
Noname manuscript No.
(will be inserted by the editor)

Intraday Renewable Electricity Trading:
Advanced Modeling and Numerical Optimal Control
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1 Introduction

To counter global climate change, renewable power sources substituted fossil
fuel plants and provide now a substantial part of the electricity production.
Due to the intermittency of renewable power, short-term electricity contracts
have gained importance on electricity exchanges such as the European Power
Exchange (EPEX Spot1). In particular, continuous intraday trading, which
allows trading of contracts until 30 minutes before delivery, is used to respond
to short-term changes. The trading volume within the German intraday mar-
ket (IDM) area increased from 26 TWh in 2014 to more than 50 TWh in 2018.
A similar trend has been observed in other market areas or countries in which
some markets or sub segments, e.g., continuous trading of hourly products
in Belgium (since July 2018) or the 30-min continuous trading in Germany
and France (since April 2017), have been developed. Another instrument for
integrating renewable energy markets is the Xbid project, which aims at es-
tablishing a common pan-European continuous intraday market to strengthen
liquidity. All these developments trigger a need for mathematical modeling of
such trading as a basis for deeper understanding, optimization and control.
Moreover, a mathematical model is the basis for numerical simulations.

However, in contrast to day-ahead market (DAM) modeling, literature ded-
icated to the continuous intraday electricity markets is scarce. In particular,
appropriate mathematical models describing the main characteristics of these
short-term markets have not been developed so far. Most important price
drivers have been identified in [9] explaining about 75% of the price variance,
[20]. Moreover, strong statistical evidence was found that information on the
specific fundamental factors significantly affect the intraday prices, which ap-
pear as transaction prices within a trading period, [12,13].

Concerning mathematical modeling early work in the field of integration of
renewables into short-term markets using stochastic optimization can be found
in [18]. The minimization of incurred intraday costs of wind producers while
maintaining the balance of production forecast and sales is considered in [10].
This short-term trading model also considers the impact of the wind producer
on prices without intraday price uncertainty, however. A discrete time decision
model with intraday prices following a geometric Brownian model and wind
production error forecast following an arithmetic Brownian motion has been
introduced in [6,7]. In that framework, the power producer is supposed to have
no impact on intraday prices.

To overcome the aforementioned weaknesses, we have been inspired by [1]
to model the continuous intraday market for electricity. In [1], a Hamilton-
Jacobi-Bellman (HJB) equation was derived for determining an optimal trad-
ing strategy by modeling the dynamics of the electricity market by stochastic
differential equations (SDEs) and formulating a corresponding value function
to be optimized. The specific market model allows one to solve the arising
HJB analytically, i.e., the authors derive a solution formula.

1 www.epexspot.com

www.epexspot.com


Intraday Trading: Advanced Modeling and Numerical Optimal Control 3

The starting point of this paper (which builds upon and extends [8]) is
a statistical analysis of EPEX SPOT data, which shows that some of the
model assumptions in [1] are in fact not satisfied under real market conditions.
Thus, we introduce a more sophisticated model. The arising HJB equation
can no longer be solved analytically; the value function is shown to be the
unique viscosity solution of this HJB equation. Thus, we need an appropriate
numerical scheme. From an economical point of view, the main new ingredients
of our model are:

1. Portfolio of renewable and conventional energy represented by a cost func-
tion that reflects the stepwise merit order of a portfolio rather than a
systemwide quadratic function;

2. Pricing model using time-varying half-spread and being capable of repre-
senting time-varying liquidity;

3. Approximation of market data for half-spread and instantaneous price im-
pact;

4. Variable penalty depending on the state of the market at final time;
5. The model relies on data which are observable on the market (see §3).

The main focus of this paper is a novel application-related modeling of the
intraday trading and the determination of a numerical approximation for this
problem. We show an example of a real-world problem, compute the optimal
trading strategy and investigate the impact of various involved parameters.
The remainder of this paper is as follows: In §2, we introduce the new model
and the arising HJB equation and §3 details the involved parameters, which
we obtained from empirical analyses. In §4, we describe the numerical method
for determining the viscosity solution of the arising HJB. Moreover, we present
corresponding numerical experiments. We finish by conclusions and an outlook
in §5.

2 A New Mathematical Model

In order to take both renewable and conventional generation into account,
our model is based upon the consideration of an agent owning both kinds of
power plants and aiming at selling a combination of renewable2 and conven-
tionally produced electricity. In detail, depending on the weather forecast and
the expected price at the final time, such a combination of electricity is sold
at the day-ahead market (DAM). With the result of this initial trading, the
agent starts to act on the continuous intraday trading market (IDM) aiming
at maximizing her profit by determining an optimal trading strategy as well as
an optimal production strategy of conventional power3. All quantities entering
the model are described below.

