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Abstract

The domination number γ(G) and the total domination number γt(G) of a graph
G without an isolated vertex are among the most well studied parameters in graph
theory. While the inequality γt(G) ≤ 2γ(G) is an almost immediate consequence
of the definition, the extremal graphs for this inequality are not well understood.
Furthermore, even very strong additional assumptions do not allow to improve the
inequality by much.

In the present paper we consider the relation of γ(G) and γt(G) for cubic graphs
G of large girth. Clearly, in this case γ(G) is at least n(G)/4 where n(G) is the order
of G. If γ(G) is close to n(G)/4, then this forces a certain structure within G. We
exploit this structure and prove an upper bound on γt(G), which depends on the value
of γ(G). As a consequence, we can considerably improve the inequality γt(G) ≤ 2γ(G)
for cubic graphs of large girth.
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1 Introduction

For a finite, simple, and undirected graph G, a set D of vertices of G is a dominating set
of G if every vertex in V (G) \D has a neighbor in D. Similarly, a set T of vertices of G is
a total dominating set of G if every vertex in V (G) has a neighbor in T . Note that a graph
has a total dominating set exactly if it has no isolated vertex. The minimum cardinalities
of a dominating and a total dominating set of G are known as the domination number γ(G)
of G and the total domination number γt(G) of G, respectively. These two parameters
are among the most fundamental and well studied parameters in graph theory [5,6,8]. In
view of their computational hardness especially upper bounds were investigated in great
detail.

The two parameters are related by some very simple inequalities. Let G be a graph
without isolated vertices. Since every total dominating set of G is also a dominating set
of G, we immediately obtain

γt(G) ≥ γ(G). (1)
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Similarly, if D is a dominating set of G, then adding, for every isolated vertex u of the
subgraph G[D] of G induced by D, a neighbor of u in G to the set D, results in a total
dominating set of G, which implies

γt(G) ≤ 2γ(G). (2)

The complete bipartite graph Kn/2,n/2 and the complete graph Kn show that (1) and
(2) are sharp, respectively. In [4, 7] the trees that satisfy (1) or (2) with equality are
characterized constructively.

While numerous very deep results concerning bounds on the domination number and
the total domination number under various conditions have been obtained, the relation of
these two parameters is not really well understood. The characterization of the extremal
graphs for (1) and (2) and/or improvements of (1) and (2) even under strong additional
assumptions appear to be very difficult. If the graph G arises, for instance, by subdividing
every edge of the complete graph Kn with n ≥ 3 twice, then γ(G) = n and γt(G) = 2n−1,
that is, forbidding cycles of length up to 8 does not allow to improve (2) by much. For
a positive integer k, let [k] denote the set {1, 2, . . . , k}. If the graph G has vertex set⋃
i∈[k](Ai ∪Bi ∪ Ci), where

• the sets Ai, Bi, and Ci for all i ∈ [k] are disjoint,

• |Ai| = a, |Bi| = a+ 1, and |Ci| = ka for every i ∈ [k] and some a ∈ N,

• the closed neighborhood NG[u] of a vertex u in Aj for j ∈ [k] is Bj ∪
⋃
i∈[k]Ai,

• the closed neighborhood NG[v] of a vertex v in Bj for j ∈ [k] is Aj ∪ {v} ∪ Cj , and

• the closed neighborhood NG[w] of a vertex w in Cj for j ∈ [k] is Bj ∪ Cj ,

then G is regular of degree (k + 1)a, has connectivity a, diameter 5, γ(G) = k + 1,
and γt(G) = 2k, that is, a large minimum degree, a large degree of regularity, a large
connectivity, a small diameter, and a large value of the domination number do not force
any serious improvement of (2).

In the present paper we consider the relation between the domination number and the
total domination number for cubic graphs of large girth.

Let G be a cubic graph of order n and girth at least g, that is, G has no cycles of
length less than g. Clearly, γ(G) ≥ 1

4n and γt(G) ≥ 1
3n. The best published upper bound

on the domination number of G, improving earlier results from [13,14], is due to Král’ et
al. [12], who show

γ(G) ≤ 0.299871n+O

(
n

g

)
. (3)

Combining this with γt(G) ≥ 1
3n, we obtain the following improvement of (1).

Corollary 1 If G is a cubic graph of order n and girth at least g, then

γt(G)

γ(G)
≥ 1.111589−O

(
1

g

)
.

