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Abstract: We consider parameter-dependent time-periodic parabolic problems as they occur
e.g. in the modeling of rotating propellers. The goal is to determine the parameters (e.g. design
or steering parameters) such that a given output of interest (e.g. the efficiency of the propeller)
is maximized. A standard approach to numerically solve time-periodic problems is a time-
stepping (fixed-point) scheme. This approach, however, often suffers from some drawbacks, in
particular within the Reduced Basis Method (RBM). First, there might be long transient phases
before a periodic or steady state is reached, which is particularly disadvantageous in the online
phase. Moreover, corresponding error estimates usually include sums over time-steps which
might become inaccurate.
Instead, we consider a space-time variational formulation using periodic basis functions in time,
which avoids the need for fixed-point iterations. Based on this variational formulation, we have
developed a space-time RBM using wavelets in time and derived corresponding a-posteriori error
estimates. We present numerical results indicating the efficiency of the method as well as the
effectivity of the derived error bounds.

Keywords: Reduced-order models, error estimation, time-periodicity, space-time.

1. INTRODUCTION

Let H be a Hilbert space, V ↪→ H ↪→ V ′ a Gelfand
triple and D ⊂ Rp a parameter set. We are interested

in outputs J(µ) :=
∫ T

0
`(u(t;µ))dt, µ ∈ D, with a linear

functional ` : V → R and u(·;µ) being the solution over the
time interval I := (0, T ) of the time-periodic parametrized
partial differential equation (PPDE)

ut(t;µ) +A(t;µ)u(t) = g(t;µ) in V ′, t ∈ (0, T ), (1)

u(0;µ) = u(T ;µ) in H. (2)

Here, g(·;µ) ∈ L2(I;V ′) is given and A(t;µ) ∈ L(V, V ′) is
defined by 〈A(t;µ)u, v〉 := a(t;u, v;µ) for v ∈ V , µ ∈ D,
t ∈ I, the duality pairing 〈·, ·〉 in V ′ × V and a continuous
and coercive bilinear form a(t; ·, ·, µ) : V × V → R with
coercivity and continuity constants α(µ) ≥ α0, γ(µ) ≤ γ0

uniformly in D and I.

Such problems are relevant e.g. for all kinds of rotators and
propellers, with the parameter µ ∈ D modeling design or
steering properties and J(µ) representing the efficiency or
some other time-averaged physical quantity.

A standard approach to numerically solving (1),(2) is
by a fixed-point iteration, i.e. replacing (2) by an initial
condition and solving a sequence of such initial value
problems by using the approximation at the final time T
as initial value for the next iteration. Depending on the
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speed of convergence of such a fixed-point iteration, this
may require several numerical solutions of the initial value
problem corresponding to (1).

Moreover, we are often interested in the optimization of
the output w.r.t the parameters µ ∈ D. Hence, e.g. in a
numerical optimization, the PPDE has to be solved for
several values of the parameter. This is a typical multi-
query situation where Reduced Basis Methods (RBMs) can
be applied to construct a reduced model that can be solved
highly efficiently and gives rise to a-posteriori error control.
In such a framework, the fixed-point iteration would have
to be performed also online with possibly large additional
costs.

There are several papers considering RBMs for evolution
equations, e.g. Dihlmann et al. (2011); Grepl (2012); Grepl
and Patera (2005); Haasdonk and Ohlberger (2008); Rovas
et al. (2006). Within the fixed-point framework, we have
introduced error bounds and efficient (offline) routines for
the RBM in Steih (2010). This approach, however, suffers
from two drawbacks, namely the possibly large number
of fixed-point iterations and the possible increase of the
error within the iteration. The reason is that conventional
time-stepping RBMs for time-dependent problems lead
to time-independent bases (cf. Grepl and Patera (2005);
Haasdonk and Ohlberger (2008)). Within those frame-
works, error bounds can only be formulated for discrete
spatio-temporal norms and involve sums over all time
steps, thus growing in time. Moreover, in case of time-
variant operators, the construction of the RB basis re-



quires either storage of additional information at each time
point (Dihlmann et al. (2011)) or additional computational
effort to separate time and space (Grepl (2012)). Instead,
we propose a space-time variational formulation combined
with the RBM.