2 In our numerical experiments, we consider wind energy.
3 Note, that we do not simultaneously optimize day-ahead and intraday trading.
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2.1 Day-Ahead and Intraday Electricity Trading

Consider a delivery hour h on day d. The day before, d-1 , the day-ahead auc-
tion takes place with gate closure at 12 noon. In this auction, each participant
can offer (ask) or request (bid) a certain demand of electricity at a specific
price. Then, a clearing price is set and power is exchanged accordingly. Next,
the continuous intraday trading starts at 3pm on day d-1 and closes half an
hour before the actual delivery hour h, see Figure 1.

Day-Ahead
Auction

Start
Intraday
Trading

End
Intraday
Trading

Delivery
Hour

12 noon 3pm h-30’ hDay dDay d-1

Fig. 1 Scheme of continuous intraday trading.

2.2 Dynamics of the Electricity Market

The dynamics of the market includes the forecasted renewable power produc-
tion and the price process. The latter one is influenced by the current trading
activity of the agent. We use stochastic processes and derive stochastic differ-
ential equations (SDEs), see [19] for background.

Renewable production forecast. By D = (Dt)0≤t≤T we denote the fore-
casted production of renewable produced electricity during the trading session.
Following the idea of [14,21], we assume that forecast updates are a conse-
quence of new information and hence lead to random changes in t. Therefore,
the uncertainty is modeled by means of the dynamics

dDt = σD dWt,D, (1)

where σD is the volatility and (Wt,D)0≤t≤T is a standard Brownian motion.
For the sake of simplicity, this variable is unbounded, whereas in the real
world, there are restrictions by zero (no wind) and the maximum capacity of
the wind farm. We denote by Dt,d the solution of the SDE starting from d
(the current capacity) at t.

Agent’s position. The financial position resulting from the agent’s trading
activity is denoted by X = (Xt)0≤t≤T . The agent participates in the intraday
market (IDM) with continuous trading at rate qt ∈ Q := (qmin, qmax) ⊂ R,
where qt > 0 implies actively buying and qt < 0 implies actively selling4. The

4 By actively buying or selling we mean trading with market orders instead of limit orders.
A limit order is a type of order to buy or sell an item at a specified price or better.
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dynamics of her financial position are then

dXt = qt dt (2)

and we denote by Xq;t,x the solution of the SDE starting from x at t depending
on the current trading rate qt. For t = 0, x0 is the amount of electricity sold
on the day-ahead market.

Permanently impacted mid price. First, we denote by Y = (Yt)0≤t≤T the
permanently impacted mid price, i.e., the sum of the mid price of energy and
the permanent impact of the agent’s trading, the latter one modeled by some
function ψ : R→ R. The dynamics of Y is modeled by the SDE

dYt = (µY + ψ(qt))dt+ σY dWt,Y , (3)

where µY is the drift, σY is the volatility and (Wt,Y )0≤t≤T is a standard
Brownian motion. We denote by Y q;t,y the solution of the SDE starting from
y at time t depending on qt.

Transaction costs. When actively buying (selling) on the IDM, there are
costs in addition to the permanent impact. Those are referred to as transaction
costs and will be incorporated in our model.

Execution price. The execution price is the price the agent pays (receives)
when actively buying (selling). We require a more advanced approach of the
pricing model as in [1], where the half-spread (see below) and its time vari-
ability as well as the time variability of the execution costs are ignored. Incor-
porating these effects, the execution price depends on several quantities to be
introduced now.

The half-spread is defined as the half of difference of the best ask and the
best bid price. This data is observable on the market. While in reality the bid-
ask spread and hence also the half-spread is stochastic, we model it it terms
of a deterministic function h : [0, T ] → R+, which reflects the typical shape
over the trading period.

The other component of our model for the execution price is the execution
cost reflecting the costs that are incurred due do executing limit orders with
prices worse than the best price when buying (selling) actively. While they
are also stochastic in reality, they will be described in terms of a deterministic
function ϕ : [0, T ]× (qmin, qmax)→ R which reflects the typical shape over the
trading period.

With all these quantities at hand, the execution price P q;t,y = (P q;t,ys )0≤s≤T
is modeled as

P q;t,ys := Y q;t,ys + sign(qs)h(s) + ϕ(t, qs), (4)

where (as usual)

sign(qs) :=

{
|qs|
qs
, if qs 6= 0,

0, otherwise.

Hence, (4) means that the execution price is the permanently impacted mid
price plus (minus) the time-varying half-spread and plus the time-varying ex-
ecution costs, which extends the model in [1].
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2.3 The Profit: The Objective Function for Optimization

It is the aim of the agent to maximize her profit consisting of the running
and the terminal profit explained next. This will later serve as the objective
function for the arising optimization problem.

Running profit. The total running profit from the continuous trading in the
intraday market is given by

fq(s; t, y) := −qs P q;t,ys (5)

with the trading rate q = (qt)0≤t≤T .

