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1. Introduction

The attraction of wavelet bases is mainly due to the following essential fea-
tures. They offer nearly sparse representations of functions. These representa-
tions convey quantitative information about the components of such functions
living on different length scales. This has led to important applications in
signal /image analysis and compression. While in these applications the ob-
jects to be analyzed or compressed are given explicitly, it is natural to ask to
what extent the above features of wavelet bases can also be exploited for the
efficient approximation of objects that are only given implicitly, such as the so-
lutions to integral or differential equations. This issue has triggered numerous
studies during the past ten years and the reader is referred to survey arti-
cles like 17282947 and further references cited there. First natural steps were
to use multiresolution spaces spanned by wavelets (or corresponding scaling



functions) as test and trial spaces for Galerkin methods. In connection with
elliptic boundary value problems suitable wavelet bases lead to asymptotically
optimal preconditioners in terms of simple diagonal scalings in wavelet coor-
dinates. Asymptotically optimal means here that the resulting linear systems
can be solved within discretization error accuracy at a computational expense
that stays proportional to the problem size. In that sense such schemes are,
in principle, comparable with multigrid methods. For certain singular inte-
gral equations arising, for instance, as boundary integral equations, in addi-
tion to preconditioning, wavelet representations of these operators turn out to
be nearly sparse !!. This has led to matrix compression schemes in connec-
tion with collocation or Galerkin schemes for boundary integral equations that
again lead to numerical schemes that are asymptotically optimal in the above
sense, even for such global operators 3045, The key features of wavelet bases
that are responsible for these effects are: (I) they induce norm equivalences
between sequence spaces and a range of function spaces; (II) they have can-
cellation properties typically entailed by vanishing polynomial moments, that
allow one to tell regions where a function is smooth from those exhibiting more
irregular behavior.

These facts and some obvious analogies to nonlinear wavelet compression
schemes in image processing have motivated researchers early on to go a step
beyond the efficient solution of a linear system. Instead of asking how to effi-
ciently deal with a given discretization, one tries to find a possibly economical
discretization which then is to be treated efficiently. This leads to the concept
of adaptivity where the necessary information about how and where to spend
the degrees of freedom has to be acquired during the solution process, in con-
trast to image compression where full information about the object is available
from the beginning. Adaptive solution concepts for the numerical treatment
of operator equations have been studied intensely in different communities. In
the finite element context a-posteriori error estimators have proven to yield
powerful adaptation strategies, see e.g. 234133637 Tn the wavelet context
it is natural to derive information from the size of the wavelet coefficients of
current approximations, see e.g. 1:9:12:21,23.27 However, neither of these tech-
niques has lead to rigorous convergence and complexity estimates that allow
one to relate the target accuracy e to the computational work and the adap-
tively generated number N(e) of degrees of freedom needed to achieve that
target accuracy. In fact, in the context of information based complexity one
considers computational models where adaptivity is shown not to pay off 43.

Only recently, rigorous complexity estimates in the above sense have been
obtained for certain adaptive wavelet schemes. First in '® asymptotic op-
timality has been proven for elliptic problems, see 7 for corresponding data



structures, implementations and first numerical experiments. The extension
of these results to more general indefinite problems in '* culminated in a new
conceptual framework. The original problem is first transformed with the aid
of suitable wavelet bases into an equivalent problem that is well posed in Eu-
clidean metric. Then one seeks an iteration scheme for the infinite dimensional
problem for which the error is reduced at each step by at least a fixed ratio.
Then, at last, the application of the involved (infinite dimensional) operators
is carried out approximately in an adaptive way within suitable dynamically
updated accuracy tolerances. Similar ideas are pursued in 2*?7 to deal with the
important class of saddle point problems. An Uzawa iteration for the infinite
dimensional transformed problem is shown to lead to asymptotically optimal
performance. Moreover, this approach allows one to recycle the ingredients for
the elliptic case. A similar idea is used in 2 in a finite element context, where

however, as in 27

, ho complexity estimates are given.

The objective of this paper is twofold. First we briefly summarize the
paradigm proposed in '?. Second we show how to interpret the Uzawa approach
from 2% for saddle point problems as a special realization of the framework in
19 The corresponding new convergence proof also serves to exemplify this
framework and its main ingredients from nonlinear approximation theory. We
then revisit the Stokes problem and discuss a new algorithmic realization that
offers several quantitative improvements over 2°. It concerns the application
of the divergence operator in wavelet coordinates. With the aid of judiciously
chosen wavelet bases it can be carried out exactly and simplifies the Uzawa
updates in several ways. Some numerical experiments are used to compare the
different versions.

The layout of the paper is as follows. In Section 2 we describe the class of
variational problems of interest with special emphasis on saddle point prob-
lems and the Stokes problem as a representative example. Section 3 contains
a brief discussion of our basic questions and objectives. Section 4 begins with
an outline of the basic algorithmic paradigm, identifies the key ingredients of
a general adaptive solution scheme (GASS), reviews some relevant concepts
of nonlinear approximation and best N-term approximation and formulates a
general complexity estimate from 9. In Section 5 we describe an equivalent ¢
formulation of saddle point problems, based on suitable wavelet bases for the
relevant function spaces, and motivate the Uzawa scheme. The main algorith-
mic ingredients of GASS for the class of saddle point problems are realized in
Section 6. It is interesting to note that the GASS is used on two levels, namely
for the outer Uzawa iteration as well as for the interior elliptic subproblems.
Section 7 is devoted to the main complexity estimate for this scheme followed
in Section 8 by a brief discussion of the question under which circumstances



adaptive concepts outperform simpler schemes based on uniform refinements
by an asymptotically better rate. In Section 9 we focus on the Stokes problem.
After briefly describing the wavelet bases we address an alternative application
of the divergence operator in wavelet coordinates, which is based on a special
choice of biorthogonal wavelet bases. Finally, we present in Section 10 some
numerical experiments comparing the different versions of the adaptive wavelet
scheme.

Throughout the remainder of the paper we shall adopt the following nota-
tional convention. Whenever the specific value of a constant in an inequality
does not matter we shall write a < b to express that a can be bounded by
some constant multiple of b, uniformly with respect to any parameters on which
a and b may depend. Likewise a ~ b means that a < band b < a hold.

2. Variational Problems

We shall be concerned with the following problem setting. Let H be a Hilbert
space and A(-,-) : H X H — R a continuous bilinear form, i.e.,

[AV,U)| S IVIlllUlls, V.U €H. 1)
We shall consider the variational problem: Given F' € H' find U € H such that
AWV, U)=(V,F), V eH. (2)

We explain first what we mean when saying that (2) is well-posed. To this end,
define the operator £ : H — H' by

(V,LU) = A(V,U), V eH, ®3)
so that (2) is equivalent to
LU =F. (4)

Then (2) is called well-posed (on ) if there exist positive finite constants
¢r,Cr such that

cellVIin < LVl < Cel|VIln, Ve H. (5)

We will refer to (5) as mapping property. Clearly (5) implies the existence of
a unique solution for any F' € H' which depends continuously on the data F'
(with respect to the topology of H).

Remark 2.1. It should be noted that in many cases, given A(-,-) the first
(and often most crucial) task is to identify a suitable Hilbert space H such
that the mapping property (5) holds.



The simplest example that fits into this framework is the following classical
scalar elliptic boundary value problem. Suppose that Q C R? is a bounded
(Lipschitz) domain and a(z) is a symmetric (bounded) matrix that is uniformly
positive definite on 2. The classical boundary value problem associated with
this second order partial differential equation reads

—div(a(-)Vu) + k(-)u=fon Q, u=0ondQ. (6)

We reserve lower case letters for this problem for later purposes. Its weak
formulation has the form (2) with

a(v, w) = /Q @V Vo + kvw)de, H=HYQ), H =H Q). (7)

Classical finite difference or finite element discretizations turn (7) into a
finite dimensional linear system of equations. When solving these systems,
one encounters the following obstructions:

e The systems are symmetric, positive definite and sparse but in realistic
cases often very large so that the use of direct solvers based on elimina-
tion techniques, is excluded. In fact, the fill-in caused by elimination
would result in prohibitive storage and CPU demands.

e Hence one has to resort to iterative solvers whose efficiency depends
on the condition numbers of the systems. Unfortunately, the sys-
tems are increasingly ill-conditioned. When the mesh size h decreases,
conds(a(®y,®)) ~ h~2, where a(®p,®)) denotes the stiffness ma-
trix with respect to an Ly-stable single scale basis, such as a standard
nodal finite element basis.