2. SPACE-TIME FORMULATION

With Y := L2(I;V ) and X := L2(I;V ) ∩ H1
per(I;V ′)

where H1
per(I;V ′) := {v ∈ Y : vt(t) ∈ V ′ ∀ t ∈ I, v(0) =

v(T ) in H}, a variational formulation in space-time of (1)
reads:

Find u(µ) ∈ X : b(u, v;µ) = f(v;µ) ∀ v ∈ Y, (3)

where

b(u, v;µ) :=

∫ T

0

〈ut(t;µ), v(t)〉dt+

∫ T

0

a(t;u(t, µ), v(t);µ)dt,

f(v;µ) :=

∫ T

0

(g(t;µ), v(t))Hdt.

Lemma 1. The bilinear form b in (3) is bounded, surjective
and satisfies an inf-sup-condition, so that (3) is well-posed.

Proof. Boundedness follows from the continuity of a:

|b(u, v)| ≤
√

2 max{1, γ(µ)}‖u‖X ‖v‖Y .
The special choice of vw(µ) := A−1

adj(µ)wt ∈ Y with the

adjoint operator Aadj(µ) of A(µ) for each w ∈ X yields
the inf-sup condition with lower bound

βLB(µ) =
α(µ) min{1, γ−2(µ)}√

2 max{1, α−1(µ)}
. (4)

Finally, surjectivity follows from the existence of a z ∈ X
with

b(z, v) =

∫ T

0

a(t; v, v;µ)dt ≥ α(µ)‖v‖Y > 0 ∀ v ∈ Y,

which can be proven using a sequence of Galerkin ap-
proximations together with different a-priori estimates and
corresponding convergence results For details, we refer to
Urban and Patera (2011), Steih and Urban (2011). 2

3. REDUCED BASIS METHOD

The general RBM framework can be summarized as fol-
lows: Based on a (suitably fine and thus usually high-
dimensional) discretization XN of X (the so-called truth
approximation), RBMs use so-called snapshots {u(µi), i =
1, . . . , N} of the solution to construct a basis for the
low-dimensional approximation space XN , N � N , in
an offline phase. Evaluations of both solution and error
estimates for new parameters in the online phase then only
depend on N , as one considers the Galerkin approximation

uN (µ) ∈ XN : b(uN , vN ;µ) = f(vN ;µ) ∀ vN ∈ YN . (5)

The RB framework requires the existence of an affine
decomposition of the involved operators, i.e. b(u, v;µ) =∑Qb

q=1 θ
q
b (µ)bq(u, v), f(v;µ) =

∑Qf

q=1 θ
q
f (µ)fq(v). This de-

composition allows the precomputation of parameter-
independent quantities in the offline phase and reduces
the effort for assembling the N -dimensional systems in
the online phase to rapid evaluations of the functions
θq◦(µ) and simple matrix-vector multiplications. In case of
non-affine dependencies, operators can be approximated

by empirical interpolation methods (EIM, Barrault et al.
(2004)).
Note that RB methods within time-stepping frame-
works additionally require separability of time and space,
i.e. affine decompositions of the form a(t, u, v;µ) =∑Qa

q=1 θ
q
a(t, µ)aq(u, v). This should be kept in mind also

for our numerical results reported below.

3.1 Basis generation

In the space-time framework, the snapshots for building
the reduced basis are solutions of (3) and thus space-time
functions. During the so-called training phase, the corre-
sponding parameter values µi are selected by a Greedy
scheme over a chosen training set Ξtrain, based upon a-
posteriori error estimators that are rigorous bounds for
the error eN (µ) := u(µ) − uN (µ). The set of snapshots,
orthogonalized with respect to the inner product on X ,
forms the basis for the approximation space XN . An online
approximation uN (µ) = uN (µ)(t, x) for a new parameter
is then obtained as the solution of the N × N system
corresponding to (5). The computational effort is O(N3)
as the RB system matrices are usually densely populated.

