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This work presents a stable time-domain boundary element method for the acoustic wave equation in three-dimensional
unbounded domains. Other formulations of time-domain boundary element methods based on retarded potential operators
are known to exhibit stability issues, which often hinder their use in industrial contexts. We have investigated the stability
properties of a Galerkin first-kind boundary integral formulation for sound emission problems, where well-posedness can be
established in both the continuous and the discrete setting. Numerical experiments confirm the accuracy and convergence of
the method. We assess long-time stability through extensive simulations focusing on fine temporal resolutions and large time
ranges. The proposed formulation is compared with two alternative approaches used in practice: a space-time single-layer
potential approach and a semi-discretized collocation method.
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1 Introduction

In many real-world applications, structural vibrations represent a significant source of airborne sound generation. With increas-
ingly stringent noise regulations, the analysis of Noise, Vibration, and Harshness (NVH) has emerged as a distinct engineering
discipline, focusing on both structure-borne and airborne noise emissions. In recent years, it has become state of the art to
compute structural sound radiation directly in the time domain in a stable and efficient manner [1], leading to growing interest
in time-domain simulations of sound propagation. The time-domain Boundary Element Method (TDBEM) offers an attractive
approach in this context, as it reduces the spatial dimension of the problem by one and thus requires discretization only of the
vibrating surface. This results in a considerably simpler discretization process—an important advantage that enhances prac-
tical applicability, especially for small and medium-sized enterprises. However, it is well known that time-domain boundary
element methods are often hindered by stability issues, which has so far limited their widespread adoption in industrial appli-
cations. To address these challenges, we propose a stable space-time discretization of the hypersingular operator. Employing
a Galerkin framework, the method provides accurate and reliable results over extended time periods, making it especially
well-suited for industrial simulations with transient excitation signals. Although highly relevant in practice, the long-time
behavior and stability of the numerical method remains insufficiently explored in existing literature. To close this gap, we
investigate the stability of the proposed formulation over extended time intervals with fine time steps. For comparison, we
consider two widely used practical approaches: a space-time second-kind integral equation and a collocation-based method
utilizing a time-stepping scheme. More specifically, we consider the sound radiation of a vibrating structure Ω with boundary
Γ = ∂Ω in the acoustic domain R3\Ω by the following Neumann problem:

1

c2
∂2u

∂τ2
(τ, x)−∆u(τ, x) = 0 in R+ × R3\Ω (1a)

u(τ, x) =
∂u

∂τ
(τ, x) = 0 in R−

0 × R3\Ω (1b)

∂u

∂n
(τ, x) = f(τ, x) in R+ × Γ (1c)

We represent the time by τ , the speed of sound by c = 343 m/s, and by ρ the density of the medium air. The radiated acoustic
pressure field is is given by the solution of u(τ, x). The boundary condition f(τ, x) on Γ (see Eq. (1c)) describes the coupling
between structural vibrations and the acoustic field:

f(τ, x) = ρ
∂2sn
∂τ2

(τ, x).

Here, sn(τ, x) is the normal component of the structural displacement, whose second derivative with respect to time acts as a
source term for the radiated pressure and corresponds to the structure-borne noise at the surface.
Our work contributes to the recent wider interests in boundary element methods for wave equations, see [2, 3, 18] for an
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overview of both Galerkin and convolution quadrature methods. The rigorous mathematical analysis of time-domain Galerkin
boundary element methods was initiated by Bamberger and Ha-Duong [4], with recent contributions to the analysis and sta-
bility in [5]. Their algorithmic aspects, including the marching-on-in-time time stepping schemes and the efficient assembly
of the Galerkin matrix, were thoroughly studied by Terrasse [6] and by Ostermann, Maischak and Stephan [10, 11]. For a
detailed discussion we refer the reader to Ostermann’s dissertation [12]. We further note relevant recent works including the
efficient assembly and compression of the space-time matrices for both time-stepping and more general space-time discretiza-
tions [7–9].

