
HT-AWGM: A HIERARCHICAL TUCKER–ADAPTIVE WAVELET
GALERKIN METHOD FOR HIGH DIMENSIONAL ELLIPTIC

PROBLEMS.

MAZEN ALI∗ AND KARSTEN URBAN∗

Abstract. This paper is concerned with the construction, analysis and realization of a numer-
ical method to approximate the solution of high dimensional elliptic partial differential equations.
We propose a new combination of an Adaptive Wavelet Galerkin Method (AWGM) and the well-
known Hierarchical Tensor (HT) format. The arising HT-AWGM is adaptive both in the wavelet
representation of the low dimensional factors and in the tensor rank of the HT representation.

The point of departure is an adaptive wavelet method for the HT format using approximate
Richardson iterations from [1] and an AWGM method as described in [13]. HT-AWGM performs
a sequence of Galerkin solves based upon a truncated preconditioned conjugate gradient (PCG)
algorithm from [33] in combination with a tensor-based preconditioner from [3].

Our analysis starts by showing convergence of the truncated conjugate gradient method. The
next step is to add routines realizing the adaptive refinement. The resulting HT-AWGM is analyzed
concerning convergence and complexity. We show that the performance of the scheme asymptotically
depends only on the desired tolerance with convergence rates depending on the Besov regularity of
low dimensional quantities and the low rank tensor structure of the solution. The complexity in
the ranks is algebraic with powers of four stemming from the complexity of the tensor truncation.
Numerical experiments show the quantitative performance.

Key words. High Dimensional, Hierarchical Tucker, Low-Rank Tensor Methods, Adaptive
Wavelet Galerkin Methods, Partial Differential Equations

AMS subject classifications. 65N99

1. Introduction. The increase of available computational power made a variety
of complex problems accessible for computer-based simulations. However, the com-
plexity of problems has increased even faster, so that several ‘real-world’ problems
will be out of reach even with computers of the next generations. One class of such
challenging problems arises from high-dimensional models suffering from the curse of
dimensionality. This shows the ultimate need to construct and analyze sophisticated
numerical methods.

This paper is concerned with high-dimensional systems of elliptic partial differ-
ential equations (PDEs). Examples include chemical reactions, financial derivatives,
equations depending on a large number of parameters (e.g. material properties) or
a large number of independent variables. In general terms, we consider an operator
problem Au = f , where A : X → X ′ is elliptic1, f ∈ X ′ is given and u ∈ X is the
desired solution, which we aim to approximate in a possible ‘sparse’ manner.

Of course, this issue also depends on the specific notion of sparsity, which itself
is typically adapted to the problem. In the context of adaptive methods (think of
adaptive finite element or wavelet methods), the sparsity benchmark is a Best N -term
approximation, i.e., a possibly optimal approximation to u ∈ X using N ∈ N degrees
of freedom. In particular for high-dimensional problems, one tries to approximate u in
terms of low rank tensor format approximations. We will combine these two notions
to be explained next.

∗Ulm University, Inst. f. Numerical Mathematics, Helmholtzstr. 20, D-89081 Ulm, Germany,
{mazen.ali,karsten.urban}@uni-ulm.de

1We assume that X ↪→ H ↪→ X ′ is a Gelfand triple with a pivot Hilbert space H and X ′ is the
dual space of X induced by H.

1

Best N-term Approximation. Given a dictionary (basis, frame) Ψ := {ψλ :
λ ∈ J } ⊂ X , where the index set J is typically of infinite cardinality, one seeks
an approximate expansion of u in Ψ. A best N -term approximation is of the form
u ≈ uN :=

∑
λ∈Λ cλψλ, cλ ∈ R and Λ ⊂ J is of cardinality N ∈ N, i.e., |Λ| = N .The

goal of an optimal approximation can also be expressed by determining the minimal
number of terms N(ε) required to achieve a certain accuracy ε > 0: ‖u−uN(ε)‖X ≤ ε.

It is known that the optimal speed of convergence of such approximations entirely
depends on the properties of the solution u and the chosen basis. In fact, there is an
intimate connection between decay of the error of the best N -term approximation and
the Besov regularity of u, see [10]. An approximation scheme (or algorithm) is called
quasi-optimal if it realizes (asymptotically) the same rate as the N -term approxima-
tion. Known quasi-optimal methods are adaptive in the sense that approximations
are constructed in nonlinear manifolds rather than in linear subspaces.

For Adaptive Finite Element Methods (AFEM, [25]) and Adaptive Wavelet Meth-
ods (AWM, e.g. [7, 8, 13]) there are quasi-optimal algorithms known, in particular for
elliptic problems.

Low-Rank Tensor Methods. For high-dimensional problems (d � 1), it is
well-known that most algorithms scale exponentially in the dimension and are thus
intractable: they suffer from the curse of dimensionality. If the operator A has a
tensor structure (or can at least be well-approximated by such), one can try to find
an efficient separable approximation

u ≈
r∑
i=1

d⊗
j=1

vij ,(1.1)

where r is referred to as the rank and v1 ⊗ · · · ⊗ vd(x) := v1(x1) · · · vd(xd) for x =
(x1, . . . , xd) ∈ Rd is a tensor product. Hence, if the rank r is small even for large d,
one can try to approximate the univariate factors vij : R → R separately resulting in
a tractable algorithm.

A major breakthrough in this area was the development of tensor formats that in
fact realized such approximations. We mention the hierarchical Tucker (HT) format
[16], the tensor train format [27] and refer to [15] for a general overview. Nowadays,
there is a whole variety of algorithms that have been developed in these formats,
both iterative solvers [6, 20, 22, 23] (using basic arithmetic operations on tensors
and truncations to control the rank) and direct methods [11, 17, 21, 28], which work
within the tensor structure itself. For a survey on tensor methods for solving high-
dimensional PDEs we refer to [5].

HTucker-Adaptive Wavelet Galerkin Method (HT-AWGM). In this pa-
per, we consider a combination of best N -term and low rank approximations in order
to obtain a convergent algorithm that is optimal both w.r.t. N and the tensor rank
r. To this end, we use appropriate wavelet bases Ψ, i.e., the factors in (1.1) are
approximated by sparse wavelet expansions

vij =
∑
λ∈Λij

ci,jλ ψ
j
λ, ci,jλ ∈ R.

To the best of our knowledge, the first such approximation was constructed in
[1], where inexact Richardson iterations from [8] were combined with the HT format
from [16]. In [4], the authors considered soft threshholding techniques for the rank

2

reduction. Though convergence and complexity estimates were provided, it is still
unclear what is the correct notion of optimality for high-dimensional problems.

The goal of this paper is to extend the AWGM method to the high dimensional
setting using the HT format – resulting in an HT-AWGM. In particular, we aim at pro-
viding the corresponding convergence analysis. A core ingredient of AWGM is the fact
that wavelet bases can be used to rewrite the operator equation Au = f equivalently
into an equation Au = f in sequence spaces, where A is boundedly invertible. The
backbone of that is optimal wavelet preconditioning. Hence, a tensor-based wavelet
preconditioner is needed. Luckily, in [3] the problem of separable preconditioning was
addressed and the algorithm from [1] was extended to the elliptic case.

Organization of the Paper. The remainder of this paper is organized as fol-
lows. In Section 2, we collect all required preliminaries. As a core ingredient for
the new HT-AWGM, we use a truncated PCG algorithm from [33, Algorithm 9] and
analyze its convergence in Section 3. The convergence and complexity analysis of the
full HT-AWGM is described in Section 4. We show numerical results in Section 5.
We indicate the potential and remaining issues of the method.

2. Preliminaries. We start by briefly reviewing some basic facts on adaptive
wavelet methods, low rank tensor formats and the preconditioning problem arising in
connection with tensor spaces.

2.1. (Quasi-)optimal Approximations. For the remainder of this work we
use the shorthand notation

A . B,

to indicate there exists a constant C > 0 independent of A and B such that A ≤ CB.
The notation A & B is defined analogously.

The introduction mainly follows [32]. We seek the solution of the operator equa-
tion

Au = f, A : X → X ′, u ∈ X , f ∈ X ′,(2.1)

where A is a linear boundedly invertible operator and X is a separable Hilbert Space.
Given a Riesz basis Ψ := {ψλ : λ ∈ J }, e.g., a wavelet basis, and the corresponding
boundedly invertible analysis and synthesis operators

F : X ′ → `2(J), f 7→ {f(ψλ)}λ, F ′ : `2(J)→ X , {cλ}λ 7→
∑
λ∈J

cλψλ,

we can reformulate (2.1) equivalently as a discrete infinite dimensional linear system

Au = f , A : `2(J)→ `2(J), u,f ∈ `2(J),(2.2)

with A := FAF ′, u := FRu and f := Ff , where R : X → X ′ is the Riesz isomor-
phism. The operator A inherits the properties of its continuous counterpart A and is
in particular boundedly invertible as well.

Next, we introduce the notation for the Galerkin problem. Let Λ ⊂ J be some
finite index subset. We introduce the restriction operator RΛ : `2(J)→ `2(Λ), which
simply drops all entries outside Λ. Likewise the extension operator EΛ : `2(Λ) →
`2(J) pads all entries outside Λ with zeros. We will sometimes employ the notation
AΛ := RΛAEΛ to denote the discretized wavelet operator.

3

The benchmark for optimal approximations is the best N -term approximation

uN := arg min
{
‖u− v‖X : v ∈ X , v =

∑
λ∈Λ⊂J

vλψλ, #Λ ≤ N
}
,

or, equivalently, in `2(J)

uN := arg min {‖u− v‖`2 : v ∈ `2(J), # supp(v) ≤ N} ,

where supp(v) denotes those wavelet indices λ ∈ J , for which vλ 6= 0. Note that,
as opposed to linear approximation techniques, we seek an approximation in an N -
dimensional nonlinear manifold. The approximation class of all best N -term approx-
imations converging with rate s is known as

As :=
{
u ∈ `2(J) : ‖u‖As := sup

ε>0
ε[min{N ∈ N0 : ‖u− uN‖`2 ≤ ε}]s <∞

}
.(2.3)

It is known that such approximation spaces are interpolation spaces between Lp and
certain Besov spaces, which establishes a direct link between regularity and approxi-
mation classes, see also [10] for more details.

An adaptive wavelet method is called (quasi-)optimal whenever it produces for
u ∈ As an approximation v to u with ‖u − v‖`2 ≤ ε, such that # supp(v) .

ε−1/s‖u‖1/sAs and the number of operators is bounded by a multiple of the same quan-
tity. In other words, given that u is in a certain approximation class, an optimal
adaptive method achieves the best possible asymptotic rate of convergence in linear
computational complexity of the output size.

There are two classical approaches to implementing such an optimal adaptive
wavelet method (see [7, 8, 13]). The first2 applies an inexact iteration method such
as the Richardson iteration, to the bi-infinite discrete system in (2.2). The second
one, in the spirit of adaptive FEM methods, produces a sequence Λ(0) → Λ(1) → · · ·
of finite index sets and solves the finite Galerkin problem on these sets, yielding a
sequence of solutions u(0) → u(1) → · · · , following the paradigm solve → estimate →
mark → refine. The latter one is referred to as an adaptive wavelet Galerkin method
(AWGM), which is the focus of this paper.

