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Abstract

This paper is concerned with the development of adaptive wavelet methods for the hardening
problem in elastoplasticity. We propose a Rothe method using some implicit scheme in time. Then,
we consider a standard elastic predictor-plastic corrector method. The (non-linear) correction is
performed by some convergent scheme such as a Newton-Raphson iteration or suitable modifications
of it. Thus, it remains to solve Helmholtz-type problems with varying right-hand sides. These are
solved by the convergent adaptive wavelet method introduced recently by Cohen, Dahmen and
DeVore.

In the plastic correction, the trial strain might have to be corrected according to pointwise
formulated hardening conditions. We propose an adaptive corrector method based on biorthogonal
B-splines. This allows a fully adaptive stress correction. We obtain an overall convergent method.
Some preliminary numerical results are presented.
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1 INTRODUCTION

This paper draws on two sources of motivation. Firstly, we have investigated Wavelet- and
Multiresolution-Galerkin methods for elastoplastic hardening in the past, [1, 2, 3]. These investi-
gations were based on a fixed wavelet (or multiresolution) discretization in space combined with a
finite difference method in time. For the plastic correction, we used interpolatory wavelets and suitable
change of bases. It turned out that the solution of such problems exhibit highly localized singularities
which calls for some kind of adaptation. To our knowledge there is no proof that adaptive methods
converge faster then linear methods for these kind of non-linear problems. Such results are e.g. known
for elliptic problems on polygonal domains [4] and 1D hyperbolic conservation laws [5].

The second motivation comes from recent progress in the development of adaptive wavelet methods,
[6, 7]. There, an adaptive wavelet method has been constructed that was proven to converge at
an optimal rate for a large class of operator equations. Note that even the convergence is by no
means automatic. Corresponding results for adaptive finite elements are quite recent and restricted to
particular families of finite elements, [8, 9, 10]. Moreover, it was shown in [7] that this adaptive wavelet
method is (asymptotically) optimal efficient.

As already mentioned, the investigations in [1, 2, 3] did not treat any kind of adaptivity even though
the numerical experiments showed a great potential. The main problem was that the corrections of
the stress within a standard elastic predictor-plastic corrector method have to be performed pointwise
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due to the physical formulation of the problem. This was done by interpolatory wavelets as also in
[11, 12]. This is somehow unsatisfactory since all corrections can only be done on the same level as
the discretization level. Obviously, a pointwise local correction should influence the approximation in
particular on higher levels which cannot be taken into account using a fixed discretization.

The idea followed in this paper is to use a Rothe method, i.e., to discretize in time first and leave
the problem in space on the continuous level. Thus the elastic predictor-plastic corrector method is
still formulated on the continuous level, i.e., without any discretization in space. It turns out that
this algorithm in particular requires the solution of several Helmholtz-type problems. Then, we also
formulate the corrector step as a continuous problem. Thus, we are left with two kind of problems,
namely

• solve the arising Helmholtz-type problems by a convergent adaptive scheme;

• construct an adaptive stress correction method.

For the first issue we use the adaptive wavelet method from [6, 7]. In view of the second issue we
restrict ourselves to biorthogonal B-spline wavelets [13, 14] since they easily allow pointwise evaluation
and –as we will show– also correction. Thus we completely avoid changing to interpolatory wavelets.
By using this strategy, we obtain a convergent adaptive method.

We would like to mention also recent progress in the development of adaptive wavelet methods
for non-linear variational problems [15]. In principle, one could try to adapt the method in [15]
for the hardening problem. One should note however, that the hardening problem offers a variety of
difficulties. Just to mention one of them, the yielding stresses are not known beforehand, but they have
to be computed. This means that the domain in which the material is elastic and plastic, respectively,
is changing in time. It is not clear to us how to handle such a problem with the method in [15]. Finally,
our method also offers the possibility of using it within a known and widely accepted framework.