In a recent preprint [11] Hoppen and Wormald improve (3) further to γ(G) ≤ 0.27942n+

O
(
n
g

)
, which improves the bound in Corollary 1 to γt(G)

γ(G) ≥ 1.192947−O
(
1
g

)
.

2



For a graph G of order n, minimum degree at least 2, and girth at least g, Henning

and Yeo [9,10] show γt(G) ≤ 1
2n+O

(
n
g

)
. Applying a trick from [13], this result leads to

the following corollary. Recall that the line graph of a graph G has vertex set E(G) and
edge set {ef : e, f ∈ E(G) and |e∩ f | = 1}. Furthermore, the kth power of a graph G has
vertex set V (G) and edge set {uv : u, v ∈ V (G) and 0 < distG(u, v) ≤ k}.

Corollary 2 If G is a cubic graph of order n and girth at least g, then

γt(G) ≤ 121

248
n+O

(
n

g

)
≤ 0.488n+O

(
n

g

)
. (4)

Proof: Let G be as in the statement. In view of the desired bound, we may assume that
g is sufficiently large. Since the 5th power of the line graph of G is neither an odd cycle
nor complete, has order 3

2n, and maximum degree 124, the theorem of Brooks [3] implies
that there is a set M of at least 3

248n edges of G such that for every two vertices u and v
that are incident with distinct edges in M , we have distG(u, v) ≥ 5. Let T0 denote the set
of 2|M | vertices incident with the edges in M and let G1 = G \NG[T0]. By construction,
the graph G1 has order n− 6|M |, minimum degree at least 2, and girth at least g. By the
above result of Henning and Yeo, the graph G1 has a total dominating set T1 of order at

most 1
2(n− 6|M |) +O

(
n
g

)
. Since T0 ∪ T1 is a total dominating set of G, we obtain

γt(G) ≤ 2|M |+ 1

2
(n− 6|M |) +O

(
n

g

)
=

1

2
n− |M |+O

(
n

g

)
≤ 1

2
n− 3

248
n+O

(
n

g

)
=

121

248
n+O

(
n

g

)
,

which completes the proof. 2

Combining Corollary 2 with γ(G) ≥ 1
4n, we obtain the following improvement of (2).

Corollary 3 If G is a cubic graph of order n and girth at least g, then

γt(G)

γ(G)
≤ 121

62
+O

(
1

g

)
≤ 1.952 +O

(
1

g

)
.

Note that Corollary 3 can only be close to the truth if the domination number is close to
1
4n. Our main result shows that in this case, the total domination number is smaller than
guaranteed by (4). Specifically, we prove the following result.

Theorem 4 If G is a cubic graph of order n, girth at least g, and domination number(
1
4 + ε

)
n for some ε ≥ 0, then

γt(G) ≤ 13

32
n+

3n

4(g − 2)
+

91

8
εn ≤ 0.40625n+O

(
n

g

)
+O(εn).

This result allows to improve Corollary 3 as follows.
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Corollary 5 If G is a cubic graph of order n and girth at least g, then

γt(G)

γ(G)
≤ 11011

5804
+O

(
1

g

)
≤ 1.89714 +O

(
1

g

)
.

Proof: Let G be as in the statement and let γ(G) =
(
1
4 + ε

)
n for some ε ≥ 0. By Corollary

2 and Theorem 4, we obtain

γt(G)

γ(G)
≤

min
{
13
32 + 91

8 ε,
121
248

}
1
4 + ε

+O

(
1

g

)
.

Since
(
13
32 + 91

8 ε
)
/
(
1
4 + ε

)
is increasing as a function of ε ≥ 0 and 13

32 + 91
8 ε = 121

248 for
ε = 81

11284 , the desired result follows. 2

The rest of the paper is devoted to the proof of Theorem 4.

2 Proof of Theorem 4

Let G be a cubic graph of order n, girth at least g, and domination number
(
1
4 + ε

)
n. Let

γ = γ(G) and γt = γt(G).
Let D be a minimum dominating set of G. Assign each vertex in V (G) \D arbitrarily

to some neighbor in D. By a result of Bollobás and Cockayne [2], we may assume that
for every vertex u in D, at least one vertex in V (G) \ D is assigned to u. Let D0 be
the set of vertices in D to which three vertices in V (G) \ D have been assigned. Let
D1 = D \D0, γ0 = |D0|, and γ1 = |D1|. Since the closed neighborhoods of the vertices in
D0 are disjoint and, to every vertex in D1, at least one vertex was assigned, we conclude
4γ0 + 2(γ − γ0) ≤ n, which implies

γ0 ≤
(

1

4
− ε
)
n

and hence
γ1 ≥ 2εn.

