Mathematik für Biologen

Übungsblatt 7

Abgabe: Mittwoch, 21.12.2011 vor den Übungen

Aufgabe 1 (3 Punkte)

Berechnen Sie ohne Taschenrechner:

(a)
$$256^{\frac{3}{8}}$$
, (b) $9^{1.5} \cdot 3^{-4}$, (c) $\frac{\sqrt[3]{32}\sqrt[4]{8}}{\sqrt[12]{32}}$.

Aufgabe 2 (3 Punkte)

Vereinfachen Sie folgende Ausdrücke für $x, y \in [0, \infty)$:

(a)
$$\sqrt[3]{x^3x^5x^7}$$
, (b) $x\sqrt{x\sqrt{x^3\sqrt[3]{x}}}$, (c) $\sqrt[9]{x^2y^4}\sqrt[3]{xy}$.

Aufgabe 3 (10 Punkte)

Beweisen oder widerlegen Sie mit Hilfe eines Gegenbeispiels folgende Aussagen über Folgen $(a_n)_{n=1}^{\infty}$ und $(b_n)_{n=1}^{\infty}$:

- (a) Wenn $(a_n)_{n=1}^{\infty}$ beschränkt ist und $\lim_{n\to\infty}b_n=\infty$, dann gilt $\lim_{n\to\infty}a_nb_n=\infty$.
- (b) Wenn $(a_n)_{n=1}^{\infty}$ und $(b_n)_{n=1}^{\infty}$ beschränkt sind, so ist auch $(c_n)_{n=1}^{\infty}$ mit $c_n = a_n b_n$ beschränkt.
- (c) Wenn $(a_n)_{n=1}^{\infty}$ konvergent ist und $(b_n)_{n=1}^{\infty}$ beschränkt, so konvergiert auch $(c_n)_{n=1}^{\infty}$ mit $c_n = a_n b_n$.
- (d) Ist $(|a_n|)_{n=1}^{\infty}$ eine Nullfolge, so ist auch $(a_n)_{n=1}^{\infty}$ eine Nullfolge.
- (e) Wenn $(a_n)_{n=1}^{\infty}$ eine Nullfolge ist und $(b_n)_{n=1}^{\infty}$ beschränkt, so ist auch $(c_n)_{n=1}^{\infty}$ mit $c_n = a_n b_n$ eine Nullfolge.

Aufgabe 4 (8 Punkte)

Untersuchen Sie nachstehende Folgen $(a_n)_{n=1}^{\infty}$ auf Konvergenz und Divergenz und begründen Sie Ihre Antwort:

(a)
$$a_n = \frac{n^4(2n^2+3)(4n^3-1)}{4n^9-3n^2}$$
,

(b)
$$a_n = \frac{5^n + 3^n + (-1)^n}{2^n + 7^n}$$
,

(c)
$$a_n = \frac{(-3)^{2n} + 45^n}{9^n}$$
,

(d)
$$a_n = \frac{\frac{1}{n}}{\frac{1}{2n^3+1} + \frac{1}{n^2}}$$
.