An important class of problems that are no longer coercive are saddle point
problems. A detailed treatment of this type of problems can be found in '4:38,
Suppose X, M are Hilbert spaces and that a(-,-), b(-,-) are bilinear forms on
X x X, respectively X x M which are continuous

la(v,w)| < lolixllwllx, [b(g,0)] < llvllxllgllar- (®)

Given f € X', g€ M', find U = (u,p) € X x M =: H such that one has for
allV = (v,q) € H

_ Ja(u,v) + b(p,v) = (f,v),
ATY) = { b(g,w) = (g, 9). ©)

Note that when a(-,-) is symmetric positive definite, the solution component

u minimizes the quadratic functional J(w) := 1a(w,w) — (f,w) subject to the



constraint b(u,q) = (g, g), for all ¢ € M, i.e., one seeks a pair (u,p) solving

. 1
i, sup (a0, + 80,0 = £0) — (5.0)).
veX ge M 2
This accounts for the term saddle point problem (even under more general
assumptions on a(-,-)) .
In order to write (9) as an operator equation, define the operators A, B by

so that (9) becomes

w-()Q)-(-n o

As for the mapping property (5), a simple (sufficient) condition reads as follows
14,38 "1f a(-,-) is elliptic on

kerB:={ve X :bv,q) =0 Vgqge M},
ie.,
a(v,v) ~ ||v]|%, v €kerB, (11)
and if b(-, -) satisfies the inf-sup condition

. b(v, q)
inf sup ——————
9€M yex ||v||xIlgllar

> B (12)

for some positive 3, then (8) is well-posed, i.e., £ defined by (10) satisfies

1/2 v 9 \1/2
ce (161 + a1 < 16" )lxrar < Ce (Iolf + el . (3)
Condition (12) means that B is surjective (and thus has closed range). Condi-
tion (11) is actually too strong. It can be replaced by requiring bijectivity of
A on ker B, see 4. We pause indicating the obstructions posed by this class
of problems.

¢ As in the previous case discretizations lead usually to large linear sys-
tems that become more and more ill-conditioned when the resolution
of the discretization increases.

e An additional difficulty is caused by the fact that the form (9) is
indefinite, so that more care has to be taken when devising an iterative
scheme.



e An important point is that the well-posedness of the infinite dimen-
sional problem (13) is not automatically inherited by a finite dimen-
sional Galerkin discretization. In fact, the trial spaces in X and
M have to be compatible in the sense that they satisfy the inf-sup
condition (12) wniformly with respect to the resolution of the cho-
sen discretizations. This is called the Ladyshenskaya-Babuska-Brezzi-
condition (LBB). The construction of trial spaces that satisfy LBB
may, depending on the problem, be a delicate task.

A prominent example is the inhomogeneous Stokes system as the simplest
model for viscous incompressible fluid flow

—vAu+ Vp = f, in Q,
divu = g, in Q, (14)
u|6Q = 07

14,38

where u and p are the velocity, respectively pressure, see . The relevant

function spaces are
_X:Ham:ﬂHamﬂ,Al:LmGD:{qehGDi/q:O} (15)
Q

where H}(2) consists of those Ly-functions with first order weak derivatives
in Ly whose trace vanishes on the boundary 9. Moreover, one can show that
the range of the divergence operator is Ls o(f2). The weak formulation of (14)
is

V<VU7VU>L2(Q) + (diVULp)Lz(Q) = <f7 U>L2(Q)7 v € H(l)(Q)

(16)
(diV 'U,,(])LZ(Q) = <g;(I)L2(Q); qge L2,0(Q)7
i.e., one seeks a solution U = (u,p) in the energy space
H=XxM=H}Q) x L o(Q), (17)

for which the mapping property (5) can be shown to hold, see e.g. 38.

3. Objectives

A common approach to problems of the form (2) is to choose some finite
dimensional trial space S, C ‘H and seek U, € S, satisfying

(Va, Up) = (Va, F), Vi € Sh. (18)

We have used here for simplicity the same test space as the trial space which is
often referred to as Galerkin discretization. (Of course, there are cases where
different test spaces would be preferable). Determining Uj from such an a-
priori choice of a trial space is a linear process. The subscript h represents



typically a mesh size which appears in a-priori error estimates. Specifically,
when H = H! is (a closed subspace of) a Sobolev space of order ¢, such
estimates take the form

IU=Uhllae < B~ 0N, h =0, (19)

provided that the test spaces have sufficiently high order and that the solution
belongs to H? for some s > t. Note that in these error estimates the error is
estimated in the same metric (here L,) as the regularity of the solution. Thus
the more regular the solution is, the larger h can be kept in order to achieve
some target accuracy €. Now, when the solution happens to have singularities
so that the global Sobolev regularity s exceeds the order ¢ of the energy norm
by only a little, the mesh size h has to be small, to meet the target accuracy,
which means that the linear systems resulting from (18) become large.

Since away from singularities a coarser mesh size would suffice to resolve the
solution adequately, a natural idea for reducing the computational complexity
is to locally adapt the trial space to the structure of the solution. For instance,
a-priori knowledge about singularities may result in either adding singularity
functions or using locally refined meshes. In case of insufficient knowledge
about the solution, as is usually the case in 3D problems, it would be par-
ticularly desirable, if the solution process can be arranged to be “intelligent”
enough so as to acquire during the solution process the necessary information
for placing the degrees of freedom in such a way that the target accuracy is
met at the expense of possibly few degrees of freedom. Since this may result
in highly nonuniform meshes it makes no longer sense to measure the error
in terms of mesh size. The cost of the numerical task and the corresponding
storage demands are better reflected by the size of the resulting linear systems
and hence by the number N of degrees of freedom.

However, to appraise the merit of an adaptive solution concept, that will
naturally require some computational overhead and possibly much more com-
plicated data structures, one would have to ask under which circumstances
the cost N is related in which way to the target accuracy e. To make this
more precise, note first that also the above estimates (19) can be restated in
terms of the number of degrees of freedom (d.o.f.). In fact, since on bounded
domains in R? the d.o.f. N of a regular grid behaves like h~¢, we have in the
case (19) the familiar relation € ~ h*~* ~ N~ (5-8)/4 hetween accuracy and
computational work. We shall refer to this relation as the work/accuracy rate
in this case of the linear solution process. Suppose now that some adaptive,
and hence nonlinear solution process provides an approximate solution Uny,
involving N degrees of freedom, such that

lU = Uyl <e. (20)



Then the question arises how is IV related to € under which assumptions on
U? To our knowledge, nothing is known about this question for classical dis-
cretization environments. Determining and realizing work/accuracy rates of
the form ¢ < N—%/? or equivalently N < e %/ also for adaptive schemes
is therefore a central issue in the subsequent discussion and has driven the
developments in 181925,

4. The Basic Paradigm

The classical approach to the numerical treatment of operator equations may
be summarized as follows. Starting with a variational formulation, the choice
of finite dimensional trial and test spaces determines a discretization of the
continuous problem which eventually leads to a finite dimensional problem.
The issue then is to develop efficient solvers for such problems.

As indicated in Section 2, typical obstructions are then the size of the
systems, ill-conditioning, as well as compatibility constraints like the LBB
condition.

In connection with wavelet based schemes a different paradigm has been
proposed and analyzed in 1°.

(I) One starts again with a variational formulation but puts first most
emphasis on the mapping property (cf. (5)).

(IT) Instead of turning to a finite dimensional approximation, the con-
tinuous problem is transformed into an equivalent co-dimensional £5-
problem which is well-conditioned.

(IIT) One then tries to devise a convergent iteration for the oo-dimensional
£o-problem.

(IV) This iteration is, of course, only conceptual. Its numerical realization
relies on the adaptive application of the involved operators.

In this framework adaptivity enters only through ways of applying infinite
dimensional operators within some accuracy tolerance. Moreover, all algorith-
mic steps take place in £». The choice of the wavelet basis fully encodes the
original problem, in particular, the underlying geometry. Of course, the real-
ization of appropriate bases by itself may be a difficult problem depending on
the case at hand. We shall briefly address this issue later in connection with
numerical applications.

The meaning of well-posedness in step (I) has been already clarified in (5).

The objective addressed in step (II) above is to transform the original
variational problem (2), or equivalently the operator equation (4), into an
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equivalent infinite dimensional system
Mp = G, (21)

whose solution p uniquely determines the solution U of the original problem.
The transformed problem is to be well posed in the sense that M is an auto-
morphism on #s, i.e., there exist positive constants cp;, Cys such that

ceulldlle; < [IMdlle, < Cumllalle,,  a € Lo (22)

Moreover, we require here that M is even symmetric positive definite. Before
explaining possible realizations of (II), we follow '° and outline first its basic
consequences. Note that, on account of (22), there exists some relaxation
weight o with

”I - aM”b—Mz <p<l (23)
Thus simple iterations of the form
p"* =p" + (G - Mp") (24)

would then converge with a fized reduction rate at most p per step.

4.1. An Adaptive Iteration

Of course, the scheme (24) is idealized since it cannot be executed in practice.
All one can hope for is to approzimate the ezxact residual G — Mp™ in each
step within appropriate accuracy tolerances. Thus one needs a routine

RES [n,M, G, q] = 1y,

which for any finitely supported q produces a finitely supported output r, such
that

IG —Mq —1ylle, <. (25)

The realization of RES depends on the concrete application and will be
discussed later. An essential ingredient will always be a way of applying an
infinite matrix to a finitely supported sequence within some accuracy tolerance.