The paper is organized as follows: In Section 2, we recall the hardening problem under investigation.
Section 3 is devoted to a review of adaptive wavelet methods and Section 4 contains the description
and analysis of the new adaptive Wavelet-Rothe method. Finally, some numerical results in Section 5
show the potential of the new method.

2 THE HARDENING PROBLEM

We study the dynamic response of a straight elastoplastic rod. In this section, we briefly review the
governing equations.

Referring to Fig. 2, the space variable is denoted by x, the time variable by t and u(x, t) is the axial
displacement of the rod. The physical problem is governed by classical relations expressing equilibrium
between applied forces and induced internal stresses, compatibility between displacements and strains
and the nonlinear constitutive law that relates stresses to strains. As to equilibrium one may write

(Aσ)′ + f = ρü, (2.1)

where A(x) and ρ(x) are the cross section and the mass density, f(x, t) is the axial force and σ is
the axial stress. Furthermore, space and time differentiation are indicated by a superposed prime
and dot, respectively. The hypothesis of small displacement gradients will be made under which the
compatibility condition may be written as

ε = u′, (2.2)
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Figure 1: The rod under study

where ε(x, t) is the axial strain of the rod. The elastoplastic constitutive law classically needs to be
introduced in incremental form since the stress does not only depend on the current strain as it happens
in the purely elastic case, but also on the entire past history of it. For clarity sake, we first remark
that the purely linear-elastic problem is governed by a constitutive law that reads

σ = EY ε, (2.3)

in which EY is the Young modulus. Therefore, by eliminating stress and strain in (2.1), (2.2) and (2.3),
one ends up with a wave equation having the displacement u as unknown, i.e.

(

EYAu
′
)′

+ f = ρü. (2.4)

We now introduce the basic incremental relationships defining the elastoplastic behavior of the rod.
The main hypothesis, widely used and accepted in the literature, [16, 17], is the additive decomposition
of the total strain rate ε̇ into its elastic and plastic contributions, i.e.,

ε̇ = ε̇e + ε̇p. (2.5)

The stress rate σ̇ may then be written in terms of any of its above described contributions by introducing
the tangent modulus Et and the plastic one Ep. These are defined by the following relations

σ̇ = Etε̇ = EY ε̇
e −Epε̇

p, (2.6)

where Fig. 2 visualizes the introduced quantities. Notice that in Fig. 2, σY1
is the so called (tension)
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Figure 2: Stress and strain increments

yielding stress, i.e., the stress above which the material is no longer elastic but undergoes permanent,
unreversible deformations. Furthermore, σY1

is a variable itself and is to be updated at each time
instant according to the so called hardening rule, see, e.g. [1]. From a computational point of view, the
difficulty is that one does not know in advance whether a stress or strain increment will cause plastic
loading or elastic unloading. We assume the rod to be stress-free for t = 0 and to behave elastically as
long as (t, x) ∈ I where I is the instantaneous elastic domain defined as

I := {(t, x) ∈ [0, T ] × (0, 1) : −σY2
(t, x) ≤ σ(t, x) ≤ σY1

(t, x)} (2.7)
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In (2.7), σY1
and σY2

are the yielding stresses in tension and compression, respectively, which we group
into the vector σY = (σY1

, σY2
). For t = 0 the yielding stresses are known from experimental tests and

they evolve with time following some hardening rule. Then we obtain our problem under consideration
as

Problem 2.1 For given ρ, EY , Et, Ep, A and f we seek for u, ε and σ such that:

ρ(x) ü(t, x) − (EY (x)A(x)u′(t, x))′ = f(t, x), (t, x) ∈ I, (E)

and

ρ(x) ü(t, x) − (A(x)σ(t, x))′ = f(t, x), (t, x) 6∈ I,

u′(t, x) − ε(t, x) = 0, (t, x) 6∈ I,

σ̇(t, x) −Et(σ(t, x)) ε̇(t, x) = 0, (t, x) 6∈ I,

(P )