2 Time Domain Boundary Integral Formulation for Sound Emission

To simplify the equations, we introduce a scaled time variable t = c τ :

∂2u

∂t2
(t, x)−∆u(t, x) = 0 in R+ × R3 \ Ω, (2a)

u(t, x) =
∂u

∂t
(t, x) = 0 for t < 0, x ∈ R3 \ Ω, (2b)

∂u

∂n
(t, x) = f(t, x) on R+ × Γ. (2c)

We start from a double-layer potential representation of u(t, x):

u(t, x) = Dψ(t, x) :=

∫
R+

∫
Γ

∂G

∂ny
(t− τ, x, y)ψ(τ, y)dτdsy. (3)

which defines u in the exterior domain R+ × R3 \ Ω as the action of the retarded double-layer operator D on the unknown
acoustic density ψ. Applying the trace theorem together with the normal derivative operator ∂n, we obtain from (3) the
first-kind boundary integral equation:

Wψ(t, x) = ∂nu(t, x) = f(t, x) on R+ × Γ. (4)

The hypersingular operator W is defined by:

Wψ :=

∫
R+

∫
Γ

∂2G

∂nx∂ny
(t− τ, x, y)ψ(τ, y) dτ dsy (5)

where the potential operators are based upon the fundamental solution G of the wave equation in R3:

G(t− τ, x, y) =
δ
(
t− τ − ∥x− y∥

)
4π∥x− y∥

.

For the analysis of well-posedness, i.e., the mapping properties of time-dependent boundary integral operators, we introduce
space–time anisotropic Sobolev spaces defined on the boundary Γ ⊂ R3 [4, 15]. In the case that Γ is a flat screen in R3, we
choose σ > 0 and s, r ∈ R. Then the anisotropic Sobolev space Hs

σ(R+, Hr(Γ)) consists of distributions ϕ on R+ × Γ that
vanish at t = 0. This space is equipped with the norm

∥ϕ∥s,r,Γ :=

(∫
R

∫
R2

|ω + iσ|2s
(
|ω + iσ|2 + |ξ|2

)r |Fϕ(ω + iσ, ξ)|2 dξ dω
)1/2

,

where Fϕ denotes the Fourier–Laplace transform of ϕ in time and space and ω ∈ C\{0}. The weighted Sobolev spaces and
their associated norms can also be defined on general Lipschitz boundaries Γ; see, e.g., [20], [13].
The weak formulation of (5) is based on the bilinear form

w(ψ,Ψ) :=

∫
R+×Γ

(Wψ)(t, x) ∂tΨ(t, x) dσt dsx, (6)

where we use the weighted measure dσt := e−2σtdt.
Theorem 2.1 Let r ∈ R. The hypersingular operator W and its inverse W−1 are continuous mappings:

W :Hr+1
σ (R+, H

1
2 (Γ)) → Hr

σ(R+, H− 1
2 (Γ)),

W−1 :Hr+1
σ (R+, H−1/2(Γ)) → Hr

σ(R+, H1/2(Γ)).

Moreover, w(·, ·) is weakly coercive, i.e.,
w(ψ,ψ) ≥ C(σ)∥ψ∥20, 12 ,Γ,∗.
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The proofs, as presented for example in [18] or [21], rely on the use of the Fourier–Laplace transform.
We define the variational formulation of (4):
Find ψ ∈ H1

σ(R+, H1/2(Γ)) such that for all Ψ ∈ H1
σ(R+, H1/2(Γ)):

w(ψ,Ψ) =

∫
R+×Γ

f∂tΨ dσt dsx (7)

as well as its Galerkin approximation in a finite-dimensional subspace V ⊂ H1
σ(R+, H1/2(Γ)):

Find ψ∆t,h ∈ V such that for all Ψ∆t,h ∈ V :

w(ψ∆t,h,Ψ∆t,h) =

∫
R+×Γ

f∆t,h∂tΨ∆t,h dσt dsx. (8)

Corollary 2.2 Let g ∈ H2
σ(R+, H−1/2(Γ)) and let ψ ∈ H1

σ(R+, H̃1/2(Γ)) denote the unique solution of (7), and
ψ∆t,h ∈ V the unique solution of (8). Then, the following stability estimates hold:

∥ψ∥1, 12 ,Γ ≤ C∥g∥2,− 1
2 ,Γ
, ∥ψ∆t,h∥1, 12 ,Γ ≤ C∥g∥2,− 1

2 ,Γ
.