Fixed-point approaches are an extension of well-known
time-stepping methods to obtain periodic or stationary
solutions. For ease of presentation, we consider the back-
ward Euler method. A truth solution then consists of
finding uk(µ) = u(tk, µ) ∈ V for the discrete time points
{ti := i∆t}i=0,...,K with u0(µ) = uK(µ) and

(uk(µ), w)H + ∆t a(tk, u
k(µ), w;µ)

= (uk−1(µ), w)H + ∆t g(tk, w;µ) ∀w ∈ V,
for k = 1, . . . ,K. Starting with an (arbitrary) u0

(0)(µ),

one solves the above initial value problem (IVP) and
uses u0

(1)(µ) := uK(0)(µ) for the next iteration, stopping

when ‖u0
(M)(µ)− u0

(M−1)(µ)‖V ≤ tol. In the following, we

denote by M = M(tol) the required number of fixed-point
iterations until convergence.
Basis generation is usually done with a POD-Greedy
approach: After the N -th snapshot {uk(µ), k = 0, . . . ,K}
is chosen greedily using an error estimator, the error of
the projection onto the existing (N − 1)-dimensional basis
is subjected to a POD and the first mode taken as N -th
basis function of the reduced basis VN so that this is a
basis in space only.
The corresponding RB problems are to find solutions
{ukN (µ), i = 0, . . . ,K} with uiN ∈ VN , u0

N (µ) = uKN (µ)
and

(ukN (µ), wN )H + ∆t a(tk, u
k
N (µ), wN ;µ)

= (uk−1
N (µ), wN )H + ∆t g(tk, wN ;µ) ∀wN ∈ VN ,

for k = 1, . . . ,K. Hence, in the online phase another
fixed-point problem has to be solved and the computa-
tional effort for a reduced problem with this approach is
O(MKN3).

3.2 A-posteriori errors

All RB basis generation methods rely on a-posteriori es-
timators that are not only required to be rigorous upper
bounds for the error, but must also be rapidly evaluable,
i.e., their computation has to be N -independent. This



property enables the otherwise computationally exhaus-
tive Greedy to efficiently search over the training set Ξtrain.

A modification of the known error bound for parabolic
problems (Grepl and Patera (2005)) yields the following
result for periodic solutions using the fixed-point method.

Lemma 2. The error eN (µ) in the fixed-point approach
can be bounded by(

∆t

K∑
k=1

‖ekN (µ)‖2V

) 1
2

≤

(
∆t

α2(µ)

K∑
k=1

‖rkN (·;µ)‖2V ′

) 1
2

(6)

with rkN (w;µ) := ∆t g(tk, w;µ)− (ukN (µ)−uk−1
N (µ), w)H−

∆t a(tk, u
k
N (µ), w;µ) the residual at time step k.

Note that the left hand side (∆t
∑K
k=1‖ekN (µ)‖2V )1/2 is a

trapezoidal approximation of the norm ‖eN (µ)‖Y , as due
to periodicity we have e0

N (µ) = eKN (µ).

The space-time error bounds by their very nature do not
involve time-steps and are thus much more similar to the
well-known estimates in the elliptic case.

Lemma 3. The error of the space-time RB approximation
uN (µ) in Y can be bounded as follows:

‖eN (µ)‖Y ≤
‖rN (·;µ)‖Y′

α(µ)
,

where rN (v;µ) := f(v;µ)− b(uN (µ), v;µ).

Proof. Let u ∈ X . Periodicity of u and coercivity of a
yield

b(u, u;µ) =
1

2

(
‖u(T )‖2H − ‖u(0)‖20

)
+

∫ T

0

a(t, u, u;µ)dt

≥
∫ T

0

α(µ)‖u‖2V dt = α(µ) ‖u‖2Y . (7)

As uN ∈ X , uN ∈ XN ⊂ X , we know that eN (µ) ∈ X .
Using (7) and b(eN (µ), v;µ) = rN (v;µ), we then have

α(µ)‖eN (µ)‖2Y ≤ b(eN (µ), eN (µ);µ) = rN (eN (µ);µ)

≤ ‖rN (·;µ)‖Y′‖eN (µ)‖Y ,
which yields the claim. 2

Moreover, the space-time framework additionally allows
the derivation of an error bound in the solution space X ,
which is not possible in time-stepping contexts.