Terminal profit. The profit gained at the end of the trading period consists
of scheduling conventional power production which incurs costs and placing a
final market order.
Conventionally produced energy. At the end of the trading session, the agent
chooses how much electricity ξ ∈ R+

0 she will produce during the delivery
period. For doing so, she has n conventional units available with each being
able to operate between their specific minimum κmin

i and maximum genera-
tion capacity κmax

i , i = 1, ..., n. The marginal costs ci of unit i, i.e., the costs
for producing 1 MWh of electricity, are assumed to be time-independent (con-
stant). The chosen strategy of the agent thus consists of deciding to activate or
deactivate unit i (modeled by a binary variable ai ∈ {0, 1}) and choosing the
respective amount ξi ∈ [κmin

i , κmax
i ] for each unit. Thus, the resulting amount

of produced electricity is

ξ =

n∑
i=1

ai ξi. (6)

A straightforward strategy would be that the agent will activate her units in
ascending order of marginal costs, starting with the ‘cheapest’ one. The arising
total cost of power production then reads

C : R+
0 → R+

0 , C(ξ) =

n∑
i=1

ai ci ξi, (7)

which is a piecewise linear but discontinuous function, the derivative of which
is a sum of piecewise constants and a number of Delta distributions.

Final market order. Furthermore, the agent also has the option to place a final
buy or sell market order. In fact, obtaining values forDT ,XT and YT , the agent
optimally tries to reach her desired demand for power by buying/selling the
amount ξ +XT +DT ∈ R, i.e., what has been traded already minus conven-
tional and renewable production, by a final market order. The costs associated
with the final market order are the costs due to crossing the half-spread h(T )
and the costs due to potentially executing limit orders with prices worse than
the best bid/ask price. The latter costs are modeled by the function α : R→ R.

Terminal payoff. It turns out to be convenient to introduce the variable Zt :=
Xt +Dt, i.e., the sum of the forecasted production from renewables and what
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has been sold by the agent so far. This, in particular reduces the dimension
of the optimization problem to be solved numerically, which is crucial for
efficiency. The terminal payoff/profit then reads

g(ξ, YT , ZT ) :=−C(ξ) + (ξ + ZT )
(
YT−sign(ξ + ZT )h(T ) + α(ξ + ZT )

)
. (8)

2.4 The Resulting Optimization Problem

Now, we have all ingredients at hand to formulate the optimization problem
in terms of a HJB equation.

Value function. The value function corresponds to the agent’s cash, so that
an optimal strategy yields maximal cash. Denoting by Zq;t,z the solution of
the SDE dZt = dDt+dXt = qt dt+σD dWt,D starting from z at t, the resulting
value function V : [0, T ]×U → R reads for Q := (qmin, qmax), see, e.g. [23, Ch.
4],

V (t, y, z) := sup
(q,ξ)∈Q×R

E

[∫ T

t

fq(s; t, y) ds+ g(ξ, Y q;t,yT , Zq;t,zT )

]
, (9)

where U := Y ×Z ⊂ R2 is a closed convex set (usually a rectangle, in order to
ensure well-posedness of the optimization in (9), [5]). In fact, from our above
modeling, we would obtain Y = Z = R (range of values for the execution
price and energy production). However, without additional conditions, the
optimization problem is not well-posed on such unbounded domains. Moreover,
the numerical solution using standard discretization techniques is –at least–
not straightforward on unbounded domains and would require sophisticated
schemes, see e.g. [11].

In order to overcome these difficulties, we define U in terms of closed sets
(intervals) Y and Z and cut-off the problem on their boundaries. This requires
to set boundary conditions to ensure well-posedness to be explained below.

The Hamilton-Jacobi-Bellman (HJB) Equation. Following the well-
known dynamic programming principle (e.g. [23, Ch. 4]), we derive the HJB
equation: Find V : [0, T ]× U → R, V = V (t, y, z), such that

∂tV + µY ∂yV +
1

2
σ2
Y ∂yyV +

1

2
σ2
D ∂zzV (10)

+ sup
q(t)∈Q

{− (y + sign(q(t))h(t) + ϕ(t, q(t))) q(t) + q(t) ∂zV + ψ(q(t)) ∂yV }

= 0,

for (t, y, z) ∈ [0, T ) × U with terminal condition V (T, y, z) = g(T, y, z) for all
(y, z) ∈ U . Note, that in (10) we used the notation q(t) instead of the previously
used qt for the following reason: In the numerical realization, we treat q as a
function q(t) and not as stochastic process qt.

One can show that (10) with terminal and Dirichlet boundary conditions
is well-posed and that the unique viscosity solution is the value function in
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(9). Due to the form of (10), we cannot expect a first-order condition for the
control q and we have to resort to numerical solvers.

Boundary Conditions. As already mentioned above, we need to truncate
the HJB to a bounded domain U , which requires to prescribe appropriate
boundary conditions on ∂U . Such an approach is well-known also from nu-
merical option pricing when solving the Black-Scholes (BS) equation. In that
case, the definition of corresponding Dirichlet boundary conditions is canon-
ical since small errors in the boundary values cause only small errors in the
solution on all of U (i.e., the BS equation is stable w.r.t. boundary values).
The situation for the HJB equation is fundamentally different as small changes
in the Dirichlet data immediately severely change the solution on the whole
domain. Hence, the definition of appropriate boundary conditions is a delicate
task.