Remark 2.3 Alternative formulations based upon the single-layer potential S and the adjoint double-layer operator K′

lead to second-kind boundary integral equations such as (−Id + K′)φ = g (see [16]). While well-posedness in anisotropic
Sobolev spaces is established [18], the lack of coercivity may lead to unstable numerical schemes. In practice, collocation
methods based on the representation formula are frequently used due to their simplicity [17], and were extensively studied
in the 1990s, for example by P.J. Davies and D.B. Duncan. However, these methods often exhibit stability issues and are
therefore not well suited for robust industrial simulations.

3 Discretization and Algorithmic Considerations

3.1 Discretization

We approximate Γ by
⋃Ns

i=1 Γi, a quasi-uniform mesh Ts with triangles Γi. For the time discretization, we divide R+ uniformly
into subintervals In = (tn−1, tn] of size ∆t, forming the time mesh Tt. We use polynomial basis functions {φp

i } of degree p
on TS and {βq

n} of degree q on TT , and define the discrete spaces:

V p
h = {ϕ : Γ → R : ϕ|Γi

∈ Pp, continuous and ϕ|∂Γ = 0 if p ≥ 1},
V q
∆t = {Φ : R+ → R : Φ|In ∈ Pq, continuous and Φ(0) = 0 if q ≥ 1}.

The discrete approximation space is defined as the tensor product

V p,q
∆t,h = V p

h ⊗ V q
∆t,

associated with the space-time mesh TS,T = TT ×TS =
⋃

n,i □n,i. Each space–time element is given by □n,i = In ×Γi and
is characterized by the element size Hn,i. A basis of V p,q

∆t,h is given by the tensor products of the basis functions βq
n(t) and

φp
i (x).

Using the subspace V 1,1
∆t,h ⊂ H1

σ(R+, H̃−1/2(Γ)). the ansatz functions take the form:

ψ∆t,h(t, x) =

Nt∑
m=1

Ns∑
i=1

cmi φ
1
i (x)β

1
m(t), (9)

where β1
m(t) = (∆t)−1

(
(t− tm−1)γ

m(t)− (t− tm+1)γ
m+1(t)

)
, and γj(t) denotes the characteristic function of Ij . For

the implementation, it is convenient to use test functions of the form:

Ψ̇∆t,h(t, x) = φ1
j (x)γ

n(t), j = 1, . . . , Ns, n = 1, . . . , Nt. (10)

3.2 Implementation of W
The implementation follows the approach presented in [14]. For simplicity, we set σ = 0 for calculations and introduce the
retarded time t′ = t− |x− y|. Based upon the representation of the hypersingular operator W in (5), we get for the left-hand
side of (8): ∫

R+×Γ

(Wψ) ∂tΨ dt dsx =
1

2π

∫ ∞

0

∫
Γ×Γ

{−nx · ny
|x− y|

ψ̇(t′, y)Ψ̈(t, x) (11)

+
(curl|Γ ψ)(t

′, y) · (curl|Γ Ψ̇)(t, x)

|x− y|

}
dsy dsx dt.
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By using the discrete representation (9) and (10) we obtain:∫
R+×Γ

Wψ∆t,h(t, x) ∂tΨ∆t,h(t, x) dt dsx = A−B,

with

A =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

nx · ny
|x− y|

φ1
i (y)φ

1
j (x)

(∫ ∞

0

β̇m
1 (t′)γ̇n(t) dt

)
dsy dsx,

and

B =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|

∫ ∞

0

βm
1 (t′) curl|Γ φ

1
i (y) γ

n(t) curl|Γ φ
1
j (x) dt dsy dsx.

With the Dirac distribution δtn and γ̇n = δtn−1 − δtn , we obtain for the inner time integral in A:∫ ∞

0

β̇m
1 (t′)γ̇n(t)dt = −(∆t)−1

(
χEn−m

(x, y)− 2χEn−m−1
(x, y) + χEn−m−2

)
.