There are three basic routines necessary for an efficient realization of an AWGM:
(1) approximate residual evaluation (Estimate), (2) approximate Galerkin solver
(solve) and (3) bulk chasing (mark and refine). We do not discuss these routines
in detail here, but refer to the literature. In order to control the number of active
variables (number of selected wavelets), one often uses a coarsening step in order to
remover ‘unnecessary’ coefficients. This is done by a routine called COARSE, which
we detail for later use: For a given finitely supported v such routine is assumed to
produce an approximation vε such that

supp(vε) . min {N : ‖v −w‖`2 ≤ ε, w ∈ `2(J), # supp(w) ≤ N} .

A straightforward realization would involve sorting – with log linear complexity. To
achieve linear complexity, exact sorting can be replaced by an approximate bin sorting
which satisfies the above estimate. Again, we refer to the literature.

Note that both methods require that A, or, equivalently, A is symmetric positive
definite. Otherwise a similar analysis applies to the normal equations with ATA.
However, the additional application of AT hampers numerical performance and con-
vergence estimates depend on κ(A)2 rather than on κ(A). The penalty for applying
AT is even more severe in the high-dimensional case due to the increase in ranks.

2Chronologically, however, the second.

4

2.2. Tensor Formats. We briefly review some of the basics of tensor formats,
see e.g. [15]. In this paper, we view tensors as algebraical or topological objects rather
than tensor fields as geometrical objects3. A tensor of order d is an element of a tensor
space V := ⊗dj=1Vj , where Vj are some vector spaces. We consider topological tensor
spaces, i.e., V is Banach space with some norm ‖ · ‖V . Typically, Vj are themselves
Banach spaces and the norm on V is induced by the norms on Vj . The tensor product
⊗ : V1×· · ·×Vd → V1⊗· · ·⊗Vd is the unique multilinear mapping factoring any other
multilinear mapping ϕ : V1×· · ·×Vd →W into a linear mapping f : V1⊗· · ·⊗Vd →W
such that ϕ = f ◦ ⊗, where Vj and W are some vector spaces. If the tensor product

⊗ :
d×
j=1

(Vj , ‖ · ‖Vj)→ (V, ‖ · ‖V) is continuous, any element u ∈ V can be written as

u =

r∑
k=1

d⊗
j=1

vkj ,(2.4)

with r ≤ ∞. The representation in (2.4) is referred to as the r-term representation
or CP format (canonical polyadic decomposition). The smallest possible r in this
representation is called the tensor rank and we will denote it by

r(u) ∈ N0 ∪ {∞},

whenever it is clear that u is to be interpreted in the r-term format. Though the
representation (2.4) would be a cheap way to store u, the approximation problem
in the said format is ill posed, the reason being already apparent from (2.4), namely
possible cancellations. A format which is better suited for approximation is the Tucker
format

u =

r1∑
i1=1

. . .

rd∑
id=1

ai1,...,id

d⊗
j=1

U
ij
j =: Ua,

with

U :=

d⊗
j=1

Uj , Uj := [U1
j , . . . , U

rj
j], a := [ai1,...,id], 1 ≤ ij ≤ rj , 1 ≤ j ≤ d,

where the Uj ’s are referred to as frames and a as core tensor. One can apply tech-
niques from (multi)linear algebra in combination with matricizations to build a well
conditioned, even orthonormal basis U . Unfortunately, the storage cost of the core
tensor a grows exponentially in d.

The hierarchical Tucker (HT) format combines both the advantages of stable ap-
proximation of the Tucker format with the sparse representation of the r-term format
by further decomposing the core tensor. For a general multi-index α ⊂ {1, . . . , d}, we
can define the tensor product vector space

Vα :=
⊗
j∈α

Vj .

The idea behind HT can be illustrated by the following simple observation: An element
u ∈ V can be also seen as an element of u ∈ Vα ⊗ Vᾱ with α, ᾱ ⊂ {1, . . . , d} with ᾱ

3By the universality property an equivalence between the two concepts can be established, [24].

5

being the complement of α. Note, that the rank r(u) may change if we reinterpret u.
Applying this idea recursively, we start with a Tucker decomposition of u ∈ Vα ⊗ Vᾱ.
We then further decompose the bases Uα and Uᾱ of Vα and Vᾱ respectively, until we
reach the singeltons α = {j}. We denote the ranks of this hierarchical representation
by r(u) = (r(u)α)α∈T with the max norm |r(u)|∞ defined in an obvious way, where T
is the HT tree structure. In contrast to the Tucker format, which requires the storage
of an order d tensor, the HT format stores several order 3 tensors4. However, note
that in the worst case r(u) can still behave exponentially w.r.t. d. Nonetheless, it is
known that the asymptotic behavior of the storage requirements of HT are not worse
than that of the r-term format and the performance of HT in practice has proven its
merit. A rigorous answer to the question as to when and why functions exhibit good
approximation properties in tensor tree formats remains a challenging and interesting
problem.

As in the case for best N -term approximations in (2.3), we require a benchmark
to assess the quality of the ranks of approximation. For this purpose we use the
benchmark introduced in [1], similar to (2.3). We use the notation u ∈ HN to denote
that u is representable in an HT format with |r(u)|∞ ≤ N . Given a positive, strictly
increasing growth sequence, γ := (γ(n))n∈N0

with γ(0) = 1, define an approximation
class as

A(γ) :=

{
v ∈ V : |v|A(γ) := sup

N∈N0

γ(N) inf
w∈HN

‖v − w‖V <∞
}
,

with norm ‖v‖A(γ) = ‖v‖V + |v|A(γ). It is known from, e.g., [30] that the best
approximation error for a function with Sobolev smoothness s behaves in the worst
case like

max
α∈T\{1,...,d}

r−smax{1/|α|,1/(d−|α|)}
α .

One of the most important operations on tensors is truncation. It lies in the heart
of all iterative tensor algorithms that rely on truncation to keep ranks low. For a given
algebraic tensor u ∈ V, we seek an approximation v ∈ V with r(v)α ≤ rα ≤ r(u)α for
some fixed rα and all α ⊂ {1, . . . , d}. In practice, this can be done by applying singular
value decompositions (SVD) to matricizations Mα(u) ∈ Vα ⊗ Vᾱ, a method referred
to as higher order singular value decomposition (HOSVD). Unlike the standard SVD,
the HOSVD provides one only with a quasi-best approximation in the sense

‖u− vHOSVD‖V ≤
√∑

α

∑
i≥rα+1

(σαi)2 ≤
√

2d− 3 inf
v∈V,
r(v)≤r

‖u− v‖V ,(2.5)

where r = (rα)α is some integer vector and σαi are the corresponding singular values
of the α matricization. We will denote the (nonlinear) operator that produces an
HOSVD of u by T (u, ε), i.e.,

‖u− T (u, ε)‖V ≤ ε.

The total computational work for truncating a tensor u can be bounded by a constant
multiple of dr4 + r2

∑d
j=1 nj , where r = |r(u)|∞ and nj := dim(Vj).

4Due to the binary decomposition α = αL ∪αR, each transfer tensor has 2 indices related to the
child nodes αL, αR and one index related to the parent node α.

6

We need to combine the wavelet coarsening with the tensor rank tuncation. Recall
that to apply COARSE to a tensor u ∈ V of finite support in the wavelet dictionary,
we would have to search through all entries of u, a process that scales exponentially
in d. Thus, we require low dimensional quantities that allow us to perform this task.
For this purpose we use contractions5 introduced in [1]. For a tensor u ∈ `2(J d)
where J is a 1D wavelet index set, we set

πj(u) = (πj(u)[λj])λj∈J :=

√ ∑
λ1,...,λj−1,λj+1,...,λd∈J d−1

|uλ1,...,λj ,...,λd |2

λj∈J

.

(2.6)

Recalling the restriction operator

RJ1×...×Jdu[λ] :=

{
u[λ], if λ ∈ J1 × . . .× Jd,
0, otherwise,

the two important properties of these contractions are

πj(u)[λj] =

√∑
k

|σjk|2|U
k
j (λj)|2,

‖(I −RJ1×...×Jd)u‖ ≤

√√√√ d∑
j=1

∑
λ∈J\Jj

|πj(u)[λ]|2,

≤
√
d‖(I −RJ1×...×Jd)u‖,(2.7)

where Uk
j is the k-th column of the j-th HOSVD basis frame and σjk are the corre-

sponding singular values. We use the notation

suppj(u) := supp(πj(u)),

to refer to the 1D support of u along the j-th dimension, i.e., u can be viewed as
u ∈ `2(supp1(u)× · · · × suppd(u)).

2.3. Separable Preconditioning. Suppose we want to solve an equation on the
Sobolev space X ⊂ Hs(Ω) on a bounded Lipschitz domain Ω ⊂ Rd with appropriate
boundary conditions. Typically, the point of departure is a Riesz wavelet basis ΨL2

for
L2(Ω) from which we obtain a whole range of Riesz bases for Hs by a simple diagonal
scaling (see e.g. [34, Section 5.6.3]) ΨH1 := D−sΨL2 , where D := (δλ,µ‖ψλ‖H1)λ,µ.
This is equivalent to reformulating (2.2) as the preconditioned infinite system

D−sAD−sDu = D−sf .(2.8)

In the context of high dimensional problems, d � 1 is large and approximating
the solution to (2.2) is in general an intractable problem (see, e.g., [26]). However,
given a product structure of the domain Ω = ×dj=1Ωj (or smooth images thereof), the
problem (2.2) can be solved with tractable (algebraic) methods (see, e.g., [9]). For
this we will need Ψ to be a tensorised basis of lower dimensional components, i.e.,

5We remark that this is a slight abuse of terminology for general tensor contractions.

7

Ψ := ×dj=1Ψj and we reconsider X as a tensor space X = ⊗dj=1Xj . This way, if A
permits a separable structure or can be well approximated in such a form, than we
can discretize A such that it preserves the product structure with low dimensional
components.

Unfortunately, the space Hs(Ω) is not equipped with a cross norm, i.e., for an
elementary tensor product v = v1 ⊗ · · · ⊗ vd

‖v‖s 6= ‖v1‖s · · · ‖vd‖s.

Considering again (2.8), this means that D−s can not be represented in a separa-
ble form. However, this issue was addressed in [3], where the exact preconditioning
D−s was replaced by an approximate separable scaling via exponential sum approx-
imations. We will utilize this separate scaling both for preconditioning the Galerkin
solver and the approximate residual evaluation. We briefly recall some basic properties
of the said preconditioning6.

For certain parameters δ > 0, η > 0, T > 1, we choose h ∈
(

0, π2

5(| ln(δ/2)|+4)

)
,

n+ ≥ h−1 max
{

4√
π
,
√
| ln(δ/2)|

}
and n ≥ h−1

(
ln 2√

π
+ | ln(min{δ/2, η})|+ 1

2 lnT
)

The approximation involved is

1√
t

=
2√
π

∫
R

e−t ln2(1+ex)

1 + e−x
dx ≈

n+∑
k=−n

hw(kh)e−α(kh)t =: ϕn+,n(t),

where w(x) := 2√
π

(1 + e−x)−1, α(x) := ln2(1 + ex) and t > 0 is some scaling weight.