A second basic ingredient is the following routine which has been intro-
duced and analyzed in 18:

COARSE [, w] — Wy,
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which for any finitely supported input vector w produces another vector wy,
with smallest possible support such that

lw —wylle, <. (26)

The need for the routine COARSE may not be clear yet at this point so
that a few comments are in order. It will be seen later that in the simplest
case the right hand side G in (21) is comprised of the (scaled dual) wavelet
coefficients of a given right hand side f, and thus is in principle accessible.
One should then think of computing in a preprocessing step a highly accurate
approximation to f in the dual basis along with the corresponding coefficients
collected in a finitely supported array G. The necessary accuracy can be
easily related to the target accuracy of the adaptive process. So part of the
routine RES would in this case be an application of COARSE to this finitely
supported array G.

The routine COARSE can then be realized by (quasi-)sorting the coeffi-
cients and by adding successively the squares of the entries from small to large,
until the target threshold is reached, see 18 for details.

It will also be seen later that COARSE will actually play an essential role
in estimating the complexity of approximate iterations based on the above
routines.

We will assume for the moment that we have the above routine RES at
hand and wish to determine first for which tolerances n the corresponding
perturbation of the ideal scheme (24) converges. To this end, let

K :=min{l € N: p!~!(al + p) < 1/10}, (27)

where «, p are the relaxation parameter from (24) and the error reduction rate

from (23), respectively. We consider then the following perturbed version of
(24) 19:

SOLVE[e, M, G] - p(e)

(i) Set p° =0, €o:=cp||Glles, §=0.
(ii) If e; <€, stop p/ — p(e). Else q° := p’.
(ii.1) For {1 =0,...,K —1:
RES [p'¢;, M, G,q!] = r;; and set ¢! :=q' + ar;.
(ii.2) COARSE [qX,2¢;/5] — p'H,
€j+1 :=€j/2,j+ 1 — j go to (ii).

Given the above basic routines as ingredients, the scheme SOLVE can be
shown to reach the target accuracy after finitely many steps '°. In fact, when
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in the jth iteration block (ii.1) p' is the exact iteration p'*! = p'+a(G—Mp')
with starting value p® = q° = p’, one has

q —p!tt =1 -aM)(d' - p') +a ((G-Md) — 1),
so that

™ —p"* e, < plld' — Plle, + ap'e; < a(l + 1)p'e;, (28)

and the arguments in '° provide the following result.

Prop 4.1. The approximations U7 satisfy
lp—plle, <ej, jeEN (29)

Note that the accuracy tolerances are at each stage comparable to the
current accuracy, which will be important for later complexity estimates.

In some cases a better initial guess is known. If one has for some finitely
supported p that ||p — P|le, < 9, step (i) can be replaced by

(i)’ Set p° = q, €o:=4.

If this matters we shall write SOLVE [¢, M, G, p] — p(€) in order to indi-
cate the particular initial guess.

The above scheme should be viewed as the simplest example of a perturbed
representation of an iteration for the infinite dimensional problem. Several al-
ternatives come to mind. Instead of applying always K steps in (ii.1), one can
monitor the approximate residual for possible earlier termination. Further-
more, the fixed relaxation parameter a can be replaced by a stage dependent
parameter o resulting from a line search in a gradient iteration. Finally, one
could resort to (approximate) conjugate gradient iterations. We postpone dis-
cussing these issues to later numerical realizations.

4.2. Best N-Term Approximation

Before specializing the above concepts to concrete cases we shall lay out the
basic principles for estimating the complexity of schemes like SOLVE. We
wish to compare the performance of the above algorithm with what could be
achieved ideally, namely with the work/accuracy balance of the best N-term
approximation in £z, whose error is given by

one(@) = lla—anlle, =, min_ fla =z, (30)
Obviously, gn consists of the N largest terms (in modulus) in the sequence q.
It will be important to understand the class of those sequences for which o g,
decays at a given rate.
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One way to describe sequences that are sparse in the sense that oy ¢, (V)
decays fast, is to control the number of terms exceeding any given threshold.
In fact, set for some 7 < 2

= {vel #AeT o >0} <Cun T}, (31)

noting that, for 7 > 2, there is no constraint imposed by the above condition.
When for a given v € £¥, Cy is the smallest constant in (31), one has

C‘l,/T = sup nl/TUi‘_HL =: |v]ew, (32)
neN

where {v}; }nen, is a non-decreasing rearrangement of v. Thus

IVllew == [1vlle, + [v]ex (33)

is a (quasi-) norm for £¥ 8. Tt is easy to see that £¥ is very close to £, as

reflected by the following continuous embeddings
b ClYClrpe Cly, T<THe<2 (34)

The following characterization of sequences with polynomial best N-term ap-
proximation rates from ® will be needed later.

Prop 4.2. Let

1= (35)

s+ !
5
Then v € £ if and only if on,(v) < N% and

[Iv—vnlle, <

~

N7 vllew-

Moreover, the following result from ' indicates the role of the coarsening step
(ii.2) in SOLVE.

Prop 4.3. If v € £¥ and ||v — w||g, < /5 with #suppw < co. Then w,, :=
COARSE [w, 47/5] satisfies

#supp W, S (VI 0T, v = Wylle, <, (36)
and
IWallee < IIVllew (37)

Thus the coarsening step controls the £*-norm of the current approximants
which are thereby pulled towards the best N-term approximation. To explain
its role in step (ii.2) of SOLVE, note that the choice of the constant K in step
(ii.1) guarantees that in the (j + 1)st iteration block of SOLVE the iterate
g satisfies ||p — a¥|ls, < €;/10. Thus, by Proposition 4.3, the threshold
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parameter 2¢;/5 in step (ii.2) ensures that the £-error after coarsening is still
at most €;/2, while, when p € £¥, the £¥-norm of p’ remains bounded and
the support size of p/ grows at most like e;l/ ?. This is the best N-term rate
of elements in £¥.

4.3. The Main Complexity Estimate

In order to analyze the complexity of the full scheme SOLVE, it remains, in
view of the above remarks, to control the complexity of the iteration blocks
between coarsening steps. This will rely on properties of the routine RES.
The following result, whose formulation is tailored to the present needs, can
be easily extracted from the analysis in 1°.

Theorem 4.1. Assume that for some fized 7* > 0 and any 7 < 7 < 2 the
routine RES has the following properties:

(1) For any finitely supported q the output r, of RES [n,M, G, q] satisfies

Irgllee < max{llaller, [|Gllex},
1 1 _
#suppr, < max{lallil’, 1G]
where as before 771 = s+ 1/2, see (35).
(i) Moreover, the number of floating point operations stays proportional to
#suppr,. where in (i) and (ii) the constants depend only on T when
T tends to T*.

(38)

Then the output p(e) of SOLVE [e, M, G] satisfies the following properties.
For every e > 0 it produces after finitely many steps a finitely supported solution
p(e) such that ||p — p(€)||le, < €. Moreover, when p € €¥ for 7™ < T < 2, one
has for s related to T according to (35),

#suppp(e) < [P, Ip@ller S lIples, (39)

and the number of floating point operations stays proportional to #supp p(e).

This result will be applied later on several levels.

5. An Equivalent £2-Problem

In order to apply the above concepts we need to specify the transformation to
the equivalent £5-problem in step (II) and to realize the corresponding basic
routines. The general idea proposed in !? is to base the transformation of (2)
to a problem of the form (21) on appropriate wavelet bases for the energy space

H.
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We postpone discussing the concrete construction of such bases but are
content for the moment with describing their general format. We consider
collections ¥ = {95 : A € J} C L2(Q) of functions — wavelets — that are
normalized in Ly, i.e. ||x|lL, =1, A € J, where dim Q = d. Here J = J3UJy
is an infinite index set where: #J3 < oo representing the “scaling functions”,
living on the coarsest scale. For Euclidean domains these functions will span
polynomials up to some order which will be called the order of the basis W.
The indices in 7, represent the “true” wavelets spanning complements between
refinement levels. Each index A\ € J encodes different types of information,
namely the scale j = j(X) = |\|, the spatial location k = k(\) and the type
e = e(\) of the wavelet. Recall that e.g. for tensor product constructions one
has 2% — 1 different types of wavelets associated with each spatial index k.

As an example, for d = 2 one has three different kind of functions, namely

J/ZW k) 22627y - 1),

2pt0(2 (z,y) — (k,1)) = 2 T -
290N (2 (z,y) - (k,1)) = 272w — k) 207227y — 1),
2yt (2,y) - (kD) = 2292z — k) 2292y — 1),
for A = (.77 (k,l),(l,(])) ( ( ) ( )) and A = (.7’ (kal)a (1:1))7 respec-

tively. To simplify notation we shall formally view ¥ as an infinite column
vector (whose components 1, are ordered in some fixed but unspecified way)
an denote an expansion briefly as A7 = Y7,/ data.