Here, El denotes a light cone, defined as El := {(x, y) ∈ Γ × Γ : tl ≤ |x − y| ≤ tl+1} ⊂ Γ × Γ and the indicator function
χEl

(x, y), which is equal 1 if (x, y) ∈ El, and 0 otherwise. Thus, we conclude

A =

Nt∑
m=1

Ns∑
i=1

cmi

[
−

∫
En−m

(nx · ny)(∆t)−1φ1
i (y)φ

1
j (x)

2π|x− y|
dsy dsx

+ 2

∫
En−m−1

(nx · ny)(∆t)−1φ1
i (y)φ

1
j (x)

2π|x− y|
dsy dsx

−
∫

En−m−2

(nx · ny)(∆t)−1φ1
i (y)φ

1
j (x)

2π|x− y|
dsy dsx

]
. (12)

Rearranging the terms in B, we obtain:

B =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|
curl|Γ φ

1
i (y) curl|Γ φ

1
j (x)

∫ ∞

0

βm
1 (t′)γn(t) dt dsy dsx .

By substituting the definition of βm
1 , the time integral becomes:∫ ∞

0

βm
1 (t′)γn(t) dt

= (2∆t)−1(|x− y|2 − 2|x− y|tn−m+1 + t2n−m+1)χEn−m
(x, y)

+ (2∆t)−1(|x− y|2 − 2|x− y|tn−m−2 + t2n−m−2)χEn−m−2(x, y)

+ (2∆t)−1((−2|x− y|2 + 2|x− y|(tn−m + tn−m−1)− (t2n−m + t2n−m−1) + 2(∆t)2)

χEn−m−1(x, y) =: Υn−m(x, y) .

Therefore we get:

B =

Nt∑
m=1

Ns∑
i=1

cmi
2π

∫
Γ×Γ

1

|x− y|
curl|Γ φ

1
i (y) curl|Γ φ

1
j (x) Υ

n−m(x, y) dsy dsx. (13)

In summary, both terms A and B can be expressed as integrals over the light cones En−m, En−m−1, and En−m−2, associated
with the m-th ansatz and the n-th test function in time. The inner integrals in (12) and (13) are evaluated using a composite
hp-quadrature, while the outer integrals are computed via standard Gauss quadrature; see [10, 12]. Due to causality, the terms
in A and B vanish for tn > tm. For bounded surfaces Γ, the light cone contributions El become zero for l > ⌈diam(Γ)/∆t⌉.
Hence, we obtain the following discrete space-time system:

W 0 0 0 0 · · ·
W 1 W 0 0 0
W 2 W 1 W 0 0
W 3 W 2 W 1 W 0 · · ·

...
...

. . .


︸ ︷︷ ︸

=:W∈RNtNs×NtNs


c0

c1
...
...

cNt−1


︸ ︷︷ ︸
=:C∈RNtNs

=


f0

f1

...

...
fNt−1

 .

︸ ︷︷ ︸
=:F∈RNtNs

(14)
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The system matrix W exhibits a lower block Toeplitz structure with blocks Wm ∈ RNs×Ns , whose entries are assembled
from A and B defined in equations (12) and (13). The coefficient vectors cm = (cm1 , . . . , c

m
Ns

) represent the discrete solution
at the m-th time step. The right-hand side vectors:

fm =
∆t

2
I
(
fm−1 + fm

)
are obtained from (8), where I is the spatial mass matrix.

3.3 Marching-on-in-time (MOT) scheme

The block lower triangular structure of the space-time system matrix W in (14), combined with the invertibility of the diagonal
blocks W 0, leads to an efficient explicit solution strategy using a block forward substitution. This yields the classical MOT
algorithm, where the solution coefficients cn at time step n are computed recursively by

W 0cn = fn −
n−1∑
m=1

Wn−mcm.

Remark 3.1 A comprehensive description of the assembly procedure for the adjoint double-layer operator K ′ and the
corresponding right-hand side can be found in [16]. The use of piecewise constant basis functions in both space and time
significantly reduces the computational complexity of matrix assembly. The resulting system matrix closely resembles that of
the operator W , enabling an analogous implementation of the MOT scheme.
A similar block-lower-triangular structure arises also in collocation-based formulations [17].

4 Validation of Sound Emissions Using an Analytical Model

To assess the accuracy of the computed sound pressure, we compare the numerical results to a known analytical solution for
a vibrating unit sphere in R3. This exact solution, derived from retarded boundary integral equations, serves as a benchmark
to evaluate the convergence and overall quality of the proposed method [19]. We start from the classical wave equation for
radially symmetric functions in the R3:

□u =
∂2u

∂t2
− ∂2u

∂r2
− 1

r

∂u

∂r
= 0.