Finally, we pose the following initial and boundary conditions

u(0, x) = u0(x), u′(0, x) = u1(x), x ∈ [0, 1], (B1)

for some given functions u0 and u1, as well as

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ]. (B2)

3 ADAPTIVE WAVELET METHODS FOR ELLIPTIC PROBLEMS

In this section, we briefly review the main ingredients from [6, 7] of adaptive wavelet methods for
solving (second order) elliptic partial differential equations. Let

u ∈ H1
0 (Ω) : a(u, v) = (f, v)0;Ω, v ∈ H1

0 (Ω) (3.1)

be the variational formulation of a second order elliptic boundary value problem on a bounded domain
Ω ⊂ R

n, where a(·, ·) : H1
0 (Ω) ×H1

0 (Ω) → R is the (bounded and coercive) bilinear form associated to
the pde. As usual, we associate the operator A : H 1

0 (Ω) → H−1(Ω) defined by

〈Au, v〉 := a(u, v), u, v ∈ H1
0 (Ω), (3.2)

where 〈·, ·, 〉 is the duality pairing of H1
0 (Ω) and H−1(Ω). Because of the ellipticity, we have

‖Av‖−1;Ω ∼ ‖v‖1;Ω, v ∈ H1
0 (Ω). (3.3)

Here and in the sequel we use the abbreviation A <
∼ B if there exists a constant c > 0 such that

A ≤ cB. Moreover, A ∼ B means A <
∼ B and B <

∼ A.

Wavelet Bases. The next ingredient is a wavelet basis Ψ = {ψλ : λ ∈ J } of H1
0 (Ω). Here J denotes

an infinite set of indices of the form

λ = (j, k), |λ| := j ∈ N, (3.4)
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where j denotes the level or scale of ψλ and k encodes information like location in space, type of wavelet
etc. The wavelet system is assumed to be localized, i.e.

| supp ψλ| ∼ 2−|λ| (3.5)

and that it gives rise to a norm equivalence of the form

‖dT Ψ‖1;Ω :=
∥

∥

∥

∑

λ∈J

dλψλ

∥

∥

∥

1;Ω
∼

(

∑

λ∈J

22|λ||dλ|
2

)1/2

=: ‖Dd‖`2(J ), (3.6)

for all d ∈ `2(J ), where D := diag(2|λ|). Finally, we assume that Ψ has vanishing moments of order d,
i.e.,

∫

Ω
xαψλ(x) dx = 0, 0 ≤ |α| < d, (3.7)

i.e., Ψ is orthogonal to algebraic polynomials up to degree d − 1. Note that various examples of such
bases even on fairly complex domains are nowadays available.

An Equivalent `2-Problem. Due to (3.3) and (3.6), it can be shown that (3.1) is equivalent to the
problem

Au = f , A := D−1〈AΨ,Ψ〉D−1, f := D−1(f,Ψ)0;Ω, u := Dd, (3.8)

where u = dT Ψ is the solution of (3.1) and

cond(A) <∞, (3.9)

i.e., the original problem (3.1) is transformed into a well-conditioned problem in `2(J ). Moreover, due
to the symmetry of a(·, ·), also A is symmetric.

Infinite Dimensional Iterations. Ignoring for a moment that (3.8) is an infinite-dimensional prob-
lem and that A is an infinite operator, (3.9) can be solved by a Richardson-type iteration. Starting by
some d(0), the iteration

d(k+1) = d(k) + α(f − Ad(k)) (3.10)

converges to d for appropriately chosen damping parameter α ∈ R
+. Moreover, (3.10) yields a fixed

reduction of the error in each step.

Approximate Applications. As already said, in the present form (3.10) cannot be executed on a
computer since it involves two possibly infinite quantities, namely the vector f and Ad(k) which in
general is infinite even if the input vector d(k) is finite. In [6, 7] two routines have been introduced to
solve this problem.