We will explain next the first feature that qualifies ¥ as a wavelet basis in
our context. The key is that suitable wavelet bases induce an isomorphism
between the energy space H and /. We shall exemplify this for the case of
saddle point problems. Recall that in the saddle point case we have H = X x M.
We need a wavelet basis for each component space

X(—)\IJx, M(—)‘I’M

By this we mean that there exist diagonal scaling matrices Dx, Dy such that
the norm equivalences

ex Vil (ax) < IV D Txllx < CxlIViles(x)s (40)

and

emllalles(ga) < la" D3 Uarllar < Carllallea(gar)s (41)

hold. The latter relation deserves a few more comments. To this end, recall
that in the case of the Stokes problem we have X = H{(Q), M = Ly o(Q),
see (17). Suitable scaling weights are then (Dx)xx = 2%, (Dar)ar =1 2.
However, M is in this case not the full space L2(f2), usually characterized by
wavelets, but a closed subspace of codimension one. In general, when M is a
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closed subspace of finite codimension in some larger Hilbert space M for which
(41) holds, the arrays of wavelet coefficients of elements in M will in general
form a closed subspace €2 o(Jp) of finite codimension in £>( 7). In the case
of the Stokes problem £ o(7ar) is determined by a linear constraint only on
the scaling function coefficients. We refer to 2° for more details and will, for
simplicity, suppress here this distinction in the following.

Setting,

A :=D3'a(Ux, Ux)D5!, B:=Dy b(¥y, ¥x)Dy!, (42)
and
f:=D3 (¥x,f), g:=D3}(¥u,9), (43)

(9) is equivalent to
A BT\ (u f
LU=F = 44
v-r = (5% ()= () w

which is (4) in wavelet coordinates. Moreover, under the assumptions (11),
(12) together with (40), (41) one can show that the mapping property

CL”VHZQ < ||LV||l2 < CL“V”lza Ve 627 (45)

holds, see e.g. 2928,

Thus, in principle, we have found an equivalent formulation of (2) that is
well-posed in ¢5. However, L is an indefinite operator, so that our preference of
having a positive definite formulation is not met yet and hence simple iterations
of the form (24) cannot be expected to work. One option is to use a least
squares formulation LTLU = LTF, noting that the resulting operator M :=
LTL is still boundedly invertible on £5, see 9. However, this would entail
squaring the condition number, which could raise the error reduction rate p in
(24). Therefore, we shall pursue here a different line closely related to 25, see
also earlier work in 27. However, taking here a different point of view in the
light of the above framework, the idea is to choose (21) as a Schur complement
problem. To this end, recall from (11) that for (45) to hold, A need not be
invertible on all of X but only on ker B. Hence A need not be invertible on
l2(Jx). However, whenever the saddle point problem (9) is well-posed, one
can show that for some suitable ¢ > 0 the matrix

A:=A+B"B (46)

is invertible on all of £2(Jx). One can then replace (44) by an equivalent
system (with adjusted right hand side data) so that (45) is valid. Under these
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premises the combination of norm equivalences with the mapping properties of
the operators A, B again ensures the existence of positive constants c4,Cp,Cp
such that

callVile7x) < NNAV[egx) < Callvlleaax), v € €(Tx), (47)

and

BYlley(ga) < CBIIVIey(x), v € £2(Tx)- (48)

In particular, the Schur complement of L is well defined. Therefore we will
assume in the following that either A is invertible on all of X, or that the
above precaution has been been used, leading to a matrix A, henceforth again
denoted by A.

Thus we can use block elimination and observe that (44) is equivalent to

{Mp =BA 'B’p=BA f—g=:G,

Au =f-BTp. (49)

On account of (45), we know that

M :=BA'B" : &o(Ju) = £(Tu),  IMdllegi) ~ lalleg - (50)

Thus, our choice of (21), in the case of saddle point problems, is the first
system in (49) with M being the Schur complement, noting that once p has
been found, u can, in principle, be determined from the second system in (49).
Of course, the obvious obstruction along this line is that M involves the inverse
of A which might make it hard to realize a RES scheme for M. To overcome
this obstruction note first that, in view of the second relation in (50), there
exists a positive relaxation parameter « such that a fixed point iteration (or a
gradient iteration) based on the identity

p=p+wR ((BA_lf -g) - Mp)

=p+wR [BA'(f-B'p)—g| =p+wR(Bu-g)
=u

converges with a fixed reduction rate p < 1. Here R is any £2-isomorphism. It is
explained in 2° under which circumstances a nontrivial R. is actually necessary.
We shall return to this issue later in connection with the Stokes problem. But
since in the present study the simple choice R = I will suffice and in order
to keep the exposition as simple as possible we set R = I throughout the rest
of this section and refer to 2° for a detailed discussion of this issue. Thus,
replacing for some iterate p” the expression A~!'(f — BTp™) in this iteration
by the solution u™ of

Au" =f - BTp", (51)
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the iteration (24) for M, given by (50), reduces to the simple update
p" =p" +w(Bu" —g), (52)

with u” from (51). The iteration (52) is equivalent to a gradient iteration (24)
for the Schur complement problem with M, G from (49) and (50). This is the
idea of the Uzawa scheme here formulated for the original infinite dimensional
problem in wavelet coordinates.

We are now prepared to discuss the last step (IV). In fact, by the above
remarks, a possible RES scheme could be based here on two major ingredients,
namely

a) an approximate solution of (51),
b) an approximate application of B.

The natural idea is now to perform a) by applying SOLVE at the nth stage
of the outer iteration (52) with M = A since A is already symmetric positive
definite, and G := f — BTp™. The realization of RES, in turn, requires then
the following ingredients: 1) the approximate application of the wavelet rep-
resentation A, coarsening the preprocessed f and the approximate application
of BT. In fact, we could invoke the results from 8 for that purpose. The only
wrinkle is that the right hand side f —B7p™ is stage dependent and involves the
application of BY and coarsening g. Similarly b) requires applying B. Hence,
in summary, the essential ingredients are therefore the scheme COARSE for
treating preprocessed versions of the data f, g and schemes for the approximate
application of wavelet representations of operators like A, B, B”, to come up
with computable versions of RES [, M, G, q], with M, G from (49). The ap-
proach in 2% can be interpreted in this way where the approximate application
of A,B,B7 was based on the adaptive application scheme from . This latter
scheme uses the concept of compressible matrices, noting that wavelet repre-
sentations of differential operators are compressible in a sense to be explained
in more detail later below. Our present approach differs in two ways, namely
we apply the concepts from Section 4 in a more direct way to the Schur comple-
ment problem, and secondly, we use in the special case of the Stokes problem
a different scheme for applying B that takes advantage of special problem
adapted wavelet bases.

6. Realization of RES

This section is devoted to describing the routine RES for the numerical real-
ization of the iteration (52). As explained above one needs, in particular, a way
of applying the wavelet representation of an operator to a finitely supported
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vector. The relevant notion in this context is the notion of compressibility in-
troduced in '®. A matrix C is said to be s*-compressible — C € C,- — if for any
0 < s < s* and every j € N, there exists a matrix C; obtained by replacing all
but the order of ;27 (3 ;@j < 00) entries per row and column in C by zero,
while still

IC = Cilltsmt <2778, GEN, Y a;<oo. (53)
J

One can use the cancellation properties (CP) to confirm the following claim.

Remark 6.1. The scaled wavelet representations L for a wide class of dif-

ferential and integral operators belong to Cs+ for some s* = s*(£,¥) > 0. In

particular, this covers the matrices A, B appearing in the Stokes problem when
the wavelet bases are chosen appropriately.

In fact, for compressible matrices one can devise approximate applica-
tion schemes that exhibit in a certain range the asymptotically optimal
work/accuracy balance required in Theorem 4.1, see (38). To this end, abbrevi-
ate for any finitely supported v the best 27-term approximations as V[j] = Vi
and define

wj = Ajvio) + Aj 1 (v — viop) + -+ AoV — Vij-1)s (54)

as an approximation to Av. In fact, triangle inequality together with the above
compression estimates yield

J
AV = wjlle, < cllv = vijlle, + Y 2™ vy = vi—i—alle, - (55)

729 e (V) S Gaimim1,4, (V)

One can now exploit the a-posteriori information offered by the quantities
09i-1-14,(V) to choose the smallest j for which the right hand side of (55) is
smaller than a given target accuracy 7. Since the sum is finite for each finitely
supported input v such a j does indeed exist. This leads to a concrete multi-
plication scheme

APPLY [5,A,v] - w,
which for any finitely supported input vector v produces a finitely supported
output wy, satisfying

|AV — wy || < 7. (56)

This scheme has been developed and analyzed in '® and implemented in 7. The
main result can be formulated as follows 8.
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Theorem 6.1. If A € Cs« then A is bounded on 0¥ for % =s+ % and s <
s*. Moreover, for any finitely supported v the output w, of APPLY [n, A, V]
satisfies ||[Wyllew S ||V||ew and one has

_ 1
#suppw,, #flops < 0 V/*||v,L".

Thus, APPLY has in some range, depending on the compressibility index
s*, an asymptotically optimal work/accuracy balance. In fact, it is pointed
out in ¢ that an original logarithmic factor, due to sorting operations can be
avoided.

In principle, APPLY can be used to apply the matrix A as well as B e.g.
in the Stokes problem as was done in 2°. Later we will introduce, however, an
alternative option for B that will in this case be even more economical.