We get ∣∣∣∣ 1√
t
− ϕn+,n(t)

∣∣∣∣ ≤ δ√
t
, |ϕn+,∞(t)− ϕn+,n(t)| ≤ η√

t
,

for all t ∈ [1, T]. For the exact diagonal preconditioning, the scaling weights for
tensor product wavelets can be obtained by observing that H1 (and similarly Hs) is
isomorphic to the intersection of Hilbert spaces

H1(Ω) ∼=
d⋂
j=1

L2(Ω1)⊗ · · · ⊗H1(Ωj)⊗ · · · ⊗ L2(Ωd), with Ω = Ω1 × · · · × Ωd.

The norm on the intersection space leads to the scaling weight t :=
∑d
j=1 ‖ψλj‖2H1 ,

for ψλ = ⊗dj=1ψλj . We will denote by

S(δ, η) and S(δ) := lim
η→0

S(δ, η)

the corresponding separable approximation to D and the limit, respectively. We

6For ease of presentation, we restrict ourselves to s = 1.

8

mention important properties from [3] for later use

‖DS−1(δ, η)‖ ≤ 1 + δ, ∀η > 0,(2.9a)

‖DS−1(δ)‖ ≤ 1 + δ,(2.9b)

‖S(δ)D−1‖ ≤ 1

1− δ
,(2.9c)

‖D(D−1 − S−1(δ, η))RJT ‖ ≤ δ, ∀η > 0,(2.9d)

‖D(S−1(δ)− S−1(δ, η))RJT ‖ ≤ η, ∀δ > 0,(2.9e)

‖S(δ)(S−1(δ)− S−1(δ, η))RJT ‖ ≤
η

1− δ
,(2.9f)

S−1(δ, η) ≤ S−1(δ), ∀η > 0,(2.9g)

1− δ ≤ S−1(δ)D ≤ 1 + δ,(2.9h)

1− δ ≤
(
S−1(δ, η)D

)
λ∈JT

≤ 1 + δ, ∀η > 0,(2.9i)

where the last three inequalities are to be understood componentwise and T has to be
chosen large enough in dependence on JT . We thus seek to approximate the solution
of the separably7 preconditioned equation

S−1(δ)AS−1(δ)S(δ)u = Aδuδ = f δ = S−1(δ)f ,

with the shorthand notation

S−1(δ)AS−1(δ) =: Aδ, S−1(δ)f =: f δ, S(δ)u =: uδ.

3. Perturbed finite-dimensional descent method. For further presentation
we formulate a general descent method with perturbations for solving the linear system
Ax = b, A : V → V, x, b ∈ V, where A is an s.p.d. matrix and V is a finite-dimensional
vector space, possibly an algebraic tensor space with N := dim(V) <∞, i.e., V ∼= RN .

For simplicity of presentation, we omit preconditioning at this point. The analysis
for the case of exact preconditioning remains the same. Approximate preconditioning
adds a perturbation to the descent direction.

We will frequently use the associated quadratic functional

f(x) :=
1

2
〈x,Ax〉 − 〈b, x〉 ≡ fA,b(x),

where 〈·, ·〉 denotes the standard inner product on V with induced Euclidean norm
‖ · ‖ and ‖ · ‖A := 〈·, A·〉 the energy norm. The very well-known descent method then
reads as follows.

In a tensor based solver, lines 4 and 7 are typical candidates for truncating a

tensor due to the increase in ranks after the summation. The quantities ε
(k)
j , j = 1, 2,

represent the error incurred due to truncation, where x(k) is replaced by a truncated

version x̃(k) := T
(
x(k), ε

)
, such that ‖ε(k)

2 ‖ ≤ ε for the truncation error ε
(k)
2 :=

x̃(k) − x(k). We emphasize that the analysis has to rely solely on the control of the

magnitude of ε
(k)
2 without restricting the direction of ε

(k)
2 , which destroys optimality

features of conjugate directions.

7Though Aδ is still not separable, it can be well approximated by separable operators.

9

Algorithm 1 Descent method for minimizing f(x).

Input: x(0) ∈ V
1: k ← 0
2: while stopping criterion for f(x(k)) not satisfied do
3: choose/update descent direction d(k)

4: d(k) ← d(k) + ε
(k)
1 (e.g., truncation)

5: compute step size αk
6: x(k+1) ← x(k) + αkd

(k)

7: x(k+1) ← x(k+1) + ε
(k+1)
2

8: k ← k + 1
9: end while

3.1. Gradient descent. Choosing d(k) = r(k)+ε
(k)
2 , with r(k) := b−Ax(k) being

the residual, and using the optimal step size αk leads to the well-known gradient-type

descent method. The following proposition shows that appropriately choosing ε
(k)
1 and

ε
(k)
2 ensures the same asymptotic convergence as the exact gradient descent method.

Proposition 3.1. For the choice d(k) = r(k) in line 3 and

αk = arg min
α∈R

f(x(k) + αd(k))

in line 5 (exact line search) of Algorithm 1, we have the estimate for the error e(k) :=
x∗ − x(k)

‖e(k)‖A ≤ θk‖e(0)‖A +

k−1∑
j=0

θk−j−1

(
‖ε(j)

1 ‖A
λmin

+ ‖ε(j+1)
2 ‖A

)
,(3.1)

with reduction factor θ := λmax−λmin

λmax+λmin
, and λmax and λmin being the largest and smallest

eigenvalues of A, respectively.

Proof. It holds that the iterate x(k+1) can be written as x(k+1) = x(k) +αkr
(k) +

αkε
(k)
1 +ε

(k+1)
2 and the error reads e(k+1) = (I−αkA)e(k)+αkε

(k)
1 +ε

(k+1)
2 . The optimal

step size is known to be αk = 〈d(k),d(k)〉
〈d(k),Ad(k)〉 . Let {λj}j=1,...,N denote the eigenvalues of

A and {ψj}j=1,...,N the corresponding orthonormal basis of eigenvectors. Since A is
s.p.d., we get the standard estimate (cj := 〈d(k), ψj〉)

〈d(k), Ad(k)〉 = 〈
N∑
j=1

cjψj ,

N∑
j=0

cjλjψj〉 =

N∑
j=1

λjc
2
j ≥ λmin‖d(k)‖2.(3.2)

Using standard arguments for the analysis of the gradient descent method (cf. [14,

Thm. 9.2.3]), we get ‖e(k+1)‖A ≤ θ‖e(k)‖A +
‖ε(k)1 ‖A
λmin

+ ‖ε(k+1)
2 ‖A, which proves (3.1).

3.2. Conjugate gradient descent. The (rank-)truncated (P)CG method was
first proposed by C. Tobler in [33, Algorithm 9] with promising numerical results.

Obviously, the perturbed CG method does not preserve orthogonality of the
search directions w.r.t. 〈·, A·〉 and the resulting algorithm is not a Krylov method
(see also below). Nevertheless, we can guarantee the perturbed CG to be a descent
method which in turn will provide us with a convergence estimate.

10

Algorithm 2 Truncated (P)CG method

Input: x(0) ∈ V
1: r(0) ← b−Ax(0), d(0) ← r(0) + ε

(0)
1

2: k ← 0
3: while stopping criterion for f(x(k)) not satisfied do

4: αk ← 〈r(k),d(k)〉
〈d(k),Ad(k)〉 ,

5: x(k+1) ← x(k) + αkd
(k) + ε

(k+1)
2

6: βk ← − 〈r
(k+1),Ad(k)〉
〈d(k),Ad(k)〉

7: d(k+1) ← r(k+1) + βkd
(k) + ε

(k+1)
1

8: k ← k + 1
9: end while

Lemma 3.2. Let κ := λmax

λmin
and fix some τ ∈ (0, 1√

1+κ2
). Let δ1, δ2 > 0 and γ > 0

be chosen such that 3
2δ1 + δ2 ≤ 1

τ2 − (1 + κ2) and (1− δ1
2)τ ≥ γ. If the error sequence

ε
(k)
1 satisfies

‖ε(k)
1 ‖ ≤ min

{
δ1
2
,

δ2‖r(k)‖
2|βk−1| ‖d(k−1)‖

}
‖r(k)‖,(3.3)

then d(k) is a descent direction with 〈r(k), d(k)〉 ≥ γ‖r(k)‖‖d(k)‖, where the angle γ
does not depend on k.

Proof. First we show that ‖r(k)‖ ≥ τ‖d(k)‖. To this end, note that

‖d(k)‖2 = 〈d(k), d(k)〉 = ‖r(k)‖2 + β2
k−1‖d(k−1)‖2 + ‖ε(k)

1 ‖2 + 2βk−1〈r(k), d(k−1)〉

+ 2〈r(k), ε
(k)
1 〉+ 2βk−1〈d(k−1), ε

(k)
1 〉.(3.4)

Next, we get

〈r(k), d(k−1)〉 = 〈b−A(x(k−1) + αk−1d
(k−1)), d(k−1)〉

= 〈r(k−1), d(k−1)〉 − 〈r(k−1), d(k−1)〉
〈d(k−1), Ad(k−1)〉

〈Ad(k−1), d(k−1)〉 = 0.

For the term β2
k−1‖d(k−1)‖2 we get

β2
k−1‖d(k−1)‖2 =

|〈r(k), Ad(k−1)〉|2

|〈d(k−1), Ad(k−1)〉|2
‖d(k−1)‖2

(3.2)

≤ |〈r(k), Ad(k−1)〉|2

λ2
min|〈d(k−1), d(k−1)〉|2

‖d(k−1)‖2

≤ λ2
max‖r(k)‖2‖d(k−1)‖2

λ2
min‖d(k−1)‖4

‖d(k−1)‖2 ≤ κ2‖r(k)‖2.

Using (3.3), we estimate the term (3.4) as ‖d(k)‖2 ≤ (1 + κ2 + δ1
2 + δ1 + δ2)‖r(k)‖2 ≤

1
τ2 ‖r(k)‖2. This finally gives us the desired claim

〈r(k), d(k)〉 = 〈r(k), r(k)〉+ 〈r(k), ε
(k)
1 〉 ≥ 〈r(k), r(k)〉 − ‖r(k)‖‖ε(k)

1 ‖

= ‖r(k)‖(‖r(k)‖ − ‖ε(k)
1 ‖) ≥ ‖r(k)‖2(1− δ1

2
) ≥ γ‖r(k)‖‖d(k)‖.

11

With this preparation at hand we get the following convergence estimate.

Theorem 3.3. Let the assumptions of Lemma 3.2 hold. For the truncation tol-
erance ε2 set

‖εk+1
2 ‖ ≤ θµ(λmax)−1‖r(k)‖,(3.5)

with

θ :=

√
1− γ2

2κ
, γ < 1, κ > 1, µ < θ−1 − 1.(3.6)

Then, we have

‖e(k)‖A ≤ [θ(1 + µ)]k‖e(0)‖A,(3.7)

with the error reduction factor

% := θ(1 + µ) < 1.

