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Abstract

The objective of this paper is to present an optimization algorithm for the
optimization of the axial stiffness of a fixator used in fracture healing. To
this end, numerical simulations of fracture healing with 2D and 3D models
are used. The simulation is extended by a tool to observe the bridging of
two bone fragments, called bridge detector. Using this bridge detector, the
optimization criterion of shortest healing time can be defined and optimal
fixator configurations can be estimated using approximations of the healing
time function. As an outlook to further research, an analytical model of a 1D
healing simulation and an algorithm to calculate an optimal control for the
fixation is presented.

1 Numerical Simulation

The problem of fracture healing is a field of great interest for orthopaedic
research. Up to now, it is not fully understood under which conditions a
healing of fractures can be guaranteed and how this process finishes as fast as
possible. To avoid animal experiments in this research, numerical simulations
are developed. In this work, we restrict our attention to numerical simulations
presented in [19] as 2D model and in [17, 18] as 3D model.

1.1 Medical Problem

The considered kind of fracture healing takes place in long bones with a frac-
ture gap between the fracture parts. Around this fracture gap a callus builds
up to increase the diameter. This callus is initially composed of soft tissues
such as granulation tissue and connective tissue. These soft tissues are re-
placed by cartilage due to chondrogenesis, which might be replaced to woven
bone (enchondral ossification) or connective tissue can directly be replaced
by woven bone (intramenbranous ossification). Also the process of destruc-
tion of cartilage and woven bone back to connective tissue is modeled in the
simulation. These different processes of tissue differentiation are influenced
by local stimuli such as the vascularity of the tissue, mechanical strains, the
tissue concentrations in the surrounding and others. After the healing process
is finished and there is a bony connection of the fragments, the woven bone
is displaced by laminar bone and the callus is decomposed in the remodeling
process, such that finally the bone gets its initial shape.

1.2 Numerical Model

Several different models for the fracture healing have been developed. The dif-
ferences of these models are in the influence of the mechanical and biological
influences. For the local mechanical signals influencing the tissue differentia-
tion, strain invariants ([5, 8, 11]) or the strain energy density ([2, 3]) is used.
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Figure 1: X-ray images of a humerus fracture, fixation using an intramedular nail
and the callus build arround the fracture gap during the healing process.

Other healing simulations use a poroelastic mechanical model and use also the
fluid velocity ([12, 13]) or the fluid shear stress ([15]) in addition. Also biolog-
ical factors like local concentrations of growth factors ([4, 5]) or mesenchymal
stem cells ([12, 13]) are considered.

Figure 2: Finite element grid of the 2D and 3D callus model with the cortical bone
(red) and the soft tissue (blue).

In the considered numerical simulation of the healing process ([17, 18, 19]),
only the processes after building the callus with connective tissue and before
the remodeling process starts is simulated. For the simulation of the fracture
healing process, the geometry of the callus is modeled and is assumed to
be constant over time. In the simplest case, the geometry is assumed to
be axisymmetric. Thus, the callus can also be build as a 2D axisymmetric
model in the case of an outer mechanical stimulus in axial direction of the
bone. The geometry is subdivided into quadrilaterals in the 2D, axisymmetric
case, or into hexahedrons in the 3D case. For each element in the grid, the
percentage of the three types of tissues and the percentage of the vascularity
is modeled under the assumption, that there are no holes in the callus, i.e.,
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the concentrations of the three different tissues sum up to one.
The time of the healing simulation is discretized equidistantly in one day

time periods. For this time discretization, the changes of tissue and vascularity
are modeled by using a fuzzy logic controller. This method for simulating
tissue transformations was first introduced in [2] and was extended by the
influence of the vascularity in [19]. The input of this fuzzy logic controller are
the concentrations of tissue, the rate of vascularization and the maximal values
for bone and vascularity in the neighboring elements and the distortional
and dilatational strain under a given load. In the simplest case, we only
consider axial loads with a constant force over the whole time period. The
strains are calculated by using the finite element method for a linear elastic,
isotropic material model. For this FEM analysis, the same grid as used for
the discretization of the tissue concentrations and the vascularity is used. The
material properties for the mechanical model, i.e., the Young’s modulus and
the Poisson’s ratio, are estimated by a rule of mixture. The Poisson’s ratio
is estimated as weighed sum of the tissue concentrations in an element of the
grid, i.e.,