We now have all the ingredients at hand needed to define a RES scheme
for the Schur complement M. According to a) above, the first one is a scheme

SOLVE, [, A,B,f,q] — u(n)

that produces for a given target accuracy 7, the matrix A from (42), respec-
tively (46), the matrix B from (43), some q € ¢5(Ja) and the right hand side
data f, an approximate solution u(n) of the problem

Aug =G, where G=f—-BTq, (57)
satisfying

lug —u(®m)lle, <. (58)
In fact, we simply take
SOLVEell[n: A: B7 f: q] := SOLVE [77; A: G]7 (59)

where SOLVE is the scheme from Section 4.1 with the routine RES,;;, which
for G, given by (57), is defined as follows:
RESeu[n, A, G, q] — Iy,

(i) APPLY [/2,A,q] = wy;
(i) COARSE[1/6,f] — f,;
COARSE[1/(6Cp),q] = qy;
APPLY [n/(6Cg),B?,q,] — z,, where Cp is the constant from (48).
(iii) Set r, :=f, —z, —w,.

One readily checks that (25) holds for M = A, G =f — B7q.
In the case that A is not just the wavelet representation of A but has the
form (46), (i) has to be modified as shown in ?°. In fact, the modified matrix
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is not assembled but the application involves now the additional applications
of B and BT

Remark 6.2. We shall actually apply the routine SOLVE; always with a
specific initial guess 1 along with an error bound for ||u — l|¢, (7 ), which will
be indicated as before by writing SOLVEy[n, A, B, f, q, Q.

We are now in a position to employ the scheme SOLVE also for the Uzawa,
iteration (52), which only requires specifying a corresponding RES;. scheme
where the subscript stands for Schur complement. In fact, for

M:=BA'BY, G:=BA7f—g¢g
we set
UZAWA [¢, A,B,f,g] :== SOLVE [, M, G], (60)

where the corresponding RES scheme is defined as follows: Given an approx-
imation # to the exact solution component u in (44) and error estimates

ht = Bl () < 0 1P = Bllea(rar) < I (61)

proceed as follows:

RESsc[na M, G, p, 1, 6y, 6;0] - (rm un)

(i) COARSE [40,,1] — ;

(ii) COARSE[n/3,g] — gn;

(iii) SOLVEeu[n/(?)CB), A B, f p, fl(;] — Uy;

(iv) APPLY [5/3,B,u,] = wy; and set r;, := w, — g,.

It follows from the choice of the tolerances and the properties of the ingre-
dients that

[ty = (G = MB)ley(gas) = [[Wy — &7 = BA™H(f = BTD) + glles ()
< lwy = Buy||ey(7a) + 1By — Buglea ()
+llg — gnlles(7an)
<n/3+ Cslluy —uglle,(gx) +1n/3 <1
so that indeed (25) holds.
Note that the output of RES,, is not only an approximation to the residual

of the Schur complement for a current approximation p of the exact solution
component p, but also a new approximation u,, of u. Since

A(u—ug)=f-B'p-f+B'p=B"(p - p),
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so that ||u — ug||g,(gx) < c1'Cxgllp — Pllea(7ar)> We conclude that

lu = uylley(7x) < 1= uglley(gx) + 0e — Uylley(gx) < €2 CBOp +1. (62)

The application of RES,, in UZAWA is then to be understood as fol-
lows. In the first call of RES;. in the (j + 1)st iteration block (ii) of
UZAWA [¢,A,B,f,g] := SOLVE [, M,G], . = @’ is the last output of
RES,. in the previous jth block (respectively some initial guess when j = 0).
Likewise p = p’ is the output of (ii.2) in the preceeding iteration block. Hence,
since in the first call of the (j + 1)st block the tolerance is n = ¢;, the error
bounds d,,,d, have, in view of (62) and Proposition 4.1, the form

Oy = (CZICB + 1)6_7', Op = €j. (63)
In the following K — 1 updates in step (ii) of UZAWA these bounds get
tightened. In fact, denoting by p’ the exact Uzawa updates with p® = q° :=
p’, one obviously has [|p —p'[l¢,(7n) < P llp—P°ll = p'llp— Pl < p'e;. Hence,
one concludes from (28) that

1P — @'llea(gn) < P'ej + alp' Ve + (p+ al)p' e (64)

Thus, for I > 1 in the (I + 1)st call of RES;. of the (j + 1)st iteration block,

the input parameters 7, d,,d, are given by
n:=plej, &= (p+al)p' e, (65)
8y = c;'Cpéy + ple; = ptej(p + ;' Cr(p + al)).

A further specification is necessary when the multiplier space M is character-
ized by wavelet coefficient arrays in a closed subspace £2o(Jam) C £a(JTm) of
finite codimension. In fact, the coarsening step in (ii.2) of UZAWA should
preserve these linear constraints. How to modify COARSE to an appropri-
ate constrained scheme CCOARSE will be exemplified later for the Stokes
problem.

7. Convergence Estimates

We can now formulate the main result of this paper, see also 2°.

Theorem 7.1. Assume that the matrices A, B belong to Cs+ for some s* >0
and satisfy (47), (48). Then UZAWA [e, A,B,f,g] produces after a finite
number of steps approzimations p(e),u(e), where u(e) is the output of step
(#3) in the last call of RESg., satisfying for any target accuracy € > 0

[P = P(O)llea() <€ [lu—1(€)|ley(gx) < Cue. (66)

Here (u,p) is the exact solution of (44) and Cy := 52,36:;}; €.
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Moreover, when u € £*(Jx), p € £¥(Jm) for 7 > 7 and 7* = (s* +
1/2)7t (or equivalently when o g, (7y)(W), ON,es(70)(P) decay like N—* for
s, T related by (35)), then the following properties hold:

(i) One has

la(@llez ) < lullerayy,  [PElery < IPllex(an)-

(i) The number of floating point operations needed to compute t(e), p(€) stays
proportional to the supports of u(e),p(e), i.e., fore — 0

1/s —1/s

_ _ 1 _
#suppu(e) < ”u”zg(JX)C ,  #suppp(e) < ”P”z;us(JM)e s,

Thus, in the range 0 < s < s* the asymptotic work/accuracy rate of bestN -term
approzimation is recovered.

An immediate consequence of the norm equivalences (40) and (41) are the
following error estimates in the energy norm.

(U Z ﬂ(f)AD;(}AipX,A < Cxe,
A€supp a(e) X (67)
HP — > POADy \bma|| < CuCue.
A€supp p(e) M

Proof of Theorem 7.1. By definition of UZAWA (60) and the previous
remark that (25) holds for RES,., Proposition 4.1 already implies the first
estimate in (66). As for the second estimate, Gi(e) = u, is the output of step
(iii) in RES;, with 7 = pX~le; and e; < 2e. Moreover, the accuracy of g¥—!
at that stage is, on account of (64) or (65), 8, = (p + (K — 1)a)p¥2%¢; <
2(p+ (K —1)a)p—2¢. Therefore, the error incurred by w(e) is, in view of (62),
bounded by

c1'CB2(p + a(K —1))pK2e 4+ 2pK e =2 (cZICBK +1) pEle< ;fci,
where we have used (27). This is the second part of (66).

As for the remaining part of the assertion, again by (60) and Theorem 4.1,
the main task is to verify the validity of the properties (i) and (ii) in Theorem
4.1 for the specific residual routine RES,. defined above.

To this end, recall from 9 that the constant K is chosen so that at the jth
stage the output p* of step (ii.1) of SOLVE satisfies [|p — q*|¢,(7,,) < €j/10.
Thus, in view of Proposition 4.3, the coarsening step (ii.2) in SOLVE ensures
that [|p — P/ {|4, (7)) < €5/2 while, in addition

137 ey () S IPllex (700 (68)
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with a constant independent of j. Now in the next finite block of perturbed
gradient iterations, p/*! is the initial input in RES,.. Moreover, by Proposi-
tion 4.3, step (i) of RES,. ensures that the result @15 has a controlled £¥-norm,
ie. [[Gsllew(7x) S llallew(gy) with a constant independent of j. Since at the
(j + 1)st stage the accuracy &, of the input i is, by (63), (c;'Cp + 1)¢; and
the coarsening step increases this bound by at most a fixed constant while the
target accuracy of the (j + 1)st iteration block is, by (65), still a fixed frac-
tion of €;, only a uniformly bounded finite number of iterations in SOLVE;
(depending on K) are required to reach that target accuracy. By definition of
RES,) above, each iteration involves coarsening and applications of APPLY
with respect to A and B?. Under the above assumptions, Theorem 6.1 en-
sures that the intermediate outputs [[uyllex(sx), 7 = plej, and |l |gw (700
stay uniformly bounded by [|ul|gw(7y), [|Pllex (7.), Tespectively, with constants
depending only on the problem parameters p, K. (Note that steps (ii.2) in
SOLVE;, and step (i) in RES,. set these constants back to one which is in-
dependent of p, K when proceeding to the next iteration block). Now observe
that the assumption u € £¥(Jx),p € £¥(Jm) on the exact solutions imply,
in view of (44), that f € £*(Jx) and g € £*(Jpr). Since coarsening also does
not increase £¥-norms, the output of RES,. stays uniformly bounded by fixed
constant multiples of ||u||gw(7y), |Pll¢=(7), Which confirms the validity of re-
quirement (i) in Theorem 4.1. Requirement (ii) is a consequence of Theorem
6.1. Hence Theorem 4.1 can be applied and finishes the proof. (]

The above version of UZAWA can be varied in several ways. Instead of
coarsening the u-component in each call of RES,., one could coarsen only
the last u-output after the Kth call of RES;. along with the p-component
in step (ii.2) of UZAWA. We shall briefly discuss further variations later in
connection with the Stokes problem.