Algorithm 3.1 The routine RHS [f , ε] → [fε] determines for any given desired tolerance ε > 0 an
approximation fε to f of compact support such that ‖f − fΛ‖ < ε.

For a sequence (or vector) c ∈ `(J ) the support is the set of indices corresponding to non-vanishing
coefficients, i.e.,

suppc := {k ∈ J : ck 6= 0}.
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Algorithm 3.2 The routine APPLY [A, ε,v] → [wε] determines for any given desired tolerance ε > 0
and any compactly supported input v a compactly supported wε such that ‖Av − wε‖ ≤ ε.

Replacing in (3.10) f by RHS [f , ε] → [fε] and Ad(k) by the result of APPLY [A, ε,v] for
appropriately chosen tolerances ε leads to a convergent algorithm, [7]. Again, it can be shown that
the error decreases in each step by a fixed amount. However, the size of the supports, i.e., the number
of degrees of freedom is not yet under control. One would like to obtain an ‘optimal’ method, where
optimal means an optimal balance of error and degrees of freedom. It turns out to be necessary to do
a ‘clean up’ step from time to time which is realized by the following routine.

Algorithm 3.3 The routine COARSE [v, ε] → [wε] determines for any given tolerance ε and any
finitely supported input vector v such that ‖u−v‖ ≤ ε (where Au = f) a vector wε of (almost) shortest
support such that ‖u − wε‖ ≤ 4ε.

The idea is to perform a COARSE after a fixed number of iterations of the Richardson iteration.
This will increase the error by a small amount but will reduce the number of unknowns. The corre-
sponding routine is called SOLVE [A,f , ε] → [uε]. Its optimality is reflected by the following result,
[7].

Theorem 3.4 The routine SOLVE [A,f , ε] → [uε] determines for any given target accuracy ε a
finitely supported approximation uε in a fixed number of steps such that ‖u − uε‖ ≤ ε. Moreover, if
for the error of the best N-term approximation we have

%N (u) := inf{‖u − vN‖ : # supp(vN ) = N} <
∼ N−s,

then we obtain
‖u − uN‖ <

∼ N−s,

where N = ε−1/s.

4 THE ADAPTIVE WAVELET-ROTHE METHOD

In this section, we are going to describe the numerical treatment of Problem 2.1 in terms of the
proposed adaptive Wavelet-Rothe Method.

4.1 Elastic Prediction and Plastic Correction

Let us start by the elastic predictor-plastic corrector strategy. There exist several cases to be handled,
all of which are particular cases of the complementarity rule. For clarity sake we hereafter focus on
one of them, i.e., the case of plastic loading or elastic unloading in tension. Let the stress σ(t, x) be
on the boundary of the instantaneous elastic domain. Given is also u(t, x) for some time t. Then,
for a given ∆t > 0, we compute the elastic predictor u∗(t + ∆t, x) by solving the problem (E) (since
we always consider the initial and boundary conditions, we will omit referring to them all the time).
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Then, by using the second equation in (P ) (see also (2.2)), we compute ε∗ and then, by using (2.3), we
obtain the elastic trial stress σ∗. If σ∗ < σY1

then an elastic unloading has taken place and therefore
σ(t + ∆t, x) = σ∗ and no correction is required. If conversely σ∗ > σY1

, a strain-driven correction
scheme is used. In mathematical terms this requires the solution of a non-linear problem. A Newton
method is often too costly so that one typically choses a method that only requires the evaluation of
the function (and not its derivative). The particular choice of the method is not important for what
follows. However, we have to assume that the method of choice converges. One frequently used example
is a modified Newton-Raphson iteration which is illustrated in Fig. 3. Such a method is also known as
parallel modified Newton method.