Proof. Without loss of generality we can assume the solution is at the origin
x∗ = 0 and thus b = 0. Since d(k) is a descent direction by Lemma 3.2, [18, Lemma

6.2.2] yields f(x(k+1)) ≤ f(x(k))− γ2

4λmax
‖r(k)‖2. Using an eigenbasis of A as in (3.2),

we get

f(x(k)) =
1

2
〈x(k), Ax(k)〉 =

1

2

N∑
j=1

λjc
2
j , ‖r(k)‖2 = 〈Ax(k), Ax(k)〉 =

N∑
j=1

λ2
jc

2
j .

This gives

f(x(k+1)) ≤ 1

2

N∑
j=1

λjc
2
j (1−

γ2

2λmax
λj) ≤ (1− γ2λmin

2λmax
)
1

2

N∑
j=1

λjc
2
j = (1− γ2

2κ
)f(x(k)).

The identity 2f(x) = ‖x‖2A gives the desired claim for θ as in (3.6). Finally, we get
with (3.5)

‖e(k+1)‖A ≤ θ‖e(k)‖A + ‖ε(k+1)
2 ‖A,

≤ θ‖e(k)‖A + θµ‖e(k)‖A,
= %‖e(k)‖A.

This completes the proof.

Remark 3.4. Note that the rate in (3.6) is asymptotically the same as in Propo-
sition 3.1 for large κ. This is not surprising, since we used the same approach for
analyzing the convergence as in the gradient descent method.

Of course, (3.6) is qualitatively worse , since it applies to a broader setting than
the gradient descent method.

The preceding analysis is a worst case scenario that guarantees convergence of
the method with a monotonic decrease of the error in the energy norm. However,
numerically, the perturbed CG performs far better than the gradient descent method.
This is due to the fact that the perturbed CG inherits some nice properties of its
exact counterpart, as can be seen in the following lemma. Moreover, the analysis in

12

Theorem 3.3 is quite general, since we only require local optimality (i.e., a descent
direction) and the resulting bound in (3.7) is thus by no means optimal.

Note, that according to (3.7), the truncation tolerance ‖ε(k+1)
2 ‖ should be set pro-

portional to θ‖e(k)‖A. However, since the error reduction factor θ corresponds to a
worst case scenario, this tolerance might be unnecessarily prohibitive and significantly
hamper quantitative performance.

A more detailed look on the estimates from [18, Lemma 6.2.2] reveals f(x(k+1)) ≤
1
2

∑N
j=1 λjc

2
j − αk〈r(k), d(k)〉, which suggests to choose an adaptive tolerance propor-

tional to αk‖d(k)‖. This is precisely the case for the adaptive tolerance strategy by C.
Tobler in [33, Algorithm 9]. Hence, we use this in our subsequent numerical experi-
ments.

Lemma 3.5. For the perturbed CG method we have the following representations

r(k) = (I −Ap(k)(A))r(0) −A

k−1∑
j=0

q
(k)
k−j−1(A)ε

(j)
1 +A

k∑
j=1

g
(k)
k−j(A)ε

(j)
2

 ,

e(k) = (I −Ap(k)(A))e(0) −

k−1∑
j=0

q
(k)
k−j−1(A)ε

(j)
1 +

k∑
j=1

g
(k)
k−j(A)ε

(j)
2

 ,

where p(k) ∈ Pk−1, i.e., a polynomial of degree k − 1, g
(k)
j ∈ Pj with g

(k)
j (0) = 1,

j = 0, . . . , k − 1, and q
(k)
j ∈ Pj such that p(k)(t) =

∑k−1
j=0 q

(k)
j (t).

Proof. We prove the assertion by induction over k. For k = 1, we have x(1) =

x(0) + α0(r(0) + ε
(0)
1) + ε

(1)
2 = x(0) + α0Ar

(0) + α0ε
(0)
1 + ε

(1)
2 . As a consequence,

r(1) = b−Ax(1) = (I − α0A)r(0) − α0Aε
(0)
1 −Aε

(1)
2 and

d(1) = r(1) + β0d
(0) + ε

(1)
1 = (I − α0A)r(0) − α0Aε

(0)
1 −Aε

(1)
2 + β0(r(0) + ε

(0)
1) + ε

(1)
1

= (I + β0I − α0A)r(0) + (β0I − α0A)ε
(0)
1 + ε

(1)
1 −Aε

(1)
2 ,

from which the assertion follows for k = 1. Now, let the claim hold for some k ≥ 1,
then, we get by induction that

x(k+1) = x(k) + αkd
(k) + ε

(k+1)
2 ,

= x(0) + p(k)(A)r(0) +

k−1∑
j=0

q
(k)
k−j−1(A)ε

(j)
1 +

k∑
j=1

g
(k)
k−j(A)ε

(j)
2

+ αk

p̃(k)(A)r(0) +

k∑
j=0

q̃
(k)
k−j(A)ε

(j)
1 +A

k∑
j=1

g̃
(k)
k−j(A)ε

(j)
2

+ ε
(k+1)
2

= x(0) + p(k+1)(A)r(0) +

k∑
j=0

q
(k+1)
k−j (A)ε

(j)
1 +

k+1∑
j=1

g
(k+1)
k−j+1(A)ε

(j)
2 ,

with p(k+1) := p(k) + αkp̃
(k), q

(k+1)
j := q

(k)
j + αkq̃

(k)
j for j < k and q

(k+1)
k := αkq̃

(k)
k as

well as g
(k+1)
j := g

(k)
j + αktg̃

(k)
j−1 for j > 0 and g

(k+1)
0 := 1. Note that the properties

13

stated in this Lemma hold for the polynomials p(k+1), q
(k+1)
j and g

(k+1)
j . Finally,

d(k+1) = r(k+1) + βkd
(k) + ε

(k+1)
1

= (I −Ap(k)(A))r(0) −A
k∑
j=0

q
(k)
k−j(A)ε

(j)
1 −A

k+1∑
j=1

g
(k)
k−j+1(A)ε

(j)
2

+ βk

p̃(k)(A)r(0) +

k∑
j=0

q̃
(k)
k−j(A)ε

(j)
1 +A

k∑
j=1

g̃
(k)
k−j(A)ε

(j)
2

+ ε
(k+1)
1

= (I −Ap(k)(A) + βkp̃
(k)(A))r(0) + ε

(k)
1 −A

k∑
j=0

q
(k)
k−j(A)ε

(j)
1

+ βk

k∑
j=0

q̃
(k)
k−j(A)ε

(j)
1 −Aε

(k+1)
2 −A

k∑
j=1

(g
(k)
k−j+1(A)− βkg̃(k)

k−j(A))ε
(j)
2 ,

which completes the proof.

Similar to its exact counterpart, the perturbed (P)CG is thus a polynomial
method both in the initial residual and in the perturbations. It is easy to see
that the polynomials {p(j)}j are not orthogonal w.r.t. the discrete inner product
〈p, q〉CG := 〈p(A)r(0), q(A)r(0)〉, see [12, Example 2.4.8]. Consequently the resulting
iterates do not minimize 〈p(k), t−1p(k)〉CG = ‖e(k)‖2A.

Though the perturbed CG is a straightforward extension of its exact counterpart,
its not a constructive8 method, in particular, it is not a Krylov method, and thus
standard notions of optimality are lost.

One could try to improve the estimates by considering a different inner product
in order to obtain orthogonal polynomials. However, since one has no control over
the directions of the perturbations, this route does not seem to be promising.

4. HTucker-Adaptive Wavelet-Galerkin Method (HT-AWGM). As al-
ready said earlier, the new HT-AWGM relies on the strategy

· · · → SOLVE→ ESTIMATE→MARK and REFINE→ · · ·

which is analogous to an adaptive FEM solver. We detail the ingredients as follows.

4.1. SOLVE. We use a Galerkin solver based on the CG iterations described in
§3.2 with the approximate separable preconditioning from [3], see §2.3. The arising
procedure is referred to as

PCG(S−1(δ),Aδ,f δ,u(0),Λ, ε),

where S−1(δ) is the preconditioning operator, Aδ is the discrete (infinite dimensional)
operator, f δ is the right hand side, u(0) is the initial guess, Λ is a finite index set on
which the iterations are performed and ε is the residual tolerance.

Remark 4.1. We shall assume a separable structure for the operator A and thus
will not discuss the approximation of more general operators (for this see, e.g., [1]).
Thus, evaluating AΛu on a finite set Λ boils down to applying the low dimensional
components of AΛ to the leafs of u. For the low dimensional evaluation we use the
evaluation procedures from [19, Chapter 6].

8By ‘constructive’ we refer to methods which are derived from optimization problems, such as
the exact CG method is derived by minimizing the energy norm of the error.

14

4.2. ESTIMATE. For this step we need a procedure for approximate residual
evaluation. This requires determining an extended index set Λ̃ ⊃ Λ based on a desired
tolerance ε > 0 and evaluating

‖RΛ̃

(
f δ −AδEΛuΛ

)
‖.

Again, due to the separable structure of A, we only need to build Λ̃ = Λ̃1 × · · · × Λ̃d
from the low dimensional components Λ̃j , j = 1, . . . , d. For this purpose, we use the
method from [19, Chapter 7]. Additionally, we need to approximate scaling S−1(δ),
which we discuss in detail later. We refer to this procedure as

RES(S−1(δ),Aδ,f δ,uδ, ε),

where ε refers to the relative accuracy in the sense that

‖
(
f δ −AδEΛuΛ

)
− r̃‖ ≤ ε‖r̃‖,

and r̃ is the approximate residual.

4.3. MARK and REFINE. In AFEM, one first marks certain elements, which
are then refined by a chosen strategy: REFINE. In AWGM, these steps are performed
together. The current index set Λ is extended, which drives the adaptivity of the
algorithm. We use a standard bulk chasing strategy with a parameter α ∈ (0, 1),
described as follows. Suppose the current approximation u is supported on Λ, then
we determine a (minimal) set Λ̃ ⊃ Λ on which the approximate residual evaluation is
performed. Then, we compute an intermediate set Λ̄ with Λ ⊂ Λ̄ ⊂ Λ̃ such that

‖RΛ̄r‖ ≥ α‖r‖,(4.1)

where r is the approximate residual supported on Λ̃.
In a low dimensional setting, (4.1) is realized by an approximate sorting of the

entries in r and forming Λ̄ by the minimal number of largest entries that satisfy (4.1).
Such an approach is clearly not feasible for large dimensions d� 1.

In the tensor setting we can only use low dimensional quantities and thus deter-
mine Λ̄ by sorting the contractions πj(r) using the COARSE routine from the low
dimensional setting, where COARSE(u, ε) returns a tensor v with ‖u−v‖ ≤ ε. We
refer to the resulting procedure as

EXPAND(Λ, r, α).