8. Approximation Properties and Regularity — When does
Adaptivity pay?

A fundamental theme in approximation theory is to relate approximation prop-
erties to the regularity of the approximated function. In order to judge the
performance of an adaptive scheme versus a much simpler scheme based on
uniform refinements say, requires, in view of Theorem 7.1, comparing the ap-
proximation power of best N-term approximation versus approximations based
on uniform refinements. As mentioned in Section 3, the latter ones are gov-
erned essentially by Sobolev regularity, i.e., regularity in L,. Convergence rates
N~% on uniform grids with respect to some energy norm || - || g+ are obtained
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essentially if and only if the approximated function belongs to H**%. On the
other hand, the same rate can still be achieved by best N-term approximation
as long as the approximated functions belong to the (much larger) Besov space
Bi+sd(L.) where 771 = s +1/2, i.e. weakening the smoothness measure can
be compensated by a nonlinear choice of degrees of freedom.

The connection of these facts with the present adaptive schemes can be
summarized as follows. In fact, Proposition 4.2 and (34) say that those se-
quences for which on 4, (v) decays like N—* are (almost) those in £,. On the
other hand, ¢, is directly related to regularity. Here the following version is
relevant which refers to measuring the error in H = H?, say, see 24. In fact,
when H = H!, D = D! and D!V is a Riesz basis for H, one has

uel, < u=)Y u2"Py, e BFYL(Q),
A

where again % =s+ % Thus, functions in the latter space, that do not belong
to H'+95 can be recovered by the adaptive scheme at an asymptotically better
rate when compared with uniform refinements. The situation is illustrated by
the “DeVore diagram” in Figure 1, which indicates the topography of function
spaces. It shows embedding in H?. The larger r = t + sd the bigger the gap
between H" and BT (L,). The loss of regularity when moving to the right from
H" at height r is compensated by judiciously placing the degrees of freedom
through nonlinear approximation. Moreover, Theorem 7.1 says that this is
preserved by the adaptive scheme.

Now one might wonder whether and under which circumstances the solu-
tions to (2) have higher Besov-regularity than Sobolev-regularity in which case
the adaptive scheme would perform asymptotically better. We stress though
that this kind of knowledge is not required by the adaptive scheme. For scalar
elliptic problems Besov regularity has been investigated e.g. in 2226, The result
essentially says that for rough boundaries such as Lipschitz or even polygonal
boundaries the Besov-regularity of solutions is indeed higher than the relevant
Sobolev-regularity, which indicates the effective use of adaptive techniques.

The analysis also shows that the quantitative performance of the adaptive
scheme, compared with one based on uniform refinements, is the better the
larger the H"-norm of the solution is compared with its B”(L,)-norm.

Similar results can be found for the Stokes System 22:2%:26, We know that,
if the solution U = (u,p) of (14) satisfies

ue BIFUL ), peBMLQ), =5ty (69)

T
the solution components satisfy

onm)®) S N7° onre(e) S N7
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1:‘»—-

Figure 1. Embedding in H*

Thus, again the question arises under which circumstances has the solution to
the Stokes problem a high Besov regularity, which according to Theorem 7.1
and (69), would result in correspondingly high convergence rates provided by
the adaptive scheme. The following result has been derived in 25.

Theorem 8.1. For d = 2 the strongest singularity solutions (us,ps) of the
Stokes problem on an L-shaped domain in R? belong to the above scale of Besov
spaces for any s > 0. The Sobolev regularity is limited by 1.5445, resp. 0.5445.
Thus arbitrarily high asymptotic rates can be obtained by adaptive schemes of
correspondingly high order.

9. Application to the Stokes Problem

We shall apply next the above concepts to the Stokes problem (14). We begin
with some remarks on the choice of wavelet bases.

9.1. B-spline Wavelets and the Exact Application of the
Divergence

As mentioned already in Section 5, the iteration (52) will generally take the
form

pi+1 = pz + Oéi+1R(Bui+1 — g)

The necessity of a nontrivial R arose in 2% for the following reason. The
multiplier space M = L, (1) in the case of the Stokes problem is a subspace
of Ly(f2) of codimension one. Realizing the zero mean amounts to a linear
constraint on the scaling function coefficients only. However, when using the
scheme APPLY for the wavelet representation B of the divergence, this linear
relation is violated since the evaluation is only approximate. But since the
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image of B, say, are wavelet coefficients with respect to the dual wavelet basis
Uy, a different projection would be needed. In this case R plays the role of
a Riesz-operator that maps the image under BT back into coefficients of the
primal basis. Since R, as a mass matrix of the dual wavelet basis ¥, is also
compressible this does not jeopardize the asymptotic behavior of the scheme
but requires dual bases of sufficiently high order to ensure good compressibility
and introduces an additional perturbation that has to be kept track of. We are
therefore interested here in alternatives that allow us to take simply R = I.
We shall show that this is indeed possible by an ezact evaluation of Bv based
on suitable wavelet bases for velocity and pressure. In addition this helps
diminishing the perturbation incurred by the approximate application of the
operator B and thus saves the additional tolerances in step (iv) in RESg,
related to the application of B. The key point is the following theorem from
41 which we state first for wavelets on the whole real line.

Theorem 9.1. Let 1,7 be compactly supported biorthogonal wavelets on R
such that ¢ € H'(R). Then, there exists another pair of biorthogonal wavelets

Y=, such that

d

d _ - -
Y@ =47 (2),  (~4)Y(2) = -9~ (2).

We shall exploit this fact in connection with spline wavelets generated by
cardinal B-splines ,,,¢ of order m together with the compactly supported dual
generators ;7@ of order 7 constructed in 2 for M > m, m + M even. The
corresponding primal and dual wavelets are denoted by ,, &, m@d?, respec-
tively, that satisfy (m’ﬁﬂb,m,m'(;(‘ — k). (R) = do,k, k € Z. In these terms the
above relation can be rephrased as

d
%m,fn"b(x) = 4m71,7'n+1¢(w)7 (70)
i.e. here we have ¢ = ,, st and Y~ = ;,_1 my1p. Moreover, we recall the
following relation for the scaling functions
d
%mgo(x) = m—19(€) — mo1p(z — 1), m>0. (71)

In the bivariate case we choose
Ty — (m,m‘l’ ® m—1,fn+1‘1')
m—1,m+1% @ m,m¥
as a basis for the velocity space. To explain the notation, the first com-
ponent basis ,m¥ ® m-1,m41¥ consists of the functions w%(,j,(k,l) (z,y) =
mith§ g (2) m,l,mﬂ@bj:l(y), j > jo—1, k,l € Z, where we use the conven-
tions Y0 := @, ¢! ==, 0,1, = 29/20(27 - —k), j > jo, while Yjo_1k = Pjo.k
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and e = € =0 for j = jo — 1, (e,e') € {0,1}2\ {(0,0)}, 5 > jo. Likewise the
basis for the pressure space has the form
U = mo1,mr %M @ mo1,mr1¥ M-

One easily infers from (70) and (71) that the divergence operator maps any
element of ¥x into a linear combination of elements of ¥ ;. In fact, one has

!
ZemilS g () m 1S, (y) =

242 S (@)t 1 (Y), ife=1, (72)
2 (m-1Pjk = m-19jk+1)m— 1m0, (), if € =0,

and an analogous relation holds for the second component. Hence, abbreviating

VIWy = (Z(k,l)el2Uly(&l)w.%(,(k,l))
Z(k,l)eZ2 U2,(k,l)‘/’§(,(k,l)
we see that
V-(vi®x) =wlw,y, (73)

where the scalar sequence w is related to v by (72).

9.2. Bounded Domains — Discretization of Velocity and
Pressure

So far these relations hold on all of R2. Thus we need to construct bases
with essentially the above properties that are adapted to bounded domains.
Let us briefly recall the main ingredients for their construction that matter
here. Note that for the discretization of the velocity we need vector fields
with H'-components which implies that each component has to be globally
continuous. On the other hand, the pressure only belongs to L2 so that no
continuity conditions apply. This entails a somewhat different treatment of
the two variables.