εx,t)(ε

*ε

σ*

σ

σo

σ( ε*- ε x,t)( ][ E(x) - E  (x)][t
t,x)

Y
σ (0,x)

P(t+    t,x)∆

Figure 3: The elastic-predictor plastic-corrector procedure

Independent of the particular choice of the correction scheme, in Fig. 3, the stress σ∗ = σ(t, x) +
EY (x)[ε∗(t, x) − ε(t, x)] is not updated and will therefore coincide with the value σ(t + ∆t, x). A
lack of consistency may however be noticed between the so computed stress σ∗ and the one which is
compatible with the actual stress-strain curve, i.e., σo(t, x) = σ(t, x)+Et(x)ε

∗(t, x). Thus, the quantity
A(x)[σ∗−σo](t, x) becomes a virtual, un-equilibrated force that is brought to the right-hand side of eq.
(E) so as to allow the computation of a further update for the displacement and for the strain ε. The
procedure ends when the actual stress-strain curve joins the plateau σ∗ where the solution in terms of
stress, strain and displacement is attained (point P (t + ∆t, x) in Fig. 3). Notice that σ∗ is not only
the stress σ(t + ∆t, x) but also the new value of the yielding stress σY1

to be used for the subsequent
stress computation.

When linear isotropic hardening is adopted, the whole stress correction procedure is governed
by eight alternative cases. We will hereafter describe the tension cases in detail. The remaining
(compression) cases can easily be obtained by symmetry arguments and by replacing σY1

by σY2
. We

will be using discrete-time notations and denote by σn the computed stress value at time tn, by σ∗n+1
the trial stress value at time tn+1 and by σY1

, σY2
the current values of the yielding stress. The value

of the corrected stress is denoted by σ◦.

1. 0 ≤ σn ≤ σ∗n+1 ≤ σY1
:

If σn and the trial stress σ∗
n+1 are both below the yielding stress σY1

, we are still in the elastic
range, i.e., no correction has to be performed. This implies σ◦ := σ∗n+1 and the yielding stress is
not changed.

2. 0 < σn < σY1
< σ∗n+1:

In the case that σn is below σY1
, but the elastic trial σ∗

n+1 is above, then there is a transition from
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the elastic to the plastic regime and the following correction has to be made. Using the third
equation in (P ), one projects the non-equilibrated part of the stress, namely σ∗

n+1 − σY1
to the

stress-strain curve as can be seen in Fig. 4. To be precise, setting r = (σ∗
n+1−σY1

) (σ∗n+1−σn)−1,
we obtain σ◦ = σY1

+ rEtεn. Note that the stress difference σY1
− σn (and the corresponding

strain) still belongs to the elastic range and needs not to be corrected. The yielding stress is
updated to σ◦.

3. σ∗n+1 ≥ σn > σY1
:

In this case, σn is in the plastic range and σ∗
n+1 remains plastic. As in the latter case, the non-

equilibrated part of the stress needs to be corrected as indicated by Fig. 4, and we obtain in this
case σ◦ = σn +Et(ε

p
n+1 − ε

p
n) which is also the new yielding stress.

4. −σY2
≤ 0 ≤ σ∗n+1 < σn:

In this case, unloading is performed and we reenter (or stay in) the elastic regime. Hence, we
have to check that σ∗

n+1 is larger than the compression yielding stress (recall, that σY2
> 0) and

no correction is made, σ◦ = σ∗n+1.

σ*
n+1 σ0

=

σ*
n+1 σ0

=

ε

σ
σ

1Y

*σ
n+1

n

σ0

σ

ε ε

σ

σ
n

σ
Y1

ε

σ

σn

σ

σ
n+1

σ

σ*

0

Y1

σn

CASE 1 CASE 2

CASE 3 CASE 4

Figure 4: Hardening cases.

We may summarize the above discussion in the following

Algorithm 4.1 (Abstract Stress Correction) For a given elastic trial (σtrial, εtrial, utrial), set

σ = σ∗ := σtrial, ε0 := εtrial, u0 := utrial.