4.4. HT-AWGM Algorithm. We now have all algorithmic ingredients at hand
to describe a general AWGM procedure based on a tensor format in Algorithm 3. We
use the notation C(u, ε) to denote COARSE(u, ε); T (u, ε) to denote truncation and

‖(Aδ)−1‖ ≤ λmin, ‖Aδ‖ ≤ λmax

The involved parameters have the following meaning:
• ω0 is the initial estimate for the right hand side, i.e., ω0 ≥ ‖f δ‖,
• ω1 is the relative precision of the residual evaluation,
• ω2 drives the tolerance for the approximate Galerkin solutions,
• ω3 is the required error reduction rate before truncation and coarsening,
• ω4 drives the truncation tolerance that controls rank growth,
• ω5 drives the coarsening tolerance that controls index set growth and influ-

ences rank growth by controlling the maximum wavelet level,
• α is the bulk criterion parameter that drives adaptivity.

15

Algorithm 3 HT-AWGM

Input: Tolerance ε > 0, initial finite index set Λ(0,0) 6= ∅, δ > 0, α ∈ (0, 1),
ω0, ω1, ω2, ω3, ω4, ω5 > 0, M ∈ N.

1: u(0,0) ← 0, r(0,0) ← ω0, ω
(0)
0 ← ω0

2: for k = 0, . . . do
3: for m = 0, . . . ,M do
4: u(k,m+1) ← PCG(S−1(δ),Aδ,f δ,u(k,m),Λ(k,m), ω2‖r(k,m)‖)
5: r(k,m+1) ← RES(S−1(δ),Aδ,f δ,u(k,m+1), ω1)
6: if (1 + ω1)‖r(k,m+1)‖ ≤ ε then
7: return uε ← u(k,m+1)

8: end if
9: if (1 + ω1)‖r(k,m+1)‖ ≤ ω3ω

(k)
0 , or m = M then

10: u(k+1,0) ← T (u(k,m+1), ω4λ
−1
minω

(k)
0)

11: u(k+1,0) ← C(u(k+1,0), ω5λ
−1
minω

(k)
0)

12: Λ(k+1,0) ← supp(u(k+1,0))
13: r(k+1,0) ← RES(S−1(δ),Aδ,f δ,u(k+1,0), ω1)

14: ω
(k+1)
0 ← (ω3 + ω4 + ω5)ω

(k)
0

15: break
16: end if
17: Λ(k,m+1) ← EXPAND(Λ(k,m), r(k,m+1), α)
18: end for
19: end for

4.5. Convergence of HT-AWGM. We start proving the convergence of the
algorithm by investigating the approximate residual evaluation. Two types of approx-
imation are involved for the operator: a) the finite index set approximation of A and
b) the approximation of the exact diagonal scaling D−1, resp. S−1(δ).

Lemma 4.2. Let v be finitely supported and let Aε denote an approximation to A
in the sense that

∥∥D−1(A−Aε)D
−1v

∥∥ ≤ ε. Moreover, let fε be an approximation

to f such that
∥∥D−1(f − fε)

∥∥ ≤ ε. Finally, assume that ‖S−1(δ)fε‖ ≤ Cf‖f δ‖ for
all ε > 0 with Cf ≥ 1. Then,∥∥∥(f δ −Aδv)− S−1(δ, η)(fε −AεS

−1(δ, η)v)
∥∥∥

≤ ε(1 + δ)(2 + δ) +
η

1− δ

(
Cf‖f δ‖+ 2‖Aδ‖‖v‖

)
+ 2

(1 + δ)2

1− δ
ηε,(4.2)

with η, δ > 0.

Proof. We begin by splitting the left-hand side of (4.2) into two parts∥∥∥(f δ −Aδv)− S−1(δ, η)(fε −AεS
−1(δ, η)v)

∥∥∥
≤
∥∥∥f δ − S−1(δ, η)fε

∥∥∥︸ ︷︷ ︸
=: (I)

+
∥∥∥Aδv − S−1(δ, η)AεS

−1(δ, η)v
∥∥∥︸ ︷︷ ︸

=: (II)

.

We further split (I) as∥∥∥f δ − S−1(δ, η)fε

∥∥∥ ≤ ‖S−1(δ)(f − fε)‖+ ‖(S−1(δ)− S−1(δ, η))fε‖

16

and get the first part ‖S−1(δ)(f −fε)‖ = ‖S−1(δ)DD−1(f −fε)‖ ≤ (1 + δ)ε, where
the last inequality follows from the property ‖S−1(δ)D‖ ≤ 1 + δ. For the second part
in (I) we get

‖(S−1(δ)− S−1(δ, η))fε‖ = ‖(S−1(δ)− S−1(δ, η))S(δ)S−1(δ)fε‖

≤ η

1− δ
‖S−1(δ)fε‖ ≤ Cf

η

1− δ
‖f δ‖,

where we used the fact ‖(S−1(δ) − S−1(δ, η))S(δ)‖ ≤ η
1−δ . In a similar fashion, we

split (II) into 2 parts

(II) ≤ ‖S−1(δ)(A−Aε)S
−1(δ)v‖︸ ︷︷ ︸

=:(II.1)

+ ‖S−1(δ)AεS
−1(δ)v − S−1(δ, η)AεS

−1(δ, η)v‖︸ ︷︷ ︸
=:(II.2)

,

and follow the proof of [3, Proposition 15]. For the first term we get

(II.1) = ‖[S−1(δ)D]D−1(A−Aε)D
−1[DS−1(δ)]v‖ ≤ (1 + δ)2ε,

where we used (2.9b). The second term (II.2) involves the approximation errors
‖S(δ)(S−1(δ)−S−1(δ, η))v‖ and ‖S−1(δ)(A−Aε)S

−1(δ)v‖. For the former we use
(2.9f) and the latter can be bounded by (1 + δ)2ε as in (II.1). Altogether we get

(II.2) ≤ 2η

1− δ
(‖Aδ‖‖v‖+ (1 + δ)2ε),

which completes the proof.

For a given tolerance tol > 0 and a finite tensor v, we can specify ε and η as

ε ≤ tol

3(1 + δ)(2 + δ)
, η ≤ min

{
1− δ

2
,

tol(1− δ)
3(Cf‖f δ‖+ 2‖Aδ‖‖v‖)

}
.

By (4.2) this would ensure

‖(f δ −Aδv)− S−1(δ, η)(fε −AεS
−1(δ, η)v)‖ ≤ tol.

As a consequence, given the parameter ω1 ∈ (0, 1) from Algorithm 3 and some fixed
δ > 0, we can now use (4.2) to ensure

‖(f δ −Aδv)− S−1(δ, η)(fε −AεS
−1(δ, η)v)‖ ≤ ω1‖S−1(δ, η)(fε −AεS

−1(δ, η)v)‖.
(4.3)

With all the above ingredients at hand, it is now easy to prove that Algorithm 3
converges for an appropriate choice of parameters. There are two main components.
First, we choose ω1, ω2 and α appropriately such that we ensure in each inner iteration
m → m + 1 of Algorithm 3 a guaranteed error reduction. Second, we choose ω3, ω4

and ω5 such that after truncation and coarsening we still ensure an error reduction
for the outer iteration k → k + 1.

We use the notation

‖ · ‖A := 〈·,Aδ·〉,

to denote the energy norm.

17

Proposition 4.3. Let Λ(0) = Λ
(0)
1 × · · · × Λ

(0)
d and all Λ

(0)
j are assumed to have

a tree structure as required in [19, §6]. Let the parameters satisfy 0 < ω1 < α and

ω2 <
(1− ω1)(α+ ω1)

1 + ω1
κ(Aδ)−1.

This guarantees an error reduction in the inner iterations

‖u− u(k,m+1)‖A ≤ ϑ‖u− u(k,m)‖A,(4.4)

with

ϑ :=

(
1−

(
α− ω1

1 + ω1

)2

κ−1(Aδ) +

(
ω2

1− ω1

)2

κ(Aδ)

)1/2

< 1(4.5)

Moreover, if M ∈ N is chosen such that

M ≥M∗ = M∗(δ) :=

⌈∣∣∣∣∣ ln(ω3[κ(Aδ)]−1/2)

ln(ϑ)

∣∣∣∣∣
⌉
,(4.6)

and

ω3 + ω4 + ω5 < 1,(4.7)

then the error decreases in each outer iteration such that

‖u− u(k,0)‖ ≤ λ−1
minω0(ω3 + ω4 + ω5)k.(4.8)

This ensures Algorithm 3 terminates after at most K∗M∗ steps, where

K∗ = K∗(ε, δ) :=

⌈∣∣∣∣∣ ln([εκ(Aδ)ω3ω0(1 + ω1)]−1(1− ω1))

ln(ω3 + ω4 + ω5)

∣∣∣∣∣
⌉
,(4.9)

with the output satisfying

‖f δ −Aδuε‖ ≤ ε.

Proof. The statement in (4.4) with θ as in (4.5) is an immediate application of
[32, Prop. 4.2]. The conditions on α, ω1 and ω2 ensure 0 < ϑ < 1.

In the inner iterations we thus get for any k

‖u− u(k,m)‖ ≤ λ−1/2
min ‖u− u(k,m)‖A ≤ λ−1/2

min ϑm‖u− u(k,0)‖A,

≤
√
κ(Aδ)ϑm‖u− u(k,0)‖ ≤

√
κ(Aδ)ϑmλ−1

minω
(k)
0 .

The requirement (4.6) ensures

‖u− u(k,M)‖ ≤
√
κ(Aδ)ϑMλ−1

minω
(k)
0 ≤ ω3λ

−1
minω

(k)
0 .(4.10)

Alternatively, the first if-condition in line 9 ensures

‖u− u(k,m+1)‖ ≤ λ−1
min‖A

δ(u− u(k,m+1))‖ ≤ λ−1
min(1 + ω1)‖r(k,m+1)‖ ≤ ω3λ

−1
minω

(k)
0 .

Hence, after truncation and coarsening we obtain

‖u− u(k+1,0)‖ ≤ ‖u− u(k,m+1)‖+ ‖u(k,m+1) − T (u(k,m+1), λ−1
minω4ω

(k)
0)‖

+ ‖uk+1,0 − T (u(k,m+1), λ−1
minω4ω

(k)
0)‖

≤ λ−1
minω

(k)
0 (ω3 + ω4 + ω5) = λ−1

minω0(ω3 + ω4 + ω5)k+1,

which shows (4.8). Combining (4.10) and (4.8), we obtain (4.9). Together with (4.7)
this completes the proof.

18

4.6. Complexity. The complexity in rank and discretization is controlled by
the intermediate truncation and coarsening steps in line 10 and 11 of Algorithm 3.
This is done in analogy to the re-coarsening step in the non-tensor case as in, e.g., [7];
and to the tensor recompression and coarsening as in [1]. In [13] it was shown that an
AWGM without re-coarsening is optimal for a moderate choice of α. Unfortunately,
the same ideas do not carry over to the tensor case. For a detailed discussion, see
Section 4.7.

In order to capture the optimal ranks and index set size w.r.t. u, we must choose
a truncation tolerance in line 10 and a coarsening tolerance in line 11 slightly above
the error ‖u−u(k,m+1)‖. In addition, since in the tensor case we can only numerically
realize quasi-optimal approximations w.r.t. rank and discretization, quasi-optimality
constants from (2.5) and (2.7) are involved.