Let us review the relevant facts of globally continuous B-spline wavelets on
general domains described e.g. in 15-16-21,34.40 " The first step is to adapt the
univariate bases for R to the interval [0, 1] by appropriately modifying (in a
scale invariant way) only finitely many basis functions near the end points of
the interval, retaining essentially relations like (70) and (71), see 3135, Then
tensor products as above yield bases on the unit square (or more generally on
the unit d-cube). Then one considers a non-overlapping decomposition of the
relevant domain  into M subdomains

M
Q:UQi; Qjﬂﬂj:@, i # 7,
i=1
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where each subdomain 2; is the parametric image of the reference domain
Q2 := (0,1)¢ under certain smooth functions x; : = Q;, i.e., Q; = £;(Q). The
wavelet functions restricted to each ; are the parametric liftings of the above
mentioned wavelets on the parameter domain € which, as explained before,
are tensor products of univariate wavelets on the interval (0,1) 3

The wavelets for the velocity components should belong to Hg (). There-
fore the modifications near patch boundaries are chosen in such a way that the
arising wavelets are globally continuous on (2 and that homogeneous Dirichlet
boundary conditions are satisfied on 99, see 153440,

Note that the pressure does not need to be globally continuous so that we
do not have to enforce continuity across the interelement boundaries. Neither
do we have to impose any boundary conditions on the pressure.

However, as an element of L, (f2), the pressure has to have vanishing
mean value. This can be realized by a projection of the form Py : Ly(Q2) —
L, (). Since the wavelets have vanishing moments, the projector Py leaves
the linear combination of all “true” wavelets (those basis functions having
vanishing moments) in a given an expansion unchanged and affects only the
scaling functions. A detailed description can be found in 25

9.3. Divergence Relations on Bounded Domains

As we have seen, a wavelet basis on the parameter domain Qisa key ingredient
for constructing bases on the union 2 of smooth parametric images of Q. A
basis on {2 can be obtained by taking a tensor product of bases on (0,1). Hence,
generalizations of (70,71) to (0,1) are required, 6. Slightly more general
relations also hold for wavelet systems on the interval (0,1) from 3!, see “°.
Note that one cannot use the construction from 3! in a straightforward way
but has to adjust certain parameters. We consider two bases on (0, 1), namely

\I’j,e = {wj,e,k 1 ke \7.7'75}7 lI;j_,e = {wj_,e,k tke ‘7]',_6}’

where e = 0 refers to the scaling functions and e = 1 to the wavelets. The
system ¥ . is derived from a biorthogonal system on R with orders m, m, as
explalned in Section 9.1, whereas ¥ arises from a basis with the parameters
— 1 and m + 1. Here Jj., e = 0 1 denotes the index set of the boundary
adapted scaling functlons respectively wavelets of order m,m on level j.

As was shown in %6, ¥; . and W . can be constructed in such a way that

Jj1 = J;; and that there exist matrices D, € RIJ5e ¥ 7iel e = 0,1 such
that

d

%‘I’j e=Dje¥; .. (74)

) 2,€e
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Equation (74) implies that £ ¥; . C S (). The matrices are of the form

DL

Dj.e = D! € RTie|XITiel ¢ =0, 1.

DR

Moreover, the matrices Dj,D;1 are sparse and depend only weakly on the
level in the sense that they are just stretched and scaled when j grows. The
size of the boundary blocks does not depend on j and only the interior matrix
is stretched when j grows. For e = 0 the D! is two-banded, for e = 1 it is a
diagonal matrix. Denoting by \_’7; . the indices of the ‘interior’ (i.e., unmodified)
functions, we have

(Djo)iw =2 Ok —Okw—1), ke Ty, K e,
and
(Dj)kp =226, k€T, K eJf,

The additional factor ¢ occurs in the construction of the boundary adapted
wavelets. The structure of these matrices is shown in Figure 2. The corre-

Figure 2. Matrices D50 and Ds,1 for m =7 = 3.

sponding scaling functions and wavelets are displayed in Figures 3 and 4.
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Figure 3. Scaling functions 33942, 3,394,3, 3,3p4,4 (top) and their exactly computed
derivatives being linear combinations of 2,44, for £ = 0,1,2 (bottom).

Figure 4. Scaling functions 3,3%a,1, 3,3%4,2, 3,3%4,4 (top) and their exactly computed
derivatives being linear combinations of 2 494 ) for k = 0,1,2 (bottom).

9.4. The Divergence Operator

In our numerical examples © will be the standard L—shaped domain, obtained
by removing (—1,0]? from (—1,1)2. We continue denoting the resulting bases
by ¥x, Wy . Thus in summary, one still has the inclusion

(V- ¥x) C span (¥yr) (75)

with an identity like (73), where the relation between v and w is, up to bound-
ary modifications, the same as before. This leads to the following scheme for
the exact evaluation of the divergence operator:
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DIV [v] - W,A
determines for any finitely supported v € £»(Jx) a finitely supported w €
5(Jar) such that V- (vID ®x) = wl'¥,,.

In view of the above relations and the scaling in (72), the following fact is
immediate.

Remark 9.1. The output w of DIV satisfies
IWllex(g) S IVIlew(gx), suppw < suppv.

Replacing B in step (iv) of RES,c, by the routine DIV, gives rise to a vari-
ant of the adaptive Uzawa scheme that will be referred to as UZAWA ,¢y. It
will be tested below against the original version where the divergence operator
is applied approximately with the aid of the APPLY scheme. One then has
to use a nontrivial Riesz map R as in 2° which is the mass matrix of the dual
basis U y;. We shall refer to this version as UZAWA 4.

9.5. Compressibility of A and BT

Even when the application of B is replaced by DIV the scheme APPLY has
to be used for A and B”. Tt is therefore important to know the compressibility
ranges for these matrices.

Remark 9.2. By the same arguments as used in 257 one can show that the

scaled wavelet representation A with respect to the above velocity basis belongs
to Cs+ for s* = (m—>5/2)/2, noting that we are using here bases with anisotropic
order and that the smaller order is m — 1. Likewise one can show that also
BT ¢ C,+ with the same s*.

In fact, for the above bases, B” has essentially the same compressibility prop-
erties as the mass matrix for ¥ ;. The order of the dual basis for ¥, is, by
construction m + 1, so that my =m+1>mx —1 =m—1is indeed satisfied.

9.6. Constrained Coarsening

As has been mentioned earlier, the elements of the multiplier space M may
be characterized by the fact that the arrays of wavelet coefficients belong to
a space £9,9(Jum) of finite codimension in £5(Jy) and the coarsening proce-
dure in step (ii.2) of UZAWA should preserve the corresponding linear con-
straints. As explained earlier, this is indeed the case for the Stokes problem
when £50(Jn) has codimension one corresponding to the vanishing mean of
pressure functions. Since the wavelets have vanishing moments, this constraint
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concerns only the scaling function coefficients. Therefore, they have to be ex-
empt from coarsening. Thus it is to be understood throughout the following
that coarsening in step (ii.2) of UZAWA applies only to the “true” wavelet
coefficients. We shall refer to this version below as CCOARSE. Since there
is only a finite number of basis functions on the coarsest level, this does not
affect the asymptotic estimates and leaves the above analysis unchanged.

9.7. Complexity of UZAWA

As in 2% we shall always assume that the entries of f, g are available and that
the entries in A, BT are computable at unit cost, 8, see 19 for an alternative
approach. By the above comments on the compressibility of A and B” in
Remark 9.2 and by Remark 9.1, we can apply Theorem 7.1 to arrive at the

following conclusions, see also 2

Corollary 9.3. If the exact solution (u,p) of the Stokes problem (16) satisfies
for some s < (m —2)/d

inf  |lu—vIDy'Tx|x SN7F, N — o,
#supp(v)<N

inf  |lp—q"¥ully SN, N - oo,
#supp(q)<N

then the approzimations u(e), p(e), produced by by both versions UZAWA pey
and UZAWA .4, satisfy

lu—a(e)"Dx ¥x|lx < (#supp(u(e)))~,
lp—p(e) "Dy Tnrllm S (#supp(p(e))) °.

The computational work needed to compute u(e),p(e) stays proportional to
—1/s
€ .

9.8. Some Variants of the Adaptive Scheme

Further possible variants of the basic adaptive iteration scheme come to mind
which we formulate first for the general case. For instance, the stationary
Richardson iteration (R) used so far could be replaced by a a steepest descent
(SD) or a conjugate gradient method (CG). Both (SD) and (CG) would relieve
one from the task of obtaining a good guess for the damping parameter « in
(23). The following well-known result tells us the optimal choice, see, e.g. 2

Theorem 9.2. Let M be a symmetric and positive definite operator and
Amaxs Amin denote its largest, respectively smallest eigenvalue Then the sta-
tionary Richardson method (24) converges if and only ifa < x=—. The optimal
damping parameter aopy s given by aopy = x

mm+>\max :
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It can be shown that p(I — aepeM) = %. Hence using the op-

timal relaxation parameter a, the stationary Richardson iteration converges
with the same rate as the steepest descent method. However, in general it is
not a practically feasible task to determine aqp;. We therefore included the
steepest descent method (SD), which is known to reduce the error for sym-
metric positive operators in each step also by p = %. Moreover, we
include also the (CG) method whose exact version has an even better error
reduction. We shall refer to the corresponding variants of the adaptive scheme
as SOLVE._Z for Z € {R,SD,CG}. However, (SD) and (CG) require an
additional application of the Schur complement M. One way of realizing such
an application approximately is offered by the routine APPLY .. Given a
finitely supported input q it determines a finitely supported output z, satis-
fying ||Mq — 2y]l¢,(72,) < 1 as follows:

APPLY [n,M,q] — z,

(i) APPLY [7/(3Cp),B",q] — 21;
(11) SOLVEeH[CA’I’]/(ch), A, Zl] —Yy;
(ii) APPLY [/(3Cg),B,q] — z,.