For k = 0, 1, 2, . . . do

a.) Compute the un-equilibrated stress σ0
k (pointwise) corresponding to the 8 different yielding cases;

b.) Compute ∆uk by solving (E) with the right-hand side

A(x)[σ − σ0
k];
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c.) Set ∆εk := d
dx∆uk, εk+1 := εk + ∆εk ; σk+1 := EY εk+1

If σ∗ − σk+1 ‘sufficiently small’, set ε∗ = ε := εk+1, u := uk + ∆uk, STOP.

Note that this algorithm is still abstract in the sense that we did not specify so far how to compute
the un-equilibrated stress in step a.).

4.2 A Rothe-type Method

Introducing any implicit discretization in time e.g. a Newmark scheme as used in [1, 2, 3], solving the
elastic problem (E) requires to solve a Helmholtz-type problem of the form

−µun
xx(x) + ν un(x) = hn(x), x ∈ [0, 1], (Et)

where un(x) is an approximation for u(tn, x) (to be determined), 0 = t0 < t1 < · · · tn < T are the time
steps and hn is a known function (maybe also depending on approximations on previous time steps).
The constants µ, ν ∈ R are known and depend on the particular choice of the discretization in time.
Note that (Et) is still a continuous problem in space, i.e., it is posed for all x ∈ [0, 1]. We will keep this
in order to introduce an adaptive scheme.

Now two remaining issues have to be solved, namely

• construct a convergent adaptive solver for the elastic trial and for the stress correction;

• construct a concrete scheme for the stress correction in Algorithm 4.1.

These issues will be discussed in the following two subsections.

4.3 The Adaptive Wavelet Method for the Elastic Problem

We have seen that we have to solve problems of the form (Et). The idea is to use the framework
presented in Section 3 for this purpose. In fact, choosing an appropriate wavelet bases Ψ = {ψλ : λ ∈ J
of H1

0 (0, 1) (see e.g. [14]), we can in fact transform (Et) into a well-conditioned problem in `2(J ) (see
(3.8)):

Au = f , A := D−1a(Ψ,Ψ)D−1,f = D−1(hn,Ψ)0;(0,1),

where a(u, v) := µ(u′, v′)0;(0,1) + ν(u, v)0;(0,1) is the bilinear form induced by (Et). Thus invoking
the above mentioned routines APPLY and RHS into (3.10) gives an optimal convergent adaptive
solution method, see Theorem 3.4. Note that a corresponding implementation and numerical tests are
documented in [18].

4.4 Adaptive Stress Correction and B-Spline Wavelet Bases

So far, we did not specify which kind of wavelet bases we are going to use. Since we need pointwise
calculation and correction for the stress correction, we restrict ourselves for the remainder of this paper
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to biorthogonal B-spline wavelets (see [13] and [14] for an adaptation to bounded intervals). Due to
the relation between displacement and stress/strain via a derivative we use splines of order d + 1 for
the displacement and of order d for the strain and stress.

We denote by Θ = {ϑµ : µ ∈ K} the biorthogonal B-spline system of order d+1 for the displacement
and by Ψ = {ψλ : λ ∈ J } the biorthogonal B-spline system of order d for strain and stress. Let us
assume that we are given an adaptive solution of (Et) produced by SOLVE of the following form

uΛ̃ =
∑

µ∈Λ̃

uµϑµ,

then, we can easily determine the corresponding strain

εΛ = u′
Λ̃

=
∑

λ∈Λ

eλψλ,

where the relation between the coefficients uµ and eλ is explicitly known, [19, 3]. Note that in general

Λ 6= Λ̃, but the sizes are comparable. Next, we compute

σΛ = EY εΛ =
∑

λ∈Λ

sλψλ. (4.1)