Proposition 4.4. Let uδ ∈ A(γ) and πj(u
δ) ∈ As for all 1 ≤ j ≤ d. Assume

the sequence γ is admissible

ρ(γ) := sup
n∈N

γ(n)

γ(n− 1)
<∞.

Finally, let the parameters ω4, ω5 satisfy

ω4 > (
√

2d− 3)ω3, ω5 >
√
d(1 +

√
2d− 3)ω3.

Then the following estimates hold

|r(u(k,0))|∞ ≤ γ−1
(
C0(ω3 + ω4 + ω5)−k‖uδ‖A(γ)

)
, ‖u(k,0)‖ ≤ C1‖uδ‖A(γ),

d∑
j=1

suppj(u
(k,0)) ≤ C2(ω3 + ω4 + ω5)−k/s

 d∑
j=1

‖πj(uδ)‖As

1/s

,

d∑
j=1

‖πj(u(k,0))‖As ≤ C3

d∑
j=1

‖πj(uδ)‖As ,

with the constants

C0 :=
λmin

√
2d− 3

ω0(ω4 − ω3

√
2d− 3)

ρ(γ), C1 := 1 +
(ω3 + ω4)

√
2d− 3

ω4 − ω3

√
2d− 3

,

C2 := 2d

(
λminω3

√
2d− 3

ω0(ω4 − ω3

√
2d− 3)

)1/s

,

C3 := 2s(1 + 3s) + 24sdmax(1,s) 1 + ω4(
√

2d− 3 +
√
d(1 +

√
2d− 3))

ω4 − ω3

√
2d− 3

.

Proof. The proof is an application of [1, Thm. 7].

The complexity requirement Proposition 4.4 together with the convergence re-
quirement (4.7) imply ω3 < [1 +

√
2d− 3 +

√
d(1 +

√
2d− 3)]−1.

Proposition 4.4 ensures the outer iterates u(k,0) to have quasi-optimal support
size and ranks. We first demonstrate that the quasi-optimal support size is preserved
by the inner iterates u(k,m).

19

In the estimates following in this subsection we require the basic assumption of
efficient approximability of the right hand side, i.e.,

d∑
j=1

#πj(f
δ
ε) ≤ Cε−1/s

 d∑
j=1

‖πj(f δ)‖As

1/s

,

d∑
j=1

‖πj(f δε)‖As ≤ C
d∑
j=1

‖πj(f δ)‖As ,

(4.11)

for any ε > 0 and a constant C > 0 independent of ε.

Proposition 4.5. Assume that the one dimensional components of A are s∗-
compressible. Let the assumptions of Proposition 4.4 hold for 0 < s < s∗. Moreover,
let the assumptions of Theorem 3.3 be satisfied. Then the intermediate index sets
satisfy

d∑
j=1

#Λ
(k,m)
j ≤ C‖uδ − u(k,m)‖−1/s

 d∑
j=1

‖πj(uδ)‖As

1/s

,

for a constant C independent of k and m.

Proof. On iteration (k,m) we get the following.
1. Due to Theorem 3.3, we can ensure an upper bound on the number of PCG

iterations. Let riCG denote the inner PCG residual at PCG iteration i and eiCG the
corresponding error. Then

‖riCG‖ ≤ λ1/2
max‖eiCG‖A ≤ λ1/2

max%
k‖e0

CG‖A ≤ κ1/2%k‖r(k,m)‖A ≤ ω2‖r(k,m)‖A.

Thus, the number of PCG iterations is bounded by

i ≤ I∗ :=

⌈∣∣∣∣ ln(ω2κ
−1/2)

ln(%)

∣∣∣∣⌉ .(4.12)

2. Applying the same proof as in [7, Prop. 6.7], together with the results from [1,
Thm. 8] and (4.11), we obtain

‖πj(u(k,m+1))‖As ≤ C(I∗)‖πj(u(k,m))‖As ,

for 1 ≤ j ≤ d.
3. Applying once more [1, Thm. 8], (4.11) and the above

‖πj(r(k,m+1))‖As ≤ C(‖πj(f δ)‖As + ‖πj(u(k,m+1))‖As),
≤ C̃(‖πj(f δ)‖As + ‖πj(u(k,m))‖As),
≤ C̄(‖πj(f δ)‖As + ‖πj(u(k,0))‖As),

for 1 ≤ j ≤ d and a constant C̄ > 0 independent of k or m.
4. Let C(v, N) denote the routine COARSE retaining N terms, i.e.,∑d

j=1 # suppj(πj(v)) ≤ N . Let Co(v, N) denote the best N -term approximation over

product sets, such that
∑d
j=1 # suppj(πj(v)) ≤ N . For a given ε > 0, take N to be

minimal such that

‖v − Co(v, N)‖ ≤ ε.

20

Then by property (2.7)

‖v − C(v, N)‖ ≤
√
d‖v − Co(v, N)‖ ≤ ε.

Consequently

min {N : ‖v − C(v, N)‖ ≤ ε} ≤ min

{
N : ‖v − Co(v, N)‖ ≤ ε√

d

}
.

5. As shown in the proof of [1, Thm. 7], the best N -term approximation over
product sets satisfies the property

min {N : ‖v − Co(v, N)‖ ≤ ε} ≤ 2dε−1/s

 d∑
j=1

‖πj(v)‖As

1/s

.

Combining 3.-5. with Proposition 4.4 we get the desired claim

d∑
j=1

#Λ
(k,m+1)
j ≤ C(

√
1− α2‖r(k,m+1)‖)−1/s

 d∑
j=1

‖πj(f δ)‖As + ‖πj(u(k,0))‖As

1/s

≤ C̃‖uδ − u(k,m+1)‖−1/s

 d∑
j=1

‖πj(uδ)‖As

1/s

,

with a constant C̃ > 0 independent of k or m. This completes the proof.

The maximum wavelet level appearing in Λ(k,m) influences the rank of the pre-
conditioning S−1(δ, η). To show quasi-optimality of all arising ranks, we require the
following lemma.

Lemma 4.6. Let the assumptions of Proposition 4.5 be satisfied for 0 < s < s∗.
Additionally, assume the data f and operator A have excess regularity for some t > 0

‖D−1+t
j πj(fε)‖ . ‖D

−1+t
j πj(f)‖ <∞‖D−1+t

j Aj‖ <∞,(4.13)

for any 1 ≤ j ≤ d and any ε > 0, where Aj is the one dimensional component of
A. Essentially (4.13) requires the one dimensional components f to have regularity
H−1+t and the one dimensional wavelet basis to have regularity H1+t, which in turn
ensures a slightly faster decay of the wavelet coefficients.

Then, on iteration (k,m) the maximum level arising in Λ(k,m) can be bounded by

t−1 log2

CkM∗I∗+m‖uδ − u(k,m)‖−1−1/2s max
j
‖Dt

jf
δ‖

 d∑
j=1

‖πj(uδ)‖As

1/2s
 ,

where C > 0 is a constant independent of k and m, M∗ and I∗ are defined in (4.6)
and (4.12) respectively.

Proof. We want to apply [3, Lemma 37], i.e., the maximum level depends on the
decay of the wavelet coefficients and the size of the tensor. To this end, note that
Λ(k,0) is obtained by coarsening u(k−1,m) for an m that satisfies line 9 of Algorithm 3.

21

Thus, we need to estimate ‖Dt
ju

(k−1,m)‖ and the support size of u(k−1,m). For the
latter we apply Proposition 4.5.

For the former we can apply [3, Prop. 39] together with assumption (4.13), since
u(k−1,m) is a polynomial in f δ (cf. Lemma 3.5) and excess regularity is stable under
truncation or coarsening. This gives the desired claim for Λ(k,0).

The set Λ(k,m), m > 1, is obtained by coarsening the approximate residual r(k,m).
Thus, as above we need to estimate ‖Dt

jr
(k,m)‖ and the support size of r(k,m). To

this end, note that the approximate residual is of the form

r(k,m) = S−1(δ, ηk)(fεk −AεkS
−1(δ, ηk)u(k,m)),

for εk and ηk chosen according to Lemma 4.2. Applying assumption (4.13) and [3,
Prop. 39] to u(k,m), we get

‖Dt
jr

(k,m)‖ ≤ CkM
∗I∗+m‖Dt

jf
δ‖,

for C > 0 independent of k or m.
For the support size of r(k,m) we apply (4.11), the compressibility of A together

with [1, Thm. 8] and Proposition 4.5. This gives

d∑
j=1

πj(r
(k,m)) ≤ C‖uδ − u(k,m)‖−1/s

 d∑
j=1

‖πj(uδ)‖As

1/s

,

and the desired claim follows by an application of [3, Lemma 37].

Finally, we demonstrate quasi-optimality of all intermediate ranks. In the follow-
ing r(A) and r(f) denote the (finite) ranks of the non-preconditioned operator and
right hand side.

Proposition 4.7. Let the assumptions of Proposition 4.5 and Lemma 4.6 hold.
Let I∗ from (4.12) denote the bound on the number of PCG iterations. Then, we can
bound the ranks of the arising intermediate iterates as

|r(u(k,m))|∞ ≤C|r(A)|mI
∗

∞

1 + | ln(‖uδ − u(k,m)‖)|+ ln

 d∑
j=1

‖πj(uδ)‖As

2mI∗

×

×

[
γ−1

(
C
‖uδ‖A(γ)

‖uδ − u(k,m)‖

)
+ |r(f)|∞

]
=: r̂,

for a constant C > 0 independent of k or m.

Proof. Applying Lemma 4.6 and [3, Theorem 34] we get for the rank of the
preconditioner at step (k,m)

|r(S−1(δ, ηk,m))|∞ ≤ C

1 + | ln(‖uδ − u(k,m)‖)|+ k + ln

 d∑
j=1

‖πj(uδ)‖As

 .

Using Proposition 4.3, k can be bounded by 1 + | ln(‖uδ − u(k,m)‖)|. Finally, since
u(k,m) is a polynomial in f δ and u(k,0) (cf. Lemma 3.5) and together with Proposi-
tion 4.4 we get the desired claim.

22

Corollary 4.8. Under the assumptions of Proposition 4.7 the number of oper-
ations to produce the iterate u(k,m) can be bounded as

O
([

1 +
∣∣∣ln(ε(k,m))

∣∣∣]8(M∗+1)I∗ [
1 + γ−1

(
C(ε(k,m))−1

)]4(M∗+1)I∗

(ε(k,m))−1/s

)
,

where ε(k,m) := ‖uδ − u(k,m)‖ and C > 0 is independent of ε(k,m).

Proof. The dominant part for the complexity estimate is truncation. For a finite
tensor v the work for truncating is bounded by

d|r(v)|4∞ + |r(v)|4∞
d∑
j=1

#πj(v)

Application of Proposition 4.7 yields the desired claim.

Remark 4.9. A few remarks on Corollary 4.8 are in order.
1. The factor ε−1/s is the work related to the approximation of the frames of uδ.