Lemma 4. The error of the space-time RB approximation
uN (µ) in X can be bounded by

‖eN (µ)‖X ≤
‖rN (·;µ)‖Y′

β(µ)
, (8)

where β(µ) is the inf-sup constant of the bilinear form
b(·, ·;µ).

Proof. From Lemma 1, we know that the inf-sup constant
β(µ) exists. Its definition yields

β(µ) = inf
0 6=u∈X

sup
06=v∈Y

|b(u, v;µ)|
‖u‖X ‖v‖Y

= inf
06=u∈X

‖b(u, ·;µ)‖Y′
‖u‖X

,

so that

β(µ) ≤ ‖b(e(µ), ·;µ)‖Y′
‖eN (µ)‖X

=
‖rN (·;µ)‖Y′
‖eN (µ)‖X

. 2

The space-time bound of the output approximation error
involves the dual problem

Find z(µ) ∈ Y : b(u, z;µ) = J(u) ∀u ∈ X

with corresponding approximation in the dual reduced
spaces XN∗ , YN∗ . We then obtain a slightly generalized
Petrov-Galerkin version of the output bound from Rovas
et al. (2006).

Lemma 5. With the dual reduced solution zN∗(µ), dual
residual r∗N∗(w;µ) := J(w) − b(w, zN∗(µ);µ) and output
approximation JN,N∗(µ) := J(uN (µ))−rN (zN∗(µ);µ), the
output error is bounded by

|J(u(µ))− JN,N∗(µ)| ≤ 1

β(µ)
‖rN (·;µ)‖Y′‖r∗N∗(·;µ)‖X ′ .

Proof. With the linearity of the output and (8), we have

|J(u(µ))− JN,N∗(µ))| = |J(eN (µ);µ)− rN (zN∗(µ);µ)|
= |J(eN (µ))− b(eN (µ), zN∗(µ);µ)|
= |r∗N∗(eN (µ);µ)|
≤ ‖r∗N∗(·;µ)‖X ′‖eN (µ)‖X ,

≤ ‖r∗N∗(·;µ)‖X ′
‖rN (·;µ)‖Y′

β(µ)
. 2

As typical in RB methods, these error bounds require the
computation of the dual norms of the involved residuals.
This is usually done by calculating the respective Riesz
representations, i.e. the solutions ε̂N (µ) of e.g. rN (v;µ) =
(ε̂N (µ), v)Y , and exploiting that ‖rN (·;µ)‖Y′ = ‖ε̂N (µ)‖Y .
An offline-online decomposition can be utilized for the
computation of ‖ε̂N (µ)‖Y , where the offline stage requires
the solution of Qf +NQa space-time problems. The same
number of eigenproblems in V is needed for the fixed-point
bound (6), but only if a and g are either time-independent
or separable into time and space components. Otherwise,
individual Riesz representations have to be calculated for
each time step i = 1, . . . ,K.

Another important aspect of an error bound ∆N (µ) is its
effectivity

η(µ) :=
∆N (µ)

‖eN (µ)‖
.

The rigor of ∆N ensures that η(µ) ≥ 1. On the other hand,
to avoid an overestimation of the true error - which leads
to large reduced bases and hence an unnecessary online
computational effort, and might even hinder the Greedy
search for optimal snapshot parameters - the effectivity
should be as close to unity as possible.

Finally, computing α(µ) and β(µ) requires the solution of
generalized space-time eigenproblems, as

α(µ) = inf
w∈X

b(w,w;µ)

‖w‖2Y
, β(µ) = inf

w∈X

‖T (µ)w‖Y
‖w‖X

,

with the supremizing operator T (µ)w = argsupv∈Y
b(w,v;µ)
‖v‖Y .