ν = νbonecbone + νcartccart + νconn(1− cbone − ccart),

where νbone, νcart and νconn are the assumed Poisson’s ratios for pure tissues of
woven bone, cartilage and connective tissue, respectively, and cbone and ccart

are the bone and cartilage concentrations of an element. The modulus in an
element is estimated by

E = Econn + (Ebone − Econn)c3
bone

+(Ecart − Econn)(c3
cart + 3c2

cartcbone + 3ccartc
2
bone),

(1)

where Ebone, Ecart and Econn are the assumed modulus of woven bone, carti-
lage and connective tissue, respectively. The idea of the equation is, that the
E-modulus of two tissues with different moduli raises from the lower to the
higher with the third power of the concentration of the tissue with the higher
modulus (cp.[7]). This is just a small change of the introduced estimation of
the modulus in [19] to fix some unexpected effects of the former equation.

2 Bridging Criterion

To define a healing time for the numerical simulation, the first bridging of
the fracture parts, i.e., the duration until a path of neighboring elements
with a minimal bone concentration connecting two elements from the different
parts of the bone exists, is observed. For the minimal bone concentration an
arbitrary value of 88.9% is used. The procedure to observe the bridging of the
bone parts is presented in [14], the so called bridge detector.

For the bridge detector, the grid is interpreted as a graph, where each
element is a node in the graph. Two nodes are linked by an edge if they are
defined as neighbors, that is two elements have a common face in the grid. For
this graph an A∗-algorithm is used to search a path between two elements,
each from one part of the corticalis. The bridge detector returns the number
of used iterations, i.e.,the time in days for a one day step size. Additionally,
an approximation of the time the bridging happens before the last time step
is returned.

3 Optimization

The healing simulation with bridge detector can be used to estimate an op-
timal fixation in terms of a minimal healing time. For the optimization al-
gorithm we have to notice that we do not have any information about the
derivative of the healing time function with respect to the fixation stiffness:
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Figure 3: Bridging of fragments in the numerical simualtion. Presented is an image
of the bone concentrations from low concentrations (blue) to high concentrations
(red) and a path of high bone concentrations between the fragments.

The analytical formulation of the fuzzy controller is too complex to estimate
any derivatives. Currently, it is not possible to determine derivatives by auto-
matic differentiation because the source code of the finite element simulation
of the model, which is implemented in ANSYS, is not available. The approxi-
mation of the derivatives by using finite differences is also not feasible because
for higher stiffnesses the function values increase very slowly and have pertur-
bations in the magnitude of the increase of the function (cp. Figure 4). Thus,
an approximation with cubic splines is used to get a smooth function which
can be minimized. This type of approximation is used to fit the function
values, which have been estimated on an equidistant grid.

For the minimization of the approximation almost any optimization algo-
rithm is suitable because the cost of the optimization of a B-spline is marginal
compared to the cost of estimating the grid points of the healing time func-
tion. The used optimization method of the NAG C library (e04abc) is based
upon the optimization of real-valued functions by the quadratic-interpolation
function of Gill and Murray, which searches the minimum of the function by
minimization of quadratic interpolation and reducing the starting interval of
the algorithm.

This optimization algorithm is used with different starting points, e.g., for
all calculated grid points, to estimate all local minima. The global minimum
can then be taken from the set of minima for all chosen starting points.