It does not dominate the complexity estimate.

2. The factor γ−1(C
‖uδ‖A(γ)

ε) reflects the low rank approximability of uδ. Unlike
in standard AWGM methods, due to the heavy reliance on truncation tech-
niques to keep ranks small, we can not expect the dependence on this factor
to be linear but rather algebraic at best. To achieve linear complexity, if at all
possible, would require a fundamentally different approach to approximate u.

3. The dimension dependence on d� 1 is hidden in the constants and the rank

growth factor γ−1(C
‖uδ‖A(γ)

ε). In particular, approximability of f , A, uδ and

the behavior of κ(Aδ) determine the overall amount of work w.r.t. d. E.g.,
in [3, Thm. 26], the authors assume γ to be exponential in the rank r and
independent of d; the sparsity of frames of f to be independent of d and the
overall support size of f to grow at most linearly in d; the excess regularity
to be t, κ(Aδ) and the ranks of A to be independent of d; the number of
operations to compute fε to grow at most polynomially in d. With these
assumptions, the authors show the number of required operations to compute
uε to grow at most as dC ln(d)| ln(ε)|C ln(d) w.r.t. d. Here, ln(d) stems from
the fact that the quasi-optimality of truncation and coarsening depends on d.

4.7. Discussion. For a long time the question of optimality for classical adaptive
methods remained open. In particular, it was unclear if adaptive algorithms recovered
the minimal index set (of wavelets or finite elements) required for the current error,
up to a constant. In [7] the authors showed for an elliptic problem solved via an
adaptive wavelet Galerkin routine that indeed optimality can be achieved. Crucial
for optimality was a re-coarsening step, as in line 11 of Algorithm 3. In [13] it was
shown that optimality can be attained without a re-coarsening step by a careful choice
of the bulk chasing parameter α. In [31] the results were extended to finite elements.

It was thus of interest for us to investigate if we can ensure index set optimality
without the re-coarsening step in line 11 of Algorithm 3. By “optimality” we refer to
the optimal product index set.

In short, this fails for the current form of the algorithm. We briefly elaborate on
the issue.

I. On one hand, the choice of the bulk chasing parameter 0 < α < 1 is a delicate
balance between optimality and convergence. In [13] it was shown that α < κ(A)−1/2

ensures optimality, while any choice α > 0 ensures convergence.

23

On the other hand, by the nature of high dimensional problems, if we want to
avoid exponential scaling in d, we have to consider each Λj in the product Λ1×· · ·×Λd

separately. This leads to the necessity of aggregating information, as is done via the
contractions in (2.6). Such aggregation means we can estimate magnitudes at best
only up to a dimension dependent constant. Specifically,

√
d in (2.7).

Thus, for a given α > 0, computing the minimal index set would be of exponential
complexity. Computing the minimal index set via contractions for a given α, we can
show that the resulting set is optimal for an adjusted value of

α̃ :=

√
α2 + d− 1

d
.

For d > 1 this value is too close to 1 and cannot additionally satisfy α̃ < κ(A)−1/2

for realistic values of κ(A).
From a different perspective, suppose we use contractions to determine the index

set in the first dimension only and then iterate this procedure over all dimensions.
Choosing α < κ(A)−1/2 ensures the optimality of the resulting index sets. However,
the final relative error is bounded by

√
d(1− α2). Hence, for realistic κ(A), we loose

convergence. The range of values for optimality and convergence do not intersect
since the additional constant

√
d is larger than 1. This mismatch lies in the heart of

the issue.

II. Nonetheless, numerically it has been observed that the cardinality of the index
sets generated using contractions is close to optimal. Thus, we take a closer look at
the ratio between the two index sets. More formally, for a tensor v ∈ `2(J1×· · ·×Jd)
and a constant 0 < α < 1, define

NE(α,v) := min

{
N ∈ N : ∀j Λj ⊂ Jj ,

d∑
j=1

#Λj ≤ N, ‖RΛ1×···×Λdv‖ ≥ α‖v‖
}
,

NQ(α,v) := min

{
N ∈ N : ∀j Λj ⊂ Jj ,

d∑
j=1

#Λj ≤ N, µ(v, N) ≤
√

1− α2‖v‖
}
.

where

µ2(v, N) =

d∑
j=1

∑
λj∈Λj

|πj(v)[λ]|2,

Λj minimal s.t.

d∑
j=1

#Λj ≤ N.

We consider the ratio NQ(α,v)
NE(α,v) .

Suppose v is a finitely supported tensor with M :=
∑d
j=1 # suppj(v). For the

number of discarded terms one can show

M −NE(α,v) ≤ ϑ(v, α, d)(M −NQ(α,v) + 1)− 1.

where the constant ϑ can be bounded as

d1/d ≤ ϑ(v, α, d) ≤ d.

24

In order to estimate the desired ratio we would have to assume

M −NQ
M

≤
1− ϑ−1

M − c
ϑ− c

,(4.14)

for some constant 0 < c < 1. In this case we would get

NQ

NE
≤ 1

c
.

Unfortunately, we were not able to derive satisfactory rigorous assumptions, under
which (4.14) holds.

One can also derive the following bounds for a candidate constant C independent
of v

Cmean
d− 1 + α2

dα2/d
≤ C ≤ Cmean

d− 1 + α2

dα2
(4.15)

The constant Cmean behaves like the ratio between arithmetic and geometric means
of #Jj .

We performed numerical experiments for d = 2, 3, 4 for tensors of different sizes,
varying the parameter α. We considered both random tensors and tensors with dif-
ferent structures replicating the form of a residual tensor. In all test cases the bound9

(4.15) was satisfied. Particularly for random tensors, the lower bound is sharp, while
for tensors with a “residual like” structure the bound seems overly pessimistic.

III. Despite evidence suggesting otherwise, the statement NQ/NE . 1 is not
true in general. A simple counter example is a sequence of diagonal tensors with a
fixed norm, where most of the norm is contained in the first few entries while the size
of the tensor (and the number of non-zero entries) grows.

One could consider an improvement on NQ by adjusting the definition as

NQ(α,v) := min

{
N ∈ N : ∀j Λj ⊂ Jj ,

d∑
j=1

#Λj ≤ N,

‖v − C(v, N)‖ ≤
√

1− α2‖v‖
}
.

This results in an additional complexity factor of log2(N) which, however, does not
dominate the overall complexity. Although this does reduce NQ/NE, the same
counter example applies in this case as well. It is not clear to us if and how we
can rigorously avoid such pathological cases.

IV. Last but not least, we would like to remark that avoiding the re-coarsening
step in line 11 is meaningful only if we can avoid the re-truncation step in line 10 as
well. At this point the Galerkin step can not be viewed as a projection on a fixed
manifold. We envision a version of HT-AWGM where we extend and fix the tensor
tree adaptively, similar to the index set. However, even in this case the ideal Galerkin
step is a projection onto a non-linear manifold. Showing optimality here without re-
truncation would require a different approach than in the case of index set optimality.
We defer the analysis and implementation of such an algorithm to future work.

9For most test cases the lower bound was satisfied.

25

5. Numerical Experiments. In this section, we test our implementation of
HT-AWGM analyzed in the previous section. In particular, we are interested in the
behavior of ranks and the discretization. We choose a simple model problem and vary
the dimension d. We consider −∆u = 1 in Ω := (0, 1)d, u = 0 on ∂Ω in its variational
formulation of finding u ∈ H1

0 (Ω) such that a(u, v) :=
∫

Ω
〈∇u(x),∇v(x)〉dx = 1(v) for

all v ∈ H1
0 (Ω). The corresponding operator is given by A : H1

0 (Ω)→ H−1(Ω), where
A(u) := a(u, ·), which is boundedly invertible and self-adjoint.

For the discretization we use tensor products of L2-orthonormal piecewise poly-
nomial cubic B-spline multiwavelets. We use our own implementation of an HTucker
library. All of the software is implemented in C++. For more details see, e.g. [29].
We set the HT tree to be a perfectly balanced binary tree. We vary the dimension as
d = 2, 4, 8, 16, 32.

0 10 20 30 40 50 60 70 80 90
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d2

d4

d8

d16

d32

(a) Residual per iteration.

10
0

10
1

10
2

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d2

d4

d8

d16

d32

(b) Residual vs. ranks.

10
1

10
2

10
3

10
4

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

d2

d4

d8

d16

d32

Order 3

(c) Residual vs. size of support of frames.

0 10 20 30 40 50 60 70 80 90

2

3

4

5

6

7

8

9

10

d2

d4

d8

d16

d32

(d) # PCG iterations per HT-AWGM it-
eration.

Fig. 5.1: HT-AWGM for different dimensions d.

Results. In Figure 5.1a, we display the convergence history with respect to the
number of overall iterations. Due to the structure of the linear operator A, the
condition number κ(Aδ) is independent of d. Moreover, the parameters α, ω1, ω2 ∈
(0, 1) are chosen the same for all dimensions. Thus, the theoretical convergence rate
of HT-AWGM is independent of d, which is observed in Figure 5.1a.

However, the parameters ω3, ω4, ω5 depend on d which result in different toler-

26

ances for the re-truncation and re-coarsening step10.
In Figure 5.1b we show the behavior of ranks of the numerical solution uk. The

data points are sorted by rank, where for repeating ranks we took the minimum of the
corresponding residual. For all dimensions d we observe an exponential decay w.r.t.
ranks, which is according to expectation for the Laplacian. As stated in Remark 4.9
and consistent with the observations in [3], we expect the ranks to scale logarithmically
in the dimension.

In Figure 5.1c we plot the sum of the supports of frames and the corresponding
residual. Since we are using cubic multi-wavelets, we expect the convergence w.r.t.
the support size to be of order 3 and the dimension dependence to be slightly more
than linear.

Finally, Figure 5.1d shows the number of PCG iterations in each HT-AWGM
iteration. We see that PCG requires between 2 and 10 iterations to achieve a fixed
error reduction (ω2) for all dimensions d, since κ(Aδ) does not depend on d.

We would like to emphasize that, unlike in classical non-tensor adaptive methods,
for high dimensional tensor methods ranks are crucial for performance. The size of the
wavelet discretization affects the performance indirectly, since the maximum wavelet
level affects the ranks in the preconditioning. However, this is not necessarily a
feature solely of the preconditioning. Larger frames imply we are searching for low
dimensional manifolds in higher dimensional spaces. In the worst case scenario, this
implies the ranks of such manifolds will grow.

A few numerical considerations significantly improve the overall performance. For
PCG choosing the adaptive tolerance is a trade off between the number iterations
and how expensive each iteration is. We found that choosing the adaptive tolerance
0.1 yields best results. For experiments varying the adaptive tolerance we refer to
[33].

Moreover, note that in each PCG iteration the preconditioned matrix-vector
product only has to be computed once, since this can be avoided for computing the
energy norm of the search direction. We are only interested in computing the residual
and thus we can also avoid computing an intermediate matrix-vector product and
apply the preconditioning, summation and truncation to the residual directly. This
gives the same result, but involves much lower intermediate ranks, since the truncation
tolerances are relative to the residual and not ‖Aδuk‖.