An offline-online decomposition for the computation of
lower bounds αLB(µ) ≤ α(µ), βLB(µ) ≤ β(µ) can be
achieved with the Successive Constraint Method (SCM,
Huynh et al. (2007)).
As in (4), sometimes also analytical bounds can be derived.
Note that for time-dependent linear forms in a fixed-
point framework we have to work with the time-dependent
constants α(tk, µ) for k = 1, . . . ,K. Any search for a lower
bound, e.g. αLB(µ) ≤ α(tk, µ), can then only be done with
respect to these discrete times.

So far, RBM for space-time approaches has only be consid-
ered in Rovas et al. (2006), where a-posteriori estimates for



the output have been derived. There, the authors consider
a pure Galerkin formulation in a less general setting and
employ Discontinuous Galerkin methods in order to cope
with the size of full space-time discretizations.

4. WAVELET METHODS

The simultaneous treatment of space and time effectively
increases the problem dimension by one. Hence, in order
to compute truth solutions in the space-time approach,
a good and efficient discretization is paramount. Both
X = (L2(I) ⊗ V ) ∩ (H1

per(I) ⊗ V ′) and Y = L2(I) ⊗ V
have tensor product representations which can be mirrored
in the structure of the discrete approximation spaces,
i.e. XN = Sh ⊗ Vh, YN = Th ⊗ Vh for some spaces
Sh ⊂ H1

per(I), Th ⊂ L2(I), Vh ⊂ V .

Wavelet discretizations have the advantage that periodic
basis functions are easily constructed. Moreover, certain
norm equivalence results enable the simple evaluation
of norms in Sobolev spaces Hs(Ω) for all s in a given
range that depends on the wavelet construction. Let Θ :=
{ϑi, i ∈ I} be a collection of wavelets that form a (normal-
ized) Riesz basis of L2(I) and after renormalization one of
H1(I). Similarly, let Σ := {σj , j ∈ J } be a normalized
Riesz basis of H and renormalizable to Riesz bases in V
and V ′. Then Θ ⊗ Σ can be renormalized in X as well as
Y to form a basis of both spaces, respectively (see Schwab
and Stevenson (2009)):

YN =

{
(t, x) 7→ ϑi(t)σj(x)

‖σj‖V
, i ∈ I, j ∈ J

}
,

XN =

 ϑi(·)σj(·)√
‖σj‖2V + ‖ϑi‖2H1(I)‖σj‖

2
V ′

, i ∈ I, j ∈ J

 .

We propose the use of (periodized) linear B-spline wavelets
for the time-discretization. Due to the tensor product
structure of trial and test spaces with respect to space
and time we are left with the freedom of choosing any
appropriate spatial discretization that might be suitable
for the problem at hand. Of course, one might use any
temporal ansatz function, e.g. trigonometric polynomials.
We choose wavelets since they allow for adaptive meth-
ods with proven optimal convergence rate (Schwab and
Stevenson (2009), Cohen et al. (2001)).

5. NUMERICAL RESULTS

In the following, we apply both the space-time approach
as well as the fixed-point methods to some numeri-
cal examples, using LAWA (2011) for the wavelet-based
space-time calculations and the finite element library
libMesh/rbOOmit (Kirk et al. (2006)) for the fixed-point
calculations. Just for simplicity, we consider problems that
are 1D in space and use a linear Dijkema wavelet construc-
tion for the approximation in space (Dijkema (2009)).