As mentioned before, depending on the structure of the multiplier space M, one
may have to apply in addition in (iii) a suitable Riesz map with a corresponding
adjustment of accuracy tolerances. In the case of the Stokes problem we replace
in our experiments the approximate application of B in step (iii) by the exact
divergence evaluation DIV.

The (SD)-variant of SOLVE in the general case reads now as follows:

SOLVE_SD [, M, G] — p(e)

(i) Set p® =0, € :=cy/[IGlle, j=0.
(ii) If €; <, stop P’ — p(e). Else q° := p’.

(ii.1) For{=0,...,K —1:
RES [plej,M’G,ql] — T3

l l l (I‘l)TI‘l I+1 l
APPLY [p'¢;/5,M,q'] = wha; == ;g =g oy

(ii.2) COARSE[qX,2¢;/5] —» p/*,
€j+1 :=€;/2,j+1 = j go to (ii).

Here and below K stands for some fixed integer that can be determined
from the problem constants in a similar way as before in (27), so as to ensure
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that the error after K steps is bounded by ¢;/10.
We finally present also a prototype of a conjugate gradient iteration. Here

. k2 (M)—1 . .
we can expect an error reduction of p = % In first numerical experi-
K2

ments it has performed better than SOLVE_SD for the solution of the elliptic
problems.
SOLVE_CG [, M, G] — p(e)

(i) Set p® =0, €o:=cy IGlle, =0, £>1
(ii) If €; <€, stop p’ — p(e). Else q° := p’.

(ii.1) For [ =0,...,K —1:
(1) RES[p%¢;,M, G, q] — d'°;

(2) rh0 = —ao;
3) d"°:=d}
(4) Fori=0,...,J—1:
(a) APPLY [¢iple;, M, d"] — whi;
rhz’)Trl,i
(B i = g
(c) g" = vhig N ;dY

) rlitl . — pli + )\l,z' whi

)

Lit1\T i+l
i. Bi= %,
ii. dbitl .= bttt 4 g, db? go to (ii).1.
6) o+ = g
(ii.2) COARSE[qX,2¢;/5] — p/*,
€j+1 = €j/2, j+1 = j go to (ii).

Here we assume to work with the Euclidean inner product. One can think of
amore general setting where the Euclidean inner product is replaced by another
inner product [-,-], which again may be evaluated only approximately. See 1°
for an example. A complete error analysis of SOLVE_CG is more involved
and goes beyond the scope of this paper since, in addition to approximating
scalar quantities like the step size a in (SD), the directions are, of course, not
exact. These issue will be addressed elsewhere in more detail.

We can now formulate, for the special case of the Stokes problem, corre-
sponding residual approximation schemes RESqc_giv_z[7, M, G, D, 11, §p, 0] —
(rp,uy), employing the exact evaluation DIV of the divergence operator in
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step (iv) of RES;. and using the variant SOLVE_Z for Z € {R,SD,CG} in
step (ii) of RESs.. Employing still the Richardson scheme as an outer Uzawa
iteration, a typical variant reads as follows:

UZAWA R Z e, A, B, f,g] — ((e), p(e))

(i) Set @ =0, p° =0, € :=cy||Gllen, j=0.
(ii) If €; <, stop (W, p?) — (u(e),p(e)). Else w0 := ad, q° := p’.
(ii.1) For 1 =0,...,K —1:
If I =0set 6 =€j, 0y = (02103 + 1)ej;
If1 > 0set 6, = (p+al)p! e, 6, = c,'Crd, + plej;
RES,, aiv_z [p'€j, M, G, d', w!, 6,,8,] = (r;, wit1);
qdtl:=d +ar.
(ii.2) CCOARSE [qX,2¢;/5] — pitY;
COARSE [wX, 2¢,/5] — @/ +!;
€j+1:=€;/2, j+1— j go to (ii).

Here K is chosen so that qf( deviates from p in the (j + 1)st iteration
block by at most €;/10 and also |lu — w¥||s,(7y) < €;/10. Moreover, a is the
damping parameter from (23) giving rise to an error reduction p < 1 and ¢
is the constant from (22). Note that we have included also the coarsening of
the u component in step (ii.2), which means that step (i) in RESg._giy_z can
be removed. The arguments for the complexity analysis stay essentially the
same but now the final accuracy bound for i(e) is € instead of Cye, see (66).
Of course, one could think of using (SD) or (CG) also for the outer Uzawa
iteration.

10. Numerical Experiments

In this section, we present some numerical experiments for some of the variants
presented above. We focus on two main objectives. First, we wish to com-
pare the new algorithm UZAWA ., (with exact application of B through the
scheme DIV) with the previous method UZAWA 4 presented in 25, which
involves the Riesz map R. Since both versions have the same asymptotic be-
havior, we are in particular, interested in possible quantitative gains of one
version against the other one. The second objective is to compare the quan-
titative efficiency of the Richardson iteration (R) with the steepest descent
iteration (SD) described above. The numerical experiments have been carried
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out using tools from °.
vectors can be found in

m=m=3.

A detailed description of routines concerning sparse
7. All tests have been performed with the choice

10.1. Ezxperiment 1

We wish to compare UZAWA ., with UZAWA 4 from 2%. To this end,
we use the same data as in 2%, i.e., we consider the L-shaped domain Q =
(=1,1)2\(=1,0]%. The results from regularity theory stated in Theorem 8.1
guarantee the existence of solutions to the Stokes problem that have higher
Besov- than Sobolev-regularity, see also 23944, As in 2°, we choose the data
in such a way that the exact solution components displayed in Figure 5 are
exactly those singularity functions mentioned in Theorem 8.1. For a detailed
description of the data, we refer to 2°. In the following tables, we record the
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Figure 5. Exact solution for Experiment 1, first and second component of the velocity (left
and center) and pressure (right).

following quantities for x € {u!,u? p}

o lx=xalle k= xalle
I —xgalle,” ™ lIlle.
i.e., ry is the relative error and px is the ratio of the error of the current nu-
merical approximation to the best N-term approximation. The corresponding
results are listed in Table 1. In order to have a fair comparison, we used the
Richardson iteration (R) with @ = 1.3 corresponding to the choice in 25. The
computed numerical approximations are displayed in Figure 7.
The comparison with the results reported in 2% is shown in Figure 6. We see
a slightly different behavior of the velocity and the pressure. For the velocity,

Px :
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Table 1. Numerical results for Example 1. Number of active coeffi-
cients, ratio of the error of the numerical approximation and the best
N-term approximation and relative error for the first velocity compo-
nent and the pressure. The results for the second velocity components
are similar.

A S #Aw [ pw | rw [#Ap | oo | 7
0 || 26.1028 1 1 | 0.9704 868 | 1.15 | 0.1215
1 13.0514 1 1] 0.9671 869 | 1.05 | 0.0540
2 6.5257 34 1 | 0.4900 868 | 1.02 | 0.0337
3 3.2629 58 1 | 0.2552 870 | 1.02 | 0.0279
4 1.6314 94 1 | 0.1302 869 | 1.02 | 0.0268
5 0.8157 152 | 1.01 | 0.0683 892 | 1.01 | 0.0210
6 0.4079 340 | 1.04 | 0.0352 995 | 1.00 | 0.0098

the new method always performs quantitatively better. The slope of the two
curves showing the convergence history is the same for both methods after the
first few iterations. This is expected since both methods are asymptotically
optimal. For the pressure, the method from 2° is slightly better only for the
first two iterations while from then on the new version appears to be superior.

First velocity component

pressure

log of relative error for u

log of relative error for p

~o- old
- new

log(N,)

log(N,)

Figure 6. Comparison of the previous results (referred to as ’old’) with the new ones for
the first velocity component (left) and the pressure (right).

10.2. Ezxperiment 2

In this experiment we compare the stationary Richardson iteration (R) with
the steepest descent iteration (SD). To this end, we compare 10 successive
iterations of both methods without any coarsening. In Table 2 we see that the
convergence of the stationary Richardson iteration for small « is very poor.
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Figure 7. Numerical approximations in Example 1 for the first velocity component (top)
and the pressure (bottom) for the iterations i = 1,2, 3,6.

For a too large, the iteration will not converge at all. The values indicate
however that there is relatively large range for « for which the Richardson
iteration converges approximatively as fast as the steepest descent method. So
in practice, having a good guess for a at hand, there is no gain in using the
steepest descent method since it requires an additional application of the Schur
complement M per step.
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