Finally, in analogy to [2], if we are interested in controlling the error only in L2,
we can approximate the L2 coefficients. This means applying S−2(δ)A instead of
S−1(δ)AS−1(δ) which greatly reduces the computational cost.

Adaptivity. In conclusion we would like to remark on the use of an adaptive
discretization for the model problem above. In a classical AWGM method applied to
a smooth problem like −∆u = 1, we would expect the algorithm to recover a nearly
uniform grid. One might expect the same for the discretization of the frames in a
tensor format. However, as we will see, this is not the case.

Figure 5.2a shows the first 6 basis functions in the first dimension of uk for d = 4
after 15 inner iterations of HT-AWGM. Figure 5.2b shows the support centers of
active wavelets.

Note that, since we are using cubic multiwavelets, there are more than one mother
scaling functions and mother wavelets. Thus, each point in the plot can possibly

10In the graphics re-truncation and re-coarsening is counted as one iteration step, though techni-
cally it is not a HT-AWGM iteration step.

27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-4

-3

-2

-1

0

1

2

3

4

(a) First 6 basis functions.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

7

8

(b) Support centers and levels of wavelets

Fig. 5.2: Basis functions in the first dimension for d = 4.

represent more than one wavelet. In this particular case the overall number of active
wavelets is 66 and the maximum level is 8. The number of wavelets for a uniform
grid of up to level 8 is 1536, which is roughly 23 times more than the number of
active wavelets at this stage. Recall that the computational complexity is linear in
the number of active wavelets.

As we can see, the one dimensional basis functions exhibit boundary layers and
oscillations for increasing rank. A similar pattern is observed in all dimensions for all
values of d. This behavior can be explained as follows.

Note that the computed one dimensional basis functions do not solve the original
d-dimensional equation. Instead, one can consider the best rank one update. Given a
current approximation uk, we compute a rank one update v = v1⊗ · · · ⊗ vd such that

J(uk + v) = min
w=w1⊗···⊗wd∈H1

0 (Ω)
J(uk + w),

where J : H1
0 (Ω)→ R is the Dirichlet functional

J(u) =

∫
Ω

∇2u dx−
∫

Ω

fu dx,

for some f ∈ L2(Ω). Considering the best approximation in the j-th dimension and
fixing the rest11, we can compute the first variation as

d

dτ
J(uk + v1 ⊗ · · · (vj + τg) · · · ⊗ vd)

∣∣∣
τ=0

=

= κ1

∫
Ωj

v′jg
′ dxj + κ2

∫
Ωj

vjg dxj − 〈Rkj , g〉 = 0, ∀g ∈ H1
0 (Ωj),(5.1)

11I.e., performing ALS.

28

with

κ1 :=
∏
i 6=j

‖vi‖2L2
, κ2 :=

∑
k 6=j

‖v′k‖2L2

∏
i 6=k,
i 6=j

‖vi‖2L2
, ε−1 :=

κ2

κ1
=
∑
k 6=j

(
‖v′k‖L2

‖vk‖L2

)2

,

〈Rkj , g〉 :=

∫
Ωj

g

∫
×i6=j Ωi

f · ⊗k 6=jvk dx

−
∫

Ωj

g

∫
×i6=j Ωi

∇d−1, 6=juk · ∇d−1,6=j ⊗k 6=j vk dx

−
∫

Ωj

g′
∫
×i6=j Ωi

∂uk
∂xj
· ⊗k 6=jvk dx.(5.2)

I.e., the basis functions in Figure 5.2a solve (5.1). This has two consequences. First,
this is no longer a Poisson equation, but rather a reaction-diffusion equation that is
singularly perturbed for ε → 0+. Indeed, we have observed that ε becomes smaller
as the rank grows. This explains the boundary layers and the adaptive discretization
in Figure 5.2. Second, the right hand side in (5.1) is the residual from (5.2). This
term has 2 orders of regularity less than the numerical approximation uk. I.e., using
basis functions of higher regularity improves the regularity of the residual and thus
the behavior of the frames of the numerical approximation. Moreover, the residual
also introduces the oscillations visible in Figure 5.2a.

Acknowledgements. We would like to thank Markus Bachmayr, Rob Stevenson
and Wolfgang Dahmen for their very helpful comments on this work. This paper
was partly written when Mazen Ali was a visiting researcher at Centrale Nantes in
collaboration with Anthony Nouy. We acknowledge Anthony Nouy for the helpful
discussions and financial support. We are grateful to the European Model Reduction
Network (TD COST Action TD1307) for funding.

REFERENCES

[1] Bachmayr, M., and Dahmen, W. Adaptive near-optimal rank tensor approximation for high-
dimensional operator equations. Found. Comput. Math. 15, 4 (2015), 839–898.

[2] Bachmayr, M., and Dahmen, W. Adaptive low-rank methods for problems on Sobolev spaces
with error control in L2. ESAIM Math. Model. Numer. Anal. 50, 4 (2016), 1107–1136.

[3] Bachmayr, M., and Dahmen, W. Adaptive low-rank methods: problems on Sobolev spaces.
SIAM J. Numer. Anal. 54, 2 (2016), 744–796.

[4] Bachmayr, M., and Schneider, R. Iterative methods based on soft thresholding of hierarchical
tensors. Found. Comput. Math. 17, 4 (2017), 1037–1083.

[5] Bachmayr, M., Schneider, R., and Uschmajew, A. Tensor networks and hierarchical tensors
for the solution of high-dimensional partial differential equations. Found. Comput. Math.
(2016), 1–50.

[6] Ballani, J., and Grasedyck, L. A projection method to solve linear systems in tensor format.
Numer. Linear Algebra Appl. 20, 1 (2013), 27–43.

[7] Cohen, A., Dahmen, W., and DeVore, R. Adaptive wavelet methods for elliptic operator
equations: convergence rates. Math. Comp. 70, 233 (2001), 27–75.

[8] Cohen, A., Dahmen, W., and DeVore, R. Adaptive wavelet methods. II. Beyond the elliptic
case. Found. Comput. Math. 2, 3 (2002), 203–245.

[9] Dahmen, W., DeVore, R., Grasedyck, L., and Süli, E. Tensor-sparsity of solutions to high-
dimensional elliptic partial differential equations. Found. Comput. Math. 16, 4 (2016),
813–874.

[10] DeVore, R. A. Nonlinear approximation. In Acta numerica, 1998, vol. 7 of Acta Numer.
Cambridge Univ. Press, Cambridge, 1998, pp. 51–150.

29

[11] Dolgov, S., and Khoromskij, B. Simultaneous state-time approximation of the chemical
master equation using tensor product formats. Numer. Linear Algebra Appl. 22, 2 (2015),
197–219.

[12] Fischer, B. Polynomial based iteration methods for symmetric linear systems. Wiley-Teubner
Series Advances in Numerical Mathematics. John Wiley & Sons, Ltd., Chichester; B. G.
Teubner, Stuttgart, 1996.

[13] Gantumur, T., Harbrecht, H., and Stevenson, R. An optimal adaptive wavelet method
without coarsening of the iterands. Math. Comp. 76, 258 (2007), 615–629.

[14] Hackbusch, W. Iterative Lösung großer schwachbesetzter Gleichungssysteme, vol. 69. B. G.
Teubner, Stuttgart, 1991.

[15] Hackbusch, W. Tensor spaces and numerical tensor calculus, vol. 42 of Springer Series in
Computational Mathematics. Springer, Heidelberg, 2012.

[16] Hackbusch, W., and Kühn, S. A new scheme for the tensor representation. J. Fourier Anal.
Appl. 15, 5 (2009), 706–722.

[17] Holtz, S., Rohwedder, T., and Schneider, R. The alternating linear scheme for tensor
optimization in the tensor train format. SIAM J. Sci. Comput. 34, 2 (2012), A683–A713.

[18] Jarre, F., and Stoer, J. Optimierung. Springer-Verlag, 2004.
[19] Kestler, S. On the adaptive tensor product wavelet Galerkin Method with applications in

finance. PhD thesis, Ulm University, 2013.
[20] Khoromskij, B. N. Tensor-structured preconditioners and approximate inverse of elliptic

operators in Rd. Constr. Approx. 30, 3 (2009), 599–620.
[21] Khoromskij, B. N., and Oseledets, I. Quantics-TT collocation approximation of parameter-

dependent and stochastic elliptic PDEs. Comput. Methods Appl. Math. 10, 4 (2010),
376–394.

[22] Khoromskij, B. N., and Schwab, C. Tensor-structured Galerkin approximation of parametric
and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33, 1 (2011), 364–385.

[23] Kressner, D., and Tobler, C. Low-rank tensor Krylov subspace methods for parametrized
linear systems. SIAM J. Matrix Anal. Appl. 32, 4 (2011), 1288–1316.

[24] Kreyszig, E. Differential geometry. Dover Publications, Inc., New York, 1991. Reprint of the
1963 edition.

[25] Nochetto, R. H., Siebert, K. G., and Veeser, A. Theory of adaptive finite element methods:
an introduction. In Multiscale, nonlinear and adaptive approximation. Springer, Berlin,
2009, pp. 409–542.

[26] Novak, E., and Woźniakowski, H. Approximation of infinitely differentiable multivariate
functions is intractable. J. Complexity 25, 4 (2009), 398–404.

[27] Oseledets, I. V. Tensor-train decomposition. SIAM J. Sci. Comput. 33, 5 (2011), 2295–2317.
[28] Oseledets, I. V., and Dolgov, S. V. Solution of linear systems and matrix inversion in the

TT-format. SIAM J. Sci. Comput. 34, 5 (2012), A2718–A2739.
[29] Rupp, A. High dimensional wavelet methods for structured financial products. PhD thesis,

Ulm University, 2013.
[30] Schneider, R., and Uschmajew, A. Approximation rates for the hierarchical tensor format

in periodic Sobolev spaces. J. Complexity 30, 2 (2014), 56–71.
[31] Stevenson, R. Optimality of a standard adaptive finite element method. Found. Comput.

Math. 7, 2 (2007), 245–269.
[32] Stevenson, R. Adaptive wavelet methods for solving operator equations: an overview. In

Multiscale, nonlinear and adaptive approximation. Springer, Berlin, 2009, pp. 543–597.
[33] Tobler, C. Low-rank tensor methods for linear systems and eigenvalue problems. PhD thesis,

ETH Zrich, 2012.
[34] Urban, K. Wavelet methods for elliptic partial differential equations. Numerical Mathematics

and Scientific Computation. Oxford University Press, Oxford, 2009.

30

	Introduction
	Preliminaries
	(Quasi-)optimal Approximations
	Tensor Formats
	Separable Preconditioning

	Perturbed finite-dimensional descent method
	Gradient descent
	Conjugate gradient descent

	HTucker-Adaptive Wavelet-Galerkin Method (HT-AWGM)
	SOLVE
	ESTIMATE
	MARK and REFINE
	HT-AWGM Algorithm
	Convergence of HT-AWGM
	Complexity
	Discussion

	Numerical Experiments
	References