We restrict ourselves to problems with affine structures

in the tensor form
∑Q
q=1 θ

q(µ)bq,t(t)bq,x(x), i.e. without
actual space-time interdependence, as such problems can
be treated with both space-time and fixed-point methods.
Note that this is a somewhat unfair situation for the

space-time approach, since such a separation allows for
completely independent discretizations in space and time.
This also concerns our choice of wavelets in time, which has
been motivated by the easy realization of periodicity and
of adaptive methods. The latter, however, is not beneficial
in this particular example. In fact, adaptivity only pays
off if the solution allows for a sparse representation so
that only few basis functions suffice for a representation
up to a given error tolerance. If the problem is affine
separable with respect to time, however, adaptivity usually
is not needed. In fact, sources for sparse representations
are (i) the operator, (ii) the geometry of the domain and
(iii) the right-hand side of the problem. In 1D, however,
(i) and (ii) are not relevant and singularities caused by
the right-hand side can also be resolved without adaptive
schemes. But even using non-adaptive discretizations, the
tensor product structure of the examples is not favorable
for the space-time approach as it does not expose its
ability to capture non-separable space-time interaction
and dependencies. These facts have to be kept in mind
when interpreting our numerical experiments.

As discretization we employed a preconditioned Wavelet-
Galerkin scheme with wavelets of level J = 6 for the
first and J = 5 for the second example in both time and
space and chose linear finite elements and time steps of
corresponding size for the fixed point methods.

5.1 Heat equation

In order to test our approach, we first consider the
simple example of a heat equation ut − uxx = g(µ)
on [0, T ] × [0, 1] with homogeneous Dirichlet bound-
ary conditions and known reference solution u(t, x) =

e−60(x−1/2)2 (x− µc(t))2
, c(t) = 1

2 + 1
4 sin(2πt), µ ∈ D :=

[0.5, 2]. In this case, the right hand side has the form

g(t, x;µ) =
∑2
i=0 µ

ig(i)(t, x), so that three basis functions
are sufficient to span the solution manifold. In Fig. 1, it can
be seen that the space-time Greedy training indeed yields
this minimum number of basis functions. As all linear and
bilinear forms are space-time separable, we can employ
a fixed-point approach in comparison for this example
by rearranging the affine decomposition to g(t, x;µ) =∑4
i=0 θ

(i)(t, µ)g̃(i)(x). However, the POD-Greedy training
needs more than the optimal 5 functions to incorporate
all temporal information into the reduced basis, cf. Fig. 1.
Note that this significantly increases the online complexity.
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Fig. 1. Comparison of space-time and fixed-point approach
for the heat equation example.

Moreover, a computation of the maximal error ‖eN (µ)‖Y
and the corresponding error bound ∆per

N (µ) for both ap-
proaches over a parameter test set Ξtest ⊂ D with |Ξtest| =



49 reveals that the effectivity in both approaches is very
good (Fig. 1, right). Note that the error bounds in the
offline-online decomposition involve square roots and are
thus bounded from below by the root of the machine
precision. For the space-time approach, we additionally
show the bounds without such a decomposition, i.e. us-
ing the Riesz representation of the complete parameter-
dependent residual, which can then be computed up to
machine precision.
In Fig. 2, the comparison of the maximum effectivities
over a test set for different N reveals that the space-
time effectivities are in the range [1.09, 1.12], whereas
maxµ∈D η(µ) ≈ 2 in the fixed-point calculations. More-
over, the detailed presentations for N = 1, 2 show that the
effectivities are less parameter-dependent in space-time,
which ensures the correct choice of snapshots in the Greedy
algorithm and hence a good training behaviour.

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

µ

Error and bound for N = 1

Space-Time: ErrorError

Bound

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

5 · 10−2

0.1

0.15

µ

Error and bound for N = 2

Space-Time: Error

Bound

0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.2

0.3

0.4

0.5

µ

Error and bound for N = 1

Fixed-Point: Error

Bound

0.6 0.8 1 1.2 1.4 1.6 1.8 2

1.5

2

2.5

3

3.5

·10−2

µ

Error and bound for N = 2

Fixed-Point: Error

Bound

0 1 2 3 4 5 6
0

1

2

3

N

Maximal Effectivity over Test Set

Space-Time

Fixed-Point

Fig. 2. Effectivity of error bounds for N = 1, 2 and
maximum effectivities for the heat equation example.

