Prof. Dr. Stefan Funken M.Sc. Andreas Bantle Institut für Numerische Mathematik Universität Ulm

Übungsblatt 5 (Besprechung Mo. 25.11.2013)

Aufgabe 10 (Schwache Ableitung)

- (i) Bestimen Sie die schwachen Ableitungen von
 - der Betragsfunktion $f:(-1,1)\to\mathbb{R}$ mit f(x)=|x|
 - der Hutfunktion $g:(0,2)\to\mathbb{R}$ mit

$$g(x) = \begin{cases} x, & \text{für } 0 < x \le 1 \\ 2 - x, & \text{für } 1 < x < 2. \end{cases}$$

Existiert die zweite schwache Ableitung der Betragsfunktion? Begründe.

(ii) Sei $\Omega = \{x \in \mathbb{R}^2 : |x| < \frac{1}{e}\}$ und

$$u(x) := \begin{cases} \ln\left(\ln\frac{1}{|x|}\right), & x \neq 0\\ 0, & \text{sonst.} \end{cases}$$

Zeigen Sie, dass $u \notin \mathcal{C}(\Omega)$ aber $u \in H^1(\Omega)$ gilt. (Hinweis: Überlegen Sie sich, wieso genügt zu zeigen, dass $\|\nabla u\|_{L^2(\Omega)} < \infty$.)

Aufgabe 11 (Céa Lemma)

Sei \mathcal{H} ein Hilbertraum, $S \subset \mathcal{H}$ ein endlich-dimensionaler Teilraum und $\|\cdot\|_{\mathcal{H}}$ eine Norm auf \mathcal{H} . Sei $f \in \mathcal{H}^*$ und $a: \mathcal{H} \times \mathcal{H} \to \mathbb{R}$ eine stetige, elliptische Bilinearform mit Elliptizitätskonstante $\gamma > 0$ und Stetigkeitskonstante M > 0. Seien $u \in \mathcal{H}$ und $u_h \in S$ Lösungen der Gleichung

$$a(u, v) = f(v) \quad \forall v \in \mathcal{H}$$

 $a(u_h, v_h) = f(v_h) \quad \forall v_h \in S.$

Zeigen Sie: Ist a symmetrisch (also ein Skalarprodukt) so gilt

$$||u - u_h||_{\mathcal{H}} \le \sqrt{\frac{M}{\gamma}} \min_{v_h \in S} ||u - v_h||_{\mathcal{H}}.$$

Aufgabe 12 (Hölder-Normen, MATLAB)

Sei $\Omega := [0, 2\pi]$ und $\gamma \in (0, 1)$. Die Höldernormen $\|\cdot\|_{\mathcal{C}^{0,\gamma}(\Omega)}$ und $\|\cdot\|_{\mathcal{C}^{1,\gamma}(\Omega)}$ sind für $f \in \mathcal{C}^{0,\gamma}(\Omega)$ und $g \in \mathcal{C}^{1,\gamma}(\Omega)$ gegeben durch

$$||f||_{\mathcal{C}^{0,\gamma}(\Omega)} := ||f||_{\mathcal{C}^{0}(\Omega)} + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|f(x) - f(y)|}{|x - y|^{\gamma}}$$

und

$$||g||_{\mathcal{C}^{1,\gamma}(\Omega)} := ||g||_{\mathcal{C}^{0}(\Omega)} + ||g'||_{\mathcal{C}^{0}(\Omega)} + \sup_{\substack{x,y \in \Omega \\ x \neq y}} \frac{|g'(x) - g'(y)|}{|x - y|^{\gamma}}.$$

Seien außerdem die Funktionen f und g 2π -periodisch.

(i) Schreiben Sie eine Funktion

die für eine 2π -periodische Funktion f, die über das Funktions-Handle $\mathbf f$ übergeben wird, die Höldernorm $\|\cdot\|_{\mathcal{C}^{0,\gamma}}$ approximiert. Wählen Sie dazu eine äquidistante Zerlegung von Ω mit Schrittweite $\mathbf h$ und werten Sie die Funktion f and den Gitterpunkten aus.

(ii) Schreiben Sie eine Funktion

die für eine 2π -periodische Funktion g, die über das Funktions-Handle g übergeben wird, die Höldernorm $\|\cdot\|_{\mathcal{C}^{1,\gamma}}$ numerisch approximiert. Gehen Sie dabei vor, wie in Aufgabe (i) und berechnen Sie die Ableitung numerisch über den zentralen Differenzenquotienten.

(iii) Testen Sie ihre Programme an der Funktion $u(x) := x(x - 2\pi)$.