We are going to describe our approach to prescribe appropriate boundary
conditions. Our point of departure is the before-mentioned IDM-model in [1],
which uses a much simpler HJB as the one derived above. This causes the fact
that the HJB in [1] allows for a closed formula for the solution. We consider
such a somehow simpler HJB, solve it explicitly and use the boundary values
of that HJB as Dirichlet data for our more sophisticated HJB. Of course,
one could also use other simplified models as long as the resulting boundary
conditions turn out to be meaningful. To be specific, we consider a simpler
HJB model consisting of the following ingredients and simplifications:
1. By omitting the sign-part in (10) and replacing it by the positive sign, the

function within the supremum is differentiable.
2. We replace h(t) by h̄ := h(T ), i.e., the half-spread at the terminal time.
3. The next simplification concerns the temporary price impact ϕ. The most

simple situation would be a linear approximation, e.g., ϕ(t, q) := kq, i.e.,
stationary and linear in q. Here, k ∈ R+ is a constant, which has been de-
rived by approximating our mid price data with a second order polynomial
p and then setting k := p(T ).

4. The permanent price impact vanishes, i.e., ψ ≡ 0.

Thus, the simplified HJB now takes the form

∂tv + µY ∂yv +
σ2
Y

2
∂yyv +

σ2
D

2
∂zzv + sup

q∈Q

{
−(y + h̄+ kq)q + q∂zv

}
=0. (11)

In (11), we can explicitly determine the supremum by finding the root of the
first-order derivative w.r.t. q of the term in {· · · }. The corresponding first-order
necessary conditions yield the optimal control as follows (recall k > 0)

q∗ =
−y − h̄+ ∂zv

2k
.

Inserting this optimal control into (11) yields the following PDE for the un-
known v as a function of (t, y, z)

∂tv + µY ∂yv +
σ2
Y

2
∂yyv +

σ2
D

2
∂zzv +

1

4

(
y + h̄− ∂zv

)2
= 0. (12)
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To solve (12), we make the following polynomial ansatz

v(t, y, z) =
∑
|i|≤2

ai(T − t) yi1 zi2 , i = (i1, i2), i1, i2 ∈ N0, |i| := i1 + i2,

i.e., a polynomial of degree 2 with the coefficient functions ai : [0, T ] → R to
be determined. Plugging this form of v into (12) yields a system of six Riccati
equations for the unknown functions ai, i.e.,

ȧ02(T − t)− 1
4k

(
− 2a02(T − t)

)2
= 0,

ȧ20(T − t)− 1
4k

(
− a11(T − t) + 1

)2
= 0,

ȧ11(T − t) + 1
k
a02(T − t)

(
− a11(T − t) + 1

)
= 0,

ȧ01(T − t) + µY a11(T − t)− 1
k
a02(T − t)

(
h− a01(T − t)

)
= 0,

ȧ10(T − t) + µY a20(T − t)− 1
2k

(
− a11(T − t) + 1

)(
h− a01(T − t)

)
= 0,

ȧ00(T − t) + µY a10(T − t) + σ2
Y a20(T − t) + σ2

Za02(T − t)− 1
4k

(
h− a01(T − t)

)2
= 0.

In order to solve this system of ordinary differential equations, we need initial
conditions for the functions ai. Due to the arguments (T − t) in all those
functions, the desired initial conditions boil down to terminal conditions of v,
i.e., the function g in (8). Recall, that g in particular contains the function
C in (7), which is piecewise polynomial but discontinuous (see, e.g. Figure 6
for an example of such a function – clearly exhibiting jumps), which prohibits
a closed form solution of the Riccati system. Thus, we use a least squares
approximation of g in terms of the above polynomial v(T, y, z). Doing so, we
obtain initial values for the above mentioned functions, say ai(0) = ai,0. With
these values at hand, we solve the initial-value problem of the Riccati system
by MapleTMand obtain v. The boundary values of v w.r.t. the variables y and
z are then used as Dirichlet conditions for (10).

3 Data

Our model described above relies on several data, which we summarize in
Table 1. In this section, we describe how this data can be obtained from
market observations and empirical data analysis.

3.1 Generation Portfolio

As mentioned before, the agent’s portfolio consists of renewable and conven-
tionally generation capacity. We describe how to retrieve realistic market data.