3.1 Results

The presented results are estimated for an average grid-size for the discretiza-
tion in space. The minima for different numbers of spline intervals from 2 to
19 vary from about 1500 N

mm
to 3000 N

mm
for the axial stiffness of the fixation,

where the approximated function values are in most cases much better than all
estimated function values of the healing time function. The estimated range
of the optimal stiffness for the fixation fits to the impression one gets from the
function values of the healing time function. As can be seen from the spline
approximations and the wide range of optimal values for the optimal fixation,
the presented method is not very reliable. Another drawback is, that the
function values of the healing time function are not as smooth as expected.

The stiffness range called to be optimal lies in between the axial stiff-
ness of known fixations. Unilateral external fixators are softer (≈ 500 N

mm
),

intramedular nails are stiffer (≈ 3000 N
mm

) than the predicted optimum.
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Figure 4: Healing times of the 2D healing simulation with average grid size of 0.2mm
and a spline approximation of the healing-time function with 10 spline nodes.

4 1D Simulation and Optimal Control

As a simplification of the fracture healing simulation, a 1D model is build.
In this model, the callus of length ` is modeled by the area of the profile
A(x), x ∈ [0, `], along the axis of the callus. As a simplification, the symmetry
of the callus can be used. Thus, only one half of the callus has to be modeled.
The concentrations of bone, cartilage and vascularity are described by the
vector

c(t, x) =
`
cbone, ccart, cvasc

´T
(t, x)

at time t in location x as in the 2D and 3D model.

Figure 5: 1D model of the bone concentration growth with initially high bone
concentration (red) on the left and low bone concentration (blue) on the right.

For the tissue differentiation, we use the fuzzy controller of the 2D and
3D model. The only difference to the input variables is that there is only one
strain variable as input. To use the fuzzy controller, we fix a value for the
dilatational strain and use the distortional strain as a variable.

The strain is estimated using a model of a system of two parallel springs
with stiffnesses kcal and kfix for the callus and the fixation. Thus, the force F
of the load to the system splits into the two forces to the callus and fixation,
i.e.

F = Fcal + Ffix, (2)

and similar the stiffnesses
k = kcal + kfix. (3)
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Figure 6: Mechanical Model of callus and fixator in 1D.

From the definition of a spring stiffness we have

kfix =
Ffix

d`
, (4)

where d` is the difference of the length of the spring of unloaded and loaded
case. The linear elastic mechanical law for the callus is given by

ε = u′, (5)

σ = E ε, (6)

(A σ)′ = 0, (7)

with the boundary conditions

A(`) σ(`) = Fcal, (8)

u(0) = 0. (9)

Here, u is the displacement, σ is the stress, ε the strain and E is the Young’s
modulus.

As in the 2D and 3D model, the modulus is a function of the tissue con-
centration, i.e., E = E(c(t, x)), and also the stress, strain and displacement:
σ = σ(x, c(t, ·)), ε = ε(x, c(t, ·)) and u = u(x, c(t, ·)). From (7) and (8) one
gets that

A(x) σ(x, c(t, ·)) = Fcal ∀x ∈ [0, `], (10)

and the strain can be calculated by

ε =
Fcal

A E
. (11)

The change of the length of the callus can be written as

d` =

Z `

0

u′ dx =

Z `

0

ε dx = Fcal

Z `

0

1

A E
dx. (12)

Thus, the callus stiffness can be calculated by

kcal =

„Z `

0

1

A E
dx

«−1

. (13)
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The change of the lenght in terms of the stiffness of the whole system is

d` =
F

k
=

F

kfix + kcal
, (14)

and the force to the callus is

Fcal = kcal d` =
F

kfix + kcal
kcal, (15)

the strain can be calculated by using (11), (13), and (15) as

ε =
Fkcal

A E (kfix + kcal)
. (16)

The healing of the fracture can be observed directly in the 1D model by
comparing the bone concentration at the endpoint of the model to a lower
bound c∞. This can be done without the bridge detector. Another advantage
is that there is no choice for the direction of the bone growth. The bone will
grow towards the middle of the callus. Hence, to observe a minimal healing
time, the bone growth has to be maximized. Therefore, the fuzzy logic is
optimized to gain maximal bone growth.