In order to perform the computation of the un-equilibrated stress, we perform for each wavelet in the
linear combination in (4.1) one step of the fast wavelet transform, i.e., we represent each wavelet as a
linear combination of B-spline of the next higher level. Doing this for all functions in (4.1), we end up
with an expansion of the following form

σΛ =
∑

(j,k)∈JΛ

cj,k ϕj,k. (4.2)

Since this is a fast wavelet transform applied to each wavelet, we have |JΛ| ∼ |Λ|, i.e., (4.2) can be com-
puted efficiently. Note that the representation in (4.2) is a multi-scale scaling function representation
rather then a wavelet expansion. In particular, the involved functions ϕj,k may not be linearly indepen-
dent. This, however, is not important for our purpose. At this point, we use the fact that each ϕj,k is a
spline (either a scaled and shifted version of a cardinal B-spline ϕ or a fixed linear combination due to
the adaptation to the boundary,[14]). In any case, there is a set of knots ΞΛ = {0 < ξ1 < . . . < ξ#JΛ

}
corresponding to JΛ such that σΛ is a polynomial of degree d in each subinterval [ξi, ξi+1].

Note that the yielding function (which is an unknown itself) is also given in terms of Ψ, i.e., as a
piecewise polynomial of the same degree. Hence we have reduced the problem now to the following
question: Given a polynomial p ∈ Pd on an interval [a, b], determine all t ∈ [a, b] such that p(x) < 0
(by subtracting the yielding function). This however, is no big problem, since one can easily determine
all roots of the polynomial and hence all subintervals in which the polynomial is negative. Hence we
can determine for each σΛ a subset IΛ ⊂ [0, 1] on which σΛ does not satisfy the yielding condition.

Now, the current stress might have to be corrected corresponding to the 8 different hardening
cases. Again, this has to be performed pointwise or even interval-wise. Assume that we have detected
an interval [c, d] ⊂ [a, b] in which p(t) < 0. Then, we can construct a B-Spline of the same order d
that coincides with p on [c, d] and add it to p, so that p|[c,d] ≡ 0 in order to respect the hardening rule.
Hence, we obtain the un-equilibrated stress as

σ0
Λ =

∑

(j,k)∈IΛ

c0j,k ϕj,k,
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where in general IΛ ⊇ JΛ and c0j,k 6= cj,k, but determined by the hardening rules.

The next step is again the adaptive solution of (Et) using A(x)(σ − σ0
Λ) as a right-hand side. This

amounts computing integrals of the form

∫ 1

0
A(x)(σ(x) − σ0

Λ(x))ψλ(x) dx.

This, however, is straightforward since all involved quantities are in fact B-splines (or –as for A(x)–
can at least be approximated by B-splines) so that a routine like RHS (see Algorithm 3.1) can easily
be realized.

4.5 Conclusions

Let us summarize the above algorithm and collect some statements concerning convergence and effi-
ciency. As already mentioned, the routine SOLVE is proven to converge and even to be optimal (see
Theorem 3.4). This means that our new adaptive elastic predictor-plastic corrector converges provided
that the iteration for solving the non-linear stress correction converges.

We do not focus on the question of choosing an optimal iteration here but devote this to a forth-
coming paper. We remark that the above modified Newton-Raphson process for the stress correction
can also be reviewed in the framework of Kuhn-Tucker optimality conditions of a constrained convex
optimization problem, [17]. The initial value for the iterarion is obtained by the elastic trial step. Then,
the iterative correction method characterizes the solution as the closest point projection of the trial
state onto the so called yield surface (which is related to the constrain of the optimization problem).
The projection is considered with respect to some suitably chosen energy, which coincides with the
functional to be optimized. In this framework, it is possible to proof the convergence of the stress
correction algorithm, at least for the hardening case considered in this paper.