Since D is dominating, we have n ≤ 4(γ − γ1) + 3γ1 = 4γ − γ1 = (1 + 4ε)n − γ1, which
implies

γ1 ≤ 4εn.

If U is the set of vertices in V (G) \D assigned to vertices in D0 and nU = |U |, then, since
at least one vertex was assigned to every vertex in D1,

nU ≤ n− γ0 − 2γ1 = n− γ − γ1 ≤
(

3

4
− 3ε

)
n.

Let R = V (G)\ (D0∪U). If u ∈ D1 is such that exactly one vertex, say v, was assigned to
u, then there are at most 2 edges between u and U and at most 2 edges between v and U .
If u ∈ D1 is such that exactly two vertices, say v1 and v2, were assigned to u, then there
are at most 1 edge between u and U , at most 2 edges between v1 and U , and at most 2
edges between v2 and U . Altogether, there are at most 5γ1 ≤ 20εn edges between U and
R. Since every vertex in U has exactly one neighbor in D0, the graph G[U ] is the disjoint
union of r cycles and s paths such that s ≤ 10εn. Since G has girth at least g, we obtain
r ≤ nU

g . If H is a cycle or a path of order `, then it is possible to partition V (H) into at

most `
g−2 + 1 sets each of which induces a path of order at most g − 2. Therefore, it is
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possible to partition U into k sets that induce k paths P1, . . . , Pk of order at most g − 2
such that

k ≤ nU
g − 2

+ r + s ≤ nU
g − 2

+
nU
g

+ s ≤ 2nU
g − 2

+ s ≤ 3n

2(g − 2)
+ 10εn.

Note that, by the girth condition, no vertex in V (G) \ V (Pi) has more than one neighbor
in V (Pi) for every i ∈ [k].

We now construct a random total dominating set T of G starting with the empty set.

• Add all vertices in D1 to T .

• For every vertex u in D1, choose one of the vertices assigned to u uniformly and
independently at random and add it to a set T ′.

• Add all vertices in T ′ to T .

Since to every vertex in D1 either one or two vertices were assigned, every vertex in R has
a neighbor in T and every vertex in R belongs to T with probability at least 1

2 .

• For every i ∈ [k], we proceed as follows.

– Let Pi = u1u2 . . . u`.

– We choose xi ∈ {0, 2} independently and uniformly at random.

– Add to T all vertices in the set Ti with

Ti = {uj : (j ∈ [`]) ∧ ((j ≡ xi mod 4) ∨ ((j − 1) ≡ xi mod 4))}.

Note that every vertex in U belongs to T with probability 1
2 . This implies that the

expected value of the cardinality of
⋃
i∈[k] Ti satisfies E

[∑
i∈[k] |Ti|

]
= nU

2 . By now, all

internal vertices of the paths P1, . . . , Pk have a neighbor in T . Furthermore, every end
vertex of P1, . . . , Pk has no neighbor in T with probability at most 1

4 .

• For each vertex u in U that has no neighbor in T so far, add a neighbor of u to a
set T ′′.

• Add all vertices in T ′′ to T .

Note that E [|T ′′|] ≤ 1
4 · 2k = k

2 .

• For each vertex u in D0 that has no neighbor in T so far, add a neighbor of u to a
set T ′′′.

• Add all vertices in T ′′′ to T .

Since every vertex in D0 has three neighbors in U , no two of which lie in a single path
Pi, we obtain E[|T ′′′|] ≤

(
1
2

)3
γ0. Now T is a total dominating set of G and, by the first

moment method [1], we obtain

γt(G) ≤ E[|T |]

= |D1|+ E[|T ′|] + E

∑
i∈[k]

|Ti|

+ E[|T ′′|] + E[|T ′′′|]

≤ γ1 + γ1 +
nU
2

+
k

2
+

1

8
γ0

≤ 13

32
n+

3n

4(g − 2)
+

91

8
εn,

which completes the proof of Theorem 4. 2
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3 Conclusion

While the constants in our results improve previous estimates, we believe that they can
still be improved. Suitably modifying the proof strategy of Theorem 4, it is possible to
show an upper bound on the domination number of a cubic graph of order n and girth at
least g, for which the total domination number is close to 1

3n. Unfortunately, this bound
is weaker than the result of Král’ et al. [12].
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