Mathematik für Biologen

Übungsblatt 6

Abgabe: Mittwoch, 14.12.2011 vor den Übungen

Aufgabe 1 (3 Punkte)

Bestimmen Sie den maximalen Definitionsbereich $D \subset \mathbb{R}$ folgender Funktionen:

(a)
$$f(x) = \sqrt{x}$$
,

(b)
$$f(x) = \sqrt{3x^2 - 1}$$
,

(c)
$$f(x) = \frac{1}{x^2 - x - 6}$$
.

Aufgabe 2 (8 Punkte)

Zeigen Sie mit Hilfe der Definition* die Konvergenz folgender Folgen $(a_n)_{n=1}^{\infty}$:

(a)
$$a_n = \frac{1}{2n^2}$$
,

(b)
$$a_n = \frac{3n^2+1}{2n^2-1}$$

(c)
$$a_n = \frac{5}{\sqrt{n+2}}$$
,

(d)
$$a_n = \frac{1}{n^k}, k \in \mathbb{N}.$$

* d.h., finden Sie für ein beliebiges aber fest gewähltes $\varepsilon > 0$ ein $n_0(\varepsilon) \in \mathbb{N}$, so dass für alle $n > n_0(\varepsilon)$ gilt, dass $|a_n - a| < \varepsilon$, wobei $a \in \mathbb{R}$ der Grenzwert von $(a_n)_{n=1}^{\infty}$ ist.

Aufgabe 3 (8 Punkte)

Zeigen Sie mit Hilfe von Grenzwertsätzen und Ergebnissen aus der Vorlesung die Konvergenz folgender Folgen $(a_n)_{n=1}^{\infty}$:

(a)
$$a_n = \frac{2}{3n}$$
,

(b)
$$a_n = \frac{2n}{3n+1}$$
,

(c)
$$a_n = \frac{2}{3^{n+1}}$$
,

(d)
$$a_n = \frac{5^n}{12^n}$$
,

(e)
$$a_n = \frac{3n + (-1)^n}{n}$$
,

(f)
$$a_n = \frac{2n^2+3}{3n^2+n}$$
,

(g)
$$a_n = n - \frac{n^2 + 2n - 3}{n + 1}$$
,

(h)
$$a_n = \frac{1}{n^2} \sum_{k=1}^n k$$
.