Renewable Electricity Standard (RES) Portfolio. We equip the sample
agent’s portfolio with 500 MW of aggregated renewable generation capacity.
As mentioned before, for the sake of simplicity and due to limited availability
of historic data, we restrict the aggregated capacity to arise solely from wind
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Table 1 Parameters involved in our model.

wind energy Dt σD volatility
D0 initial value

conventional units n number of agent’s conventional units
ci marginal costs of conventional units, i = 1, . . . , n
κmin
i , κmax

i minimal/maximal capacity of units i = 1, . . . , n
prices Yt, Pt µY drift of permanently impacted mid price
payoff g σY volatility of permanently impacted mid price
profit f ψ permanent price impact of agent’s trading
value function V Y0 initial value

h half-spread function
ϕ execution cost function
α penalty function

farms. Furthermore, following [17], we assume that the wind farms in the
portfolio are dissimilarly located within the considered hypothetical market
area. This last assumption allows us to estimate the parameter σD for Dt in
(1) using aggregated forecast data, which is, in contrast to site-specific data,
publicly available.

Specifically, we choose hourly wind power forecasts for the French market
area provided by [15]. To be able to transfer the characteristics of the historic
data set to our current application, we first normalize all forecasts on the
average installed capacity per month. We then determine all updates between
two adjacent forecasts of the same forecast path. Finally, we observe a volatility
of approximately 0.01 per installed MW and hour (2016: 0.008, 2017: 0.008,
2018: 0.010) in the data. With respect to the renewable generation capacity
of 500 MW, we therefore set σD = 5 MW.5 Finally, we choose D0 also from
publicly available data.

Conventional Generation. For the agent’s conventional portfolio, we con-
sider n = 3 units, namely a hard coal fired plant, a combined cycle gas turbine
(CCGT) and an open cycle gas turbine (OCGT), with the parameters shown
in Table 2. The marginal costs ci of each unit represent idealized values for the
respective technology class. They also consider that an increase in flexibility
– here the reduction of the so-called deadband between zero and production
at minimal capacity κmin

i – reduces the efficiency of the unit. Moreover, we
assume that the start-up decision ai ∈ {0, 1} of a unit does not require a lead
time.

3.2 Mid Price Drift

We assume that the drift of the mid price on the IDM consists of two parts
as implied by (3), namely mid price changes due to time evolution on one
hand and mid price changes due to agent’s trading (causing irreversible price

5 Note, that the hourly value given above may be adapted to time-wise granularity other
than 60 minutes by the use of the square-root-of-time rule.
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Table 2 Unit Parameters for the conventional units i = 1, 2, 3, n = 3.

unit Hard coal CCGT OCGT
i = 1 i = 2 i = 3

marginal cost ci [e/MWh] 25 35 60
minimal capacity κmin

i [MW] 250 100 60
maximal capacity κmax

i [MW] 500 400 600

impacts) on the other. Building upon [4], we perform an empirical analysis of
these two parts. In particular, we study price changes over longer periods of
time as well as their relation to net order flow (i.e., buy minus sell). While in
that study mid price changes and net order flow are considered over periods of
five minutes, we consider the differences between the day-ahead market (DAM)
prices and volume-weighted average IDM prices6 as well as the net order flow
over the entire trading window. While we conjecture the DAM prices to be
close to the mid prices after market opening, the volume-weighted average
IDM prices are usually different from the mid price before end of trading.
Nevertheless, we prefer mid prices as we reckon that they better reveal the
evolution of the price over a longer period of time and also mirror the relation
of this evolution to net order flow.

Of course, the observed price changes appear between the beginning and
the end of the IDM trading. As a consequence, the data does not show whether
either of the components typically changes over the trading window. Concern-
ing the (deterministic) dependence of the price on time, we simply choose a
linear dependence, i.e., constant drift as µY (t) ≡ µY .

Next, we consider the relation of order flow and price change. The scatter
plot in Figure 2 indicates a linear relationship. Thus, we assume the following
model for the permanent price impact ψ(qt) = b qt with a constant b ∈ R.

We obtain estimates for b and µY from least squares fits to the data. For b,
we get 0.0017e/MWh2 and significance at a 0.1% level, indicating that the net
order flow has a positive impact on the price change. The drift µY is obtained
as 0.0433e/MWh per hour and to be significant at a 1% level, indicating that
the price slightly tends to increase over time. Concerning the sign of the drift,
we find mixed evidence in the literature, [9,13].

3.3 Transaction Costs

As we pointed out earlier, it is a major difference between our model and
previous research that we also include transaction costs. The data analysis on
which their modeling is based is presented below. We recall that transaction
costs include execution costs modeled by the function ϕ and the half-spread
h, see (4).

6 These are transaction prices multiplied with transaction volumes divided by the overall
transaction volume.
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Fig. 2 Scattering of net order flow (buying minus selling) versus difference between volume-
weighted average price on the IDM and price on DAM for all contracts with delivery start
at 12 noon in Q2/2016.

Data. We use order book data from the EPEX SPOT-operated market for
hourly delivery contracts with Germany/Austria7 as delivery area from the
second quarter of 2016 (referred to as Q2/2016 in the following) to empirically
analyze the transaction costs mentioned in §2.2. The dataset comprises (i) all
orders with Germany or Austria as delivery area which entered into the order
book, (ii) all orders with Germany or Austria as delivery area which caused
execution of an order resting in the order book with delivery area other than
Germany or Austria and (iii) all orders with delivery area other than Germany
or Austria which caused execution of an order in the order book with Germany
or Austria as delivery area.