To obtain the optimal values of the fuzzy controller for bone growth and
also cartilage growth and maximal growth of vascularity, the fuzzy controller
is optimized using a Monte Carlo method. Therefore, the fuzzy logic controller
is evaluated at a random set of parameters (between 10000 and 50000 param-
eterss). From these function values, the maximal values for each component
of the output parameter is chosen and the set of optimal input parameters
is estimated. Because the fuzzy controller is a piecewise linear, continuous
function which is constant in most parts of the domain, the resulting sets of
optimal control parameters describe small, seven-dimensional intervals of the
domain. From the results of the optimization, it can be seen that optimal
bone growth only depends on five input parameters, i.e., the bone concentra-
tion in place and in the neighborhood, the vascularity and the strains. In the
1D case, the dilatational strain is chosen fixed to gain optimal bone growth.
Thus, the fuzzy controller depends only on four parameters.

To obtain an algorithm to estimate an optimal healing, we rewrite (16) as

kfix =
F kcal

ε A E
− kcal (17)

Using an optimal value for the strain, an optimal stiffness of the fixator can
be calculated.

To formulate a numerical algorithm, a discretization in time and space is
used, especially the discretization of time is used in the following algorithm:

Given an inital bone concentration c0(x).

1. Find I ⊂ [0, `], i.e., a set of grid points in the discretization, where an optimal
bone growth can be observed, i.e., where the concentrations for bone and
vascularity are optimal for bone growth and c(t, x) ≤ c∞.

2. Estimate a stiffness of the fixator by (17), such that the bone growth is optimal
in the chosen selected interval.

3. If c(t, `) ≥ c∞, stop. Otherwise update the tissue by calculating the changes
with the fuzzy logic controller for the grid points in space and continue with
1.
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Figure 7: Optimal control for the 1D healing model: shown are the bone concentra-
tion over time and space (upper left), cartilage concentration over time and space
(upper right), vascularity over time and space (lower left) and the estimated fixator
stiffness over time (lower right).

4.1 Results

To test the presented algorithm, we choose an area function A(x) = 1 for
x ∈ [0, 1], and initial values for the concentrations

c0(x) =

0@c0
bone(x)
c0
cart(x)

c0
vasc(x)

1A =

0@cos
`

πx
0.2

´
χ[0,0.1](x)
0

cos
`

πx
0.2

´
χ[0,0.1](x)

1A ,

where χA(x) is the characteristic function of a set A.
The results of the simulation are shown in Figure 7. It can be seen that the

algorithm can compute a control for the 1D model which leads to a healing.
By comparing the elapsed healing time to the optimal time which comes from
the maximal bone growth from the fuzzy logic it can be seen, that the control
of the stiffness is almost optimal.

5 Discussion

It has been shown that the 2D and 3D fracture healing model can be used to
estimate an optimal stiffness of the fixator for the shown model. But in fact,
the used optimization algorithm is not very accurate. The resulting interval of
optimality is too big to predict an optimal healing for any choosen parameter
in the interval. The main reason why the optimization does not allow a
precise prediction of an optimal fixator is, that the healing time function with
the two parts simulation and bridge detector is not as smooth as expected.
The function values seem to have perturbations which may come up from
the discretization of the callus and the connection of the gridsize of time and
space.
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To get a deeper insight to the behavior of the fuzzy logic controller, the
1D model was build. By optimization of the fuzzy controler, an algorithm
could be implemented that is able to calculate an optimal control for the
fixator stiffness. This 1D model is not able to predict any healing processes of
real fracture. But the idea of maximization of bone growth over the interval
leads to a fast and almost optimal healing. An approach to carry the idea of
optimization of bone growth from the 1D model to higher dimensions is to
maximize the bone growth on a predicted path inside the callus to minimize
the healing time.

Another insight of the presented optimization algorithm is, that the model
of fracture healing has to be improved in the future. The model is able to
predict an optically good approximation of the real healing process but it has
to be improved to get reliable results as prediction for an optimal healing
process.
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