces the production of the marketed power plant.
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Fig. 3 Optimal trading rate over the trading window t ∈ [0,17.5] for Zt ≡-499.4 MWh and
Yt ≡59.25 e/MWh (left) as well as Yt ≡13.98 e/MWh (right).

Outlook: The availability of a numerical approximation scheme allows us to
extend our model to all market participants, so that regulatory constraints can be de-
termined e.g. for reaching desired environmental goals. Ongoing work is concerned
with model order reduction to make the scheme real-time efficient 24 hours a day
with continuous incoming data (market and forecast).
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