Hence, not all orders in the order book for the German/Austrian delivery
area which were visible for market participants are contained in the dataset.
Based upon these data, we are now going to describe how we obtained values
for the quantities entering the transaction costs.

Half-spread. In identifying typical half-spread functions h entering the op-
timization problem, we build on research on bid-ask spreads (BAS) on the
NYSE8 stock market. In [16], the pattern of BAS of NYSE stocks over a trad-
ing day is analyzed. To this end, the authors divide each trading day in their
sample into one-minute intervals and compute for each interval and stock what
they refer to as the time-weighted BAS to be explained next. Consider some
time interval Ii := (Ti−1, Ti] ⊂ [0, T ] and assume that the BAS changes Ni
times at Ti−1 < t

(i)
1 < · · · < t

(i)
Ni
≤ Ti, where we denote the BAS on (t

(i)
j , t

(i)
j+1)

by BASj , j = 0, . . . , Ni setting t
(i)
0 := Ti−1 and t

(i)
Ni+1 := Ti. Then, the time-

weighted BAS on that interval Ii, denoted by BASi, is defined as

BASi :=
1

Ti − Ti−1

Ni∑
j=0

BASj

(
min

(
t
(i)
j+1, Ti

)
−max

(
t
(i)
j , Ti−1

))
.

7 Splitting into two separate market areas took effect only in October 2018.
8 New York Stock Exchange
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Then, [16] suggests to determine BASi for each interval of the trading day and
for all stocks in their sample. In this paper, we adopt the approach in [16] and
divide the trading period into intervals of 5-minute length. Furthermore, we
only consider the hourly delivery contracts with delivery starting at 12 noon
in Q2/2016. The resulting data is visualized in Figure 3 as a two-dimensional
histogram of all the BASi in the sample for the last 17.5 hours of trading. The
blue line reflects the means of the BASi in each interval.
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Fig. 3 Two-dimensional histogram of 5-minute time-weighted bid-ask spreads over the last
17.5 hours of the trading period, means per interval (blue) and degree-7 polynomial fit (red
line) to the data for all contracts with delivery start at 12 noon in Q2/2016.

We observe a significant decrease of the mean time-weighted BAS from
≈8e to ≈5e/MWh at the beginning of the time window and a subsequent
nearly constant behavior for about ten hours. Given a tick size of 0.1e/MWh
(Q2/2016), it is remarkable that this plateau is fifty times higher than the
tick size. Five hours before the end of the trading, the mean time-weighted
BAS decreases to ≈1e/MWh followed by a sharp increase to reach the final
≈2e/MWh. The pattern over the last five trading hours is quite similar to the
crude reverse J shape reported in [16] for NYSE stocks.

In order to model the temporal behavior of the BASi, we employ a polyno-
mial of degree seven according to the Akaike information criterion (AIC) [2],
which is depicted by the red line in Figure 3. This polynomial is the half-spread
function h mentioned in the previous section. Clearly, this has a significant
smoothing effect and could e.g. be replaced by other approximations as well.

Execution Costs. The execution price in (4) depends on the typical half-
spread and the typical execution costs, which reflect the negative impact on
the price realized by a market participant when buying or selling with market
orders. For the empirical analysis of the execution costs we need to consider the
order book. Similar to the analysis for the half-spread, we start by determining
time-weighted prices and volumes over 5-minute intervals on the different order
book levels9. Given some time-weighted price on an order book level, it may

9 Limit orders contain both price and volume. An order book level is made up by all
limit orders on one side of the market with the same price. The price of a level is the price
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occur that the time-weighted price on a lower level is better. Therefore, we sort
prices and volumes in descending/ascending order on the buy/sell side. This
approach requires the availability of the entire order book over the trading
period. Otherwise, missing data techniques could possibly be used.

We assume a linear relationship between trading rate and execution costs,

ϕ(t, qt) = k(t) qt, (13)

with the parameter (function) k(t). For estimating k(t), we build upon [4] and
analyze how the order books absorb market orders of different sizes. To this
end, we consider market orders with volume 1, . . . , 200 MWh for each interval
and market side. Then, we collect those order book levels required to cover
the volume of the market order. We multiply the order book level prices in
that collection by their volumes, sum them up and divide by the volume of the
market order. From the resulting price we subtract the best price on the same
market side to obtain the respective market order’s execution costs. Then, we
fit a linear model by least squares to obtain k(t). Considering again hourly
delivery contracts with delivery start at 12 noon in Q2/2016, Figure 4 shows
the obtained values for k(t) in the form of two-dimensional histograms as well
as means per time interval (blue line).
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Fig. 4 Histogram of the relation between market order volume and execution costs applying
a linear model, dividing the time into 15-minute intervals and the coefficients into intervals
of 0.002e/MWh2.