The general radial solution u(t, r = |x|) of this problem has the form u(t, r) = 1
r (ϕ(r + t) + ψ(r − t)), where ϕ and ψ are

functions determined by initial conditions [19].
Considering the radially symmetric Cauchy problem: □u = 0, u|t=0 = u0(|x|), ∂u

∂t

∣∣∣
t=0

= u1(|x|), we hence obtain for
the general solution:

u(t, x) =
1

2r
((r + t)u0(r + t) + (r − t)u0(r − t)) +

1

2r

∫ r+t

r−t

su1(s)ds.

For the numerical experiments we choose u1(|x|) = 0, and u0(s) =
(
1 + cos(πs/R)

)2

H(R− |s|), leading to

u(t, r) =
(r − t)

2r

(
1 + cos(π(r − t)/R)

)2

H(R− |r − t|), (15)

where H is the Heaviside function. The corresponding Neumann data on the unit sphere are given by:

f =
∂

∂r
u(t, r)|r=1. (16)

In [19], Veit derived an explicit expression for the exact solution of (4) for radially symmetric data:

ψ(t) = −2

∫ t

0

f(t− t′) cosh(t′)dt′ +

t/2∑
k=1

k∑
l=1

(−1)k+1

∫ t

2k

ck,l(t
′ − 2k)k−l+1et

′−2kf ′(t− t′)dt′.

Here ck,l is given by ck,l =
(
k−1
l−1

)
2k−l

(k−l+1)! . We consider the solution for R = 0.9 for times up to T = 10. Six different
space-time discretizations were used. The spatial mesh of the sphere was refined five times, from 20 to 20,480 elements (12
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Fig. 1: Sphere with 320 triangles and 24 micro-
phone positions.

Fig. 2: Sound pressure at microphone point x = (0, 1.5, 0).

to 10,242 nodes) using time steps from 2−1 to 2−6. The relation between the time step size ∆t and the spatial mesh size h is
approximately ∆t/h ≈ 0.38. The six space-time meshes result in discretizations with between 240 and 6.55× 106 degrees of
freedom. Figure 2 presents the comparison between the computed and analytical sound pressure at the microphone location
x = (0, 1.5, 0), using a spatial mesh with h = 0.15 and a time step size of ∆t = 2−4.
Figure 3 illustrates the evolution of the absolute density error in the ∥ · ∥L2(Γ)-norm over time for the four finest space-time

discretizations. As expected, the error decreases with a uniform refinement of the mesh size H , and it can be observed that
the error remains uniformly. Figure 3 shows that halving the mesh size H leads to a reduction of the ∥ · ∥L2(Γ)-error by
approximately a factor of 4, which corresponds to a quadratic convergence rate in H , consistent with Theorem 18 of [13].
Sound pressure signals are compared at several microphone points in the outer region of the upper quarter of the monopole

Fig. 3: ∥ψ − ψ∆t,h∥L2(Γ) absolute error.

radiator (see Figure 1). To investigate the convergence behaviour in more detail, the relative errors of the density on Γ and the
sound pressures at the microphone positions are evaluated over the time interval T = [0, 10], using the following norms:

||ψ − ψ∆t,h||L2([0,10];L2(Γ))

||ψ||L2([0,10];L2(Γ))
and

||u(t, xi)− u∆t,h(t, xi)||L2([0,10])

||u(t, xi)||L2([0,10])
.

The overall pressure error is computed as the mean of the individual relative errors at all microphone positions. Figure 4
displays the relative errors for u and ψ with respect to the degrees of freedom. The observed convergence rate is approximately
−0.70 for the sound pressure and −2/3 for the density. This is consistent with the quadratic convergence in H , taking into
account that the number of spatial nodes scales quadratically and the number of time steps linearly with respect to the space-
time degrees of freedom.

5 Numerical Investigation of Long-Time Stability

A key advantage of the W-operator lies in its weak coercivity, compared to second-kind boundary integral formulations
which ensures stability of the corresponding discrete space-time variational problem. In contrast, such stability results are
not available for the K′-operator due to its lack of coercivity, nor for collocation-based methods. This aspect is particularly
relevant for practical applications, where simulations cover large time intervals or require very fine temporal resolutions to
capture signals accurately. Here, we present numerical experiments that focus on long-time simulations, aiming to determine
whether the favourable stability properties of the W-operator are observed in computational practice. For this purpose, we
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Fig. 4: Relative L2 error of density and sound pressure.