We do not have any result concerning the convergence rate so far. This is a delicate task indeed.
First of all, one would need a precise estimate for the number of steps in the non-linear correction
iteration which of course depends on the particular choice of the method. The main issue is however to
estimate the number of terms that need to be added in a stress correction. This corresponds to local
smoothness estimates for the current stress as well as the yielding stress. Since the physical formulation
of the problem requires pointwise considerations, one would need estimates in L∞. We are not aware
of any results in this direction.

Finally, we do not have a complete implementation of the proposed method at hand at this time.
This is also due to the fact that no optimized code for SOLVE is available so far (at least not to our
knowledge). By ‘optimized’ we mean that all routines are implemented according to the optimality
requirements. The main issue for the optimality is here the computation of the entries of the stiffness
matrix and of the right-hand side. We will report on this somewhere else.

5 PRELIMINARY NUMERICAL RESULTS

In this section, we report on some preliminary numerical tests that show the potential of the method.
The results have been obtained by a ‘semi-adaptive’ method which will be explained next.
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Figure 5: Displacement (left) and plastic indicators (right) for the numerical experiment.

Data. In order to separate effects due to the boundary conditions, we have chosen the input data
in such a form that we obtain plastic zones starting at the boundaries and a clearly separated plastic
zone in the interior of the interval. The test data have been chosen as

T = 0.25, ∆t = 0.01, σY1
= σY2

= 1600,

A(x) ≡ 100, ρ(x) ≡ 7.85, EY = 2100000,

Et = 200000, f(t, x) := a t
T (x− 1

2), a = 5 · 107.

The arising plastic indicators are shown in Fig. 5 (right) whereas the displacement is visualized on the
left in Fig. 5. Note that all hardening cases mentioned above in fact appear.

By ‘semi-adaptive’ we mean that we fixed a highest level of resolution, say J and considered a
Multiresolution-Galerkin method using multiresolution spaces up to that level. Then, we performed a
threshold in order to determine the significant coefficients. The main goal of the numerical experiments
is twofold. Firstly to show the adaptive potential, i.e., to show that only a few wavelets suffice to
represent the solution up to a desired tolerance. Secondly, we would like to show that the transitions
between elastic and plastic regions can in fact be detected from the wavelet coefficients. In order to so,
referring to (3.6), we have considered the weightened sequence of wavelet coefficients

cλ := 22|λ|dλ (5.1)

whose `2-norm is equivalent to the H2-norm of the corresponding function (if the wavelets are suffi-
ciently smooth). Hence, we investigate the size of these coefficients cλ in order to resolve local effects.
In Fig. 6, the scaled wavelet coefficients are shown for the case d = 4, d̃ = 8, respectively. Starting
from the upper left picture which corresponds to t = 0.1 we show column-wise the evolution until
t = T = 0.25 in the lower right corner.

As we see, the scaled wavelet coefficients reflect the interface of the plastic region which gives rise
to a sharp and sparse description of the hardening process. This shows that wavelet coefficients of high
order discretizations give a sharp description of plastic zones which strongly indicates the potential for
adaptive wavelet methods.

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5
Lev

el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5.5

6

6.5

7

7.5

8

8.5

Lev
el j

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6: Wavelet coefficients for d = 4, d̃ = 8 and t = 10, . . . , 25. In each figure, the lowest row
corresponds to the scaling function coefficients, the upper one to wavelet coefficients on the repective
levels.
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6 SUMMARY AND OUTLOOK

We have constructed a convergent adaptive Wavelet-Rothe method for the hardening problem in
elastoplasticity. It is based upon a Rothe method for handling the time variable and a standard elastic
predictor-plastic corrector formulation. The latter one has been modified here and was posed on a
continuous level, i.e., without applying a discretization in space. For the arising linear problems, we
use existing convergent adaptive wavelet methods and for the stress correction we propose an adaptive
procedure based on biorthogonal B-spline wavelets.

We presented some preliminary numerical results indicating the potential of the method. A complete
and optimized implementation of the proposed method is lacking so far. Also the optimal choice of the
non-linear solver for the correction is subject to further research.
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