Similar to the average half-spread, the average execution costs exhibit a
decline after market opening to 0.025-0.05e/MWh2. After a rather stable ≈10
hours period, they further decline to ≈0.01e/MWh2. We observe a slight in-
crease just before the end of trading. Hence, the shape of the average execution
costs is rather similar to that of the average half-spread. We model the typical
temporal behavior of the execution costs with a polynomial of degree six for
the buy side and degree eleven for the sell side (according to the AIC).

of the included limit orders and the volume of the level is the sum over the volumes of
corresponding limit orders.



Intraday Trading: Advanced Modeling and Numerical Optimal Control 15

Remark 1 Note that the above approach is not compatible with the model in
(13). For determining a model for the execution costs, we compared market
orders and the order book. However, the agent’s action in our model is trading
at some rate. Of course, in reality, market participants will not act by trading
at some rate, but merely actively place market orders by some strategy. This
means, we cannot observe how different rates enter the order book. On the
other hand, the above approach is mainly used to calibrate parameters for our
model.

A possible strategy to remedy this shortcoming could be to determine a
relation between execution costs in some time interval and a constant trading
rate (instead of the volume itself). For example, for execution costs evolving
from a 1 MWh market order, a trading rate of 1/5 MWh per minute would
be required to yield that volume after 5 minutes of trading. �

Terminal Order Book. At the end of the trading period, we assume that the
agent liquidates remaining inventory by means of a final market order (instead
of letting the volume run into the balancing market as is done in [1]). This
means that we need a typical order book at the end of trading for calibrating
our model.

To this end, we consider the buy and sell side separately and determine
for each contract the difference between the prices on the different order book
levels and the best price. Then, we average all these price differences and
volumes on the same order book level. The results are shown in Figure 5.

Given that the average volumes associated with the best bid and ask are
around 16 MWh, typically there is still some volume at the end of trading
which can be sold/bought at zero execution costs. The volumes associated
with the order book levels beyond the best-price level slightly increase. While
the average price differences associated with the best bid and ask are obviously
0e/MWh, in absolute terms they are ≈1e/MWh for the first level, ≈5e/MWh
on the fifth level and 20-30e/MWh on the tenth level. Hence, prices beyond
the best level obviously worsen quite substantially.

We consider both the typical order book on the buy and sell side at the end
of trading to specify the penalty function α. Recall, that δξ := ξ + XT + DT

denotes the ‘untraded’ amount (for which a penalty needs to be paid) with ξ
being defined by (6). Furthermore, we only consider the first L levels of both
the buy and sell order book and truncate the volume on the last level (L)

such that the overall volume is 100 MWh on both market sides. Let δpbuy` ≤ 0
(δpsell` ≥ 0) denote the difference between the price on the `-th buy (sell) order

book level and the price on level zero, ` = 1, . . . , L. Furthermore, let λbuy` , λsell`

be the maximum volume available on respective side of the `-th order book
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Fig. 5 Cumulative volume on the different levels of the buy (left) and sell (right) order
book and difference between price on an order book level and best price for all contracts in
the sample. The thick red line reflects the mean cumulative volume and price difference on
the different order book levels. Plots are cut off at cumulative volume of 100 MWh.

level. Then, α is defined as

α(δξ) =



−

L∑̀
=1

δpbuy
` max

{
0,min{λbuy

` ,δξ−
`−1∑
ν=1

λbuy
ν }
}

δξ , if δξ > 0,

L∑̀
=1

δpsell` max
{
0,min{λsell

` ,δξ−
`−1∑
ν=1

λsell
ν }
}

δξ , if δξ < 0,

0, else.

(14)

It is easily seen that α is continuous at δξ = 0. The sign in (14) results from
(8) and the motivation that the penalty α should lower the agent’s profit. This
implies that α should be positive if the agent needs to buy and negative if she
needs to sell at the end of the trading period.

4 Numerical Solution of the HJB Equation

In this section, we describe our numerical method for (approximately) solving
the arising HJB. Moreover, we report on results of a sample numerical experi-
ment concerning (10) using the following data: U := [−50, 250]×[−1645, 145] ⊂
R2 and T = 17.5h. We have of course validated and tested our implementa-
tion on various other scenarios. Dirichlet boundary conditions are prescribed
as described in §2.4.

We use a finite difference discretization from [22] with 56 × 301 points in
space and 100 points in time. In particular, central differences are used for the
approximation of the first-order terms with additional artificial diffusion, which
results in a stable, consistent and monotone scheme converging to the viscosity
solution, [22]. We use the well-known policy iteration [3] in every time-step and
the control is maximized over a discrete set (as no first-order conditions are
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available). Finally, the optimal conventional generation is computed as the
maximum value of (8) w.r.t. ξ using Matlab’s10 intlinprog with the interior
point method.

Data: We use the artificial data µY := 0.0, σD := σY := 0.1. The func-
tions ϕ(·, ·) and h(·) are least-squares 5th order polynomial approximations of
market data from Q2/2015 (ψ(t) = 0). The penalty is chosen as market data
as α(x) := 0.5 · (|x| − 20)χ20<|x|≤45 + ((|x| − 45) + 12.5)χ45<|x|≤145.