Fig. 5: Neumann boundary data used for the stability analysis.

compare the results to those obtained with the K′-operator, as discussed in [14], and with a collocation-based approach
introduced in [17]. Our study considers a unit sphere discretized with 1280 elements and 642 nodes. We compute the
density on Γ as well as the sound pressure at a microphone location x0 = (0, 1.5, 0), with the aim of assessing the stability
of the solution over the time interval [0, 6800). The time step sizes ∆t are chosen so that the ratio ∆t/h takes the values
3.00, 1.50, 0.75, 0.38, 0.19, 0.10, which corresponds to a range of 13, 600 to 452, 200 time steps. To specify the Neumann
boundary condition f on [0, 6800) × Γ, we employ the expressions given in equations (15) and (16). Thus, the boundary
conditions are nonzero only within the time interval 0.1 < t < 1.9, as illustrated in Figure 5. Unstable behavior is observed,
although the Neumann boundary excitation is set to zero for all t > 1.9 s. We classify a simulation as unstable if its maximum
computed density or sound pressure exceeds the corresponding analytical value by a factor of 100.
The results are illustrated in Table 1. For a more detailed insight, Figure 6 illustrates the results of all three methods for the

No. ∆t/lEl ∆t # timesteps W K ′ Colloc.
1 3 2−1 13600 ✓ ✓ ✓
2 1.5 2−2 27200 ✓ ✗ ✓
3 0.75 2−3 54400 ✓ ✗ ✓
4 0.38 2−4 108800 ✓ ✗ ✓
5 0.19 2−5 217600 ✓ ✗ ✓

5.1 0.16 2−5.25 258771 ✓ ✗ ✗
5.2 0.13 2−5.5 307732 ✓ ✓ ✗
5.3 0.11 2−5.75 365958 ✓ ✗ ✗
6 0.10 2−6 435200 ✓ ✗ ✗

Table 1: Stability Results for Different Grid Resolutions (Unit sphere).

∆t/lel ratio of 0.1, showing detailed views over the first 4 seconds and up to 400 seconds.
The results demonstrate that, particularly for long simulation times, classical time-stepping approaches such as the collocation

method become unstable for small space-time ratios (i.e., when ∆t/h < 0.16). To analyze this in more detail, the time step
size was further refined between ∆t = 2−5 and ∆t = 2−6 (cf. Table 1). In almost all simulations, the adjoint double-layer
operator exhibited unstable behavior. Only discretizations No. 1 and 5.2 yielded stable results; however, these occurrences
lack a systematic explanation and are therefore considered sporadic. In contrast, the hypersingular operator yields stable
results across all simulations and throughout the entire considered time interval, regardless of the ratio ∆t/h. This confirms
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Fig. 6: Stability results for mesh no. 6 (Unit sphere): first 4 and 400 seconds.

the theoretical results from Section 2: the space-time formulation using the W operator allows stable simulations even for
very long time intervals (more than 430,000 time steps), making it particularly suitable for practical NVH investigations.

6 Conclusions
This work presents a well-posed and numerically stable discretization of the hypersingular operator for the acoustic Neumann
problem for the time-depended wave equation. The chosen trial and test functions yield a block lower-triangular structure
of the system matrices, which enables efficient solution strategies based on block forward substitution, resulting in a time-
stepping scheme. Numerical experiments confirm the stability of the formulation and demonstrate second-order convergence
with respect to the size of the space-time elements. Extensive long-term simulations reveal stable behavior of the proposed
formulation for all tested configurations. In contrast, a second-kind integral formulation and collocation approach shows a sta-
bility that depends on the relation between spatial and temporal discretization parameters. The discrete space-time variational
formulation of the first-kind boundary integral equation permits independent choices of spatial and temporal mesh sizes due
to its stability and well-posedness.
Future work will focus on understanding the stability and performance of the method for complex geometries and boundary
conditions relevant to acoustic applications. Particular emphasis will be placed on signals with high-frequency ranges, which
are especially important for practical applications and have not yet been sufficiently investigated.
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