5.2 Convection-Diffusion-Reaction equation

For further studies, we consider a convection-diffusion-
reaction example

ut − uxx + µ1

(
1
2 − x

)
ux + µ2u = g on Ω = [0, 1],

with homogeneous Dirichlet boundaries in space and the
time-periodicity condition u(0) = u(T ) for T = 1. As right
hand side we choose g(t, x) = cos(2πt). The parameter set
is D := [0, 30]× [−9, 15]. The training and test results for
|Ξtrain| = 400, |Ξtest| = 225, both sets uniformly spaced in
D, are presented below.

We see in Fig. 3 that in this example the training er-
ror maxµ∈Ξtrain ∆N (µ) decreases faster for the fixed-point
method, so that the number of basis functions to reach
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Fig. 3. Comparison of space-time and fixed-point approach
for the convection-diffusion-reaction example.

a given tolerance is approximately half as large as in
the space-time approach. Recall, however, that with this
method we construct only a spatial reduced basis and thus
have an online effort of the order of O(MKN3) in contrast
to O(N3) in the space-time case.

The average effectivities over the test set for different
N are presented in Fig. 3b. It is apparent that the
space-time error bound is consistently very good with
ηav = 1

ntest

∑
µ∈Ξtest

η(µ) close to unity. For the fixed-point
method, however, we observe that a uniformly effective
bound requires a minimum number of time steps – in this
example more than the corresponding number of temporal
wavelets in the space-time discretization (where 1

∆t = 32).

Average Runtime
Space-Time 0.0981 s
Fixed-Point (∆t = 1

32 ) 0.0542 s
Fixed-Point (∆t = 1

50 ) 0.0817 s

(a) Runtime comparison for truth solution u
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cluding ∆N )
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Fig. 4. Runtime reductions for the convection-diffusion-
reaction example.



To further discuss the online behaviour of both methods,
we compare in Fig. 4 average runtimes 1 for a uniformly
randomly chosen parameter set with ntest = 25 (error
bars indicate minimum/maximum runtimes). Even though
a full space-time solution here is computationally more
expensive than a fixed-point solution (Fig. 4a), both the
runtime reduction (reduced solution time in % of full solu-
tion time, Fig. 4b/4d) as well as the online runtimes (Fig.
4c/4e) are significantly better in space-time. This holds
for online runtimes in- and excluding the computation of
error bound ∆N .

Moreover, the online runtimes of the fixed-point calcu-
lations vary significantly over the parameter set. This is
caused by the different number of necessary iterations,
even in this with 1 ≤M ≤ 11 rather moderate example.

6. CONCLUSION

We have proposed a space-time framework for the con-
struction of reduced basis approximations of time-periodic
solutions and compared it to an alternative approach using
fixed-point time-stepping methods. The latter allow rigor-
ous a-posteriori estimates for the approximation error in a
discrete Y-norm, whereas we proved error bounds in both
Y and the solution space X in the space-time context.

Numerical experiments confirm the good effectivity of
the error bounds and show that both methods yield
reduced bases of similar size. This implies a significant
reduction of online computational effort within the space-
time framework, as there online only one equation system
has to be solved (O(N3)) whereas the calculation in
the fixed-point framework requires the computation of
several initial value problems until convergence is reached
(O(MKN3)). Moreover, the independence of the fixed-
point iteration number M = M(µ) in the space-time
online calculations allows a reliable a-priori prediction
of online runtimes, which may be crucial for real-time
problems.

Note that the space-time context allows to compute prob-
lems that are not directly feasible in a time-stepping ap-
proach, e.g. if the bilinear forms cannot be separated into
time and space contributions.

The presented experiments focused on the error in the
state variable. However, we showed that output errors
involving a dual problem can easily be derived, even in
the case of time-dependent (non LTI) operators.

Future work will also be concerned with the efficient solu-
tion of the space-time problem. Adaptive wavelet methods
allow economical representations of the solution to elude
the additional computational complexity introduced by
the time dimension. However, first experiments indicate
that the approximation error with respect to the exact
solution has apparently be taken into account.
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