Our results for the optimal conventional generation ξ are displayed in
Figure 6. Let us comment on the case where ZT = −500 MWh. As long as
the final mid price is below 25e/MWh, the agents buys the maximal amount
of 145 MWh (recall, that y ∈ [−1645, 145]) and uses the power plant with the
lowest marginal costs (hard coal) accordingly, i.e., the remaining 355 MWh.
Once the final mid price is 25 to 35e/MWh (i.e., above the marginal cost of
hard coal, but below the marginal cost of CCGT) it is optimal to produce at
maximum capacity with the cheapest conventional power plant (i.e., 500 MWh
by hard coal) and no final market order is required. If the final mid price
exceeds 35e/MWh, the agent sells as much electricity as possible (145 MWh)
and produces exactly that amount with the CCGT plant at 35e/MWh, which
is possible because its capacity is 100-400 MW. Finally, no matter how high
the final mid price is, the OCGT unit with the highest marginal cost is not
used, since there is not enough sell volume on the market. These results are
clearly reasonable.
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Fig. 6 Optimal conventional generation ξ as a function of YT and ZT (left) as well as for
some values of ZT (right; the lines correspond to those on the left graph).

Trading rate: Figure 7 shows the optimal trading rate over the trading
window t ∈ [0h, 17.5h]. In both cases, we fix Zt ≡-499.4 MWh (the non-
integer numbers arise from the discretization w.r.t. y and z). For the mid
price, we choose Yt ≡59.25 e/MWh (left) and Yt ≡13.98 e/MWh (right). In
the left plot, the trading rate is negative (selling), which is reasonable since
Zt ≡-499.4 MWh means that the agent has only marketed the cheapest power
plant and Yt ≡ 59.25 e/MWh means that the execution price is above the

10 MathWorksTM, mathworks.com

mathworks.com
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marginal costs of the second cheapest power plant. Note, that the absolute
value of the trading rate substantially increases around 15h, since half-spread
and immediate price impact are minimal there. In the right plot, the execution
price is below the marginal costs of the cheapest power plant, the agent buys
electricity and reduces the production of the marketed power plant.
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Fig. 7 Optimal trading rate over the trading window t ∈ [0, 17.5] for Zt ≡-499.4 MWh and
Yt ≡59.25 e/MWh (left) as well as Yt ≡13.98 e/MWh (right).

5 Conclusion and Outlook

We have introduced an extended model for the intraday market of renewable
electricity. As opposed to earlier research, our more sophisticated approach
does not allow for a closed solution formula for the desired optimal trading
strategy as a function of time. We thus used a numerical scheme for approxi-
mately solving the arising Hamilton-Jacobi-Bellman (HJB) equation. The pa-
rameters within the HJB equation are market data which we showed to be
available by an empirical analysis.

The availability of a numerical approximation scheme allows us now to
extend our model to all market participants, so that regulatory constraints can
be determined e.g. for reaching desired environmental goals. Moreover, we will
use our scheme to further investigate optimal strategies within economically
particular relevant market scenarios.
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18. Morales, J., Conejo, A.J., Pérez-Ruiz, J.: Economic valuation of reserves in power sys-
tems with high penetration of wind power. IEEE Transactions on Power Systems 24(2),
900–910 (2009)

19. Øksendal, B.: Stochastic differential equations, sixth edn. Universitext. Springer-Verlag,
Berlin (2003). DOI 10.1007/978-3-642-14394-6. An introduction with applications

20. Pape, C., Weber, C., Hagemann, S.: Are Fundamentals Enough? Explaining Price Vari-
ations in the German Day-Ahead and Intraday Power Market. Energy Economics
2016(54), 376–387 (2016)

21. Samuelson, P.A.: Proof that properly anticipated prices fluctuate randomly. IMR; In-
dustrial Management Review (pre-1986) 6(2), 41 (1965)

22. Steck, S., Urban, K.: A reduced basis method for the Hamilton-Jacobi-Bellman equation
within the European Union Emission Trading Scheme. In: Hamilton-Jacobi-Bellman
equations, Radon Ser. Comput. Appl. Math., vol. 21, pp. 175–196. De Gruyter, Berlin
(2018)

23. Yong, J., Zhou, X.Y.: Stochastic controls, Applications of Mathematics (New York),
vol. 43. Springer-Verlag, New York (1999). DOI 10.1007/978-1-4612-1466-3. Hamilto-
nian systems and HJB equations

dx.doi.org/10.2139/ssrn.2556210
dx.doi.org/10.2139/ssrn.2352854
https://clients.rte-france.com/lang/fr/visiteurs/vie/previsions_eoliennes.jsp
https://clients.rte-france.com/lang/fr/visiteurs/vie/previsions_eoliennes.jsp

	Introduction
	A New Mathematical Model
	Data
	Numerical Solution of the HJB Equation
	Conclusion and Outlook

