

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2013

Mathematics of Games

Exercise session 1

29.04.2013, 12pm-2pm, N24-H15

Hand-in in PAIRS, before class starts!

1. Each of *n* players gets a unique marker color. Now each player $i \ (i \in \{1, ..., n\})$ simultaneously chooses his *position*: a real number $x_i \in [0, 1]$. All points in [0, 1] are colored: Each point *y* gets player *i*'s marker color for that *i* with x_i closest to *y*.

If a point $y \in [0, 1]$ has the same distance to more than one player's position x_i , its color is determined at random (uniformly). If one position x_i is chosen by more than one player, the points with minimum distance to x_i are colored randomly (uniformly) with one of those players' marker colors. Each player wants to color a largest possible part of the interval with his marker color.

- (i) If there are two players, what are the pure-strategy Nash equilibria for?
- (ii) If there are three players, does a pure-strategy Nash equilibrium exist for? If so, give all pure-strategy NE and if not, explain why not.
- (iii) If there are n players, does a pure-strategy Nash equilibrium exist for? If so, give all pure-strategy NE and if not, explain why not. Is there any difference between an even and an odd number of players?
- (iv) If there are two players, is there any pure-strategy that strictly dominates another?
- 2. Suppose there are *n* firms in the Cournot oligopoly model. Let q_i denote the quantity produced by firm *i*, and let $Q = q_1 + \ldots + q_n$ denote the aggregate quantity on the market. Let *P* denote the market-clearing price and assume that inverse demand is given by P(Q) = a Q (assuming Q < a, else P = 0). Assume that the total cost of firm *i* from producing quantity q_i is $C_i(q_i) = cq_i$. That is, there are no fixed costs and the marginal cost is constant at *c*, where we assume c < a. Following Cournot, suppose that the firms choose their quantities simultaneously. What is the pure-strategy Nash equilibrium? What happens as *n* approaches infinity?
- 3. Consider the Cournot duopoly model where inverse demand is P(Q) = a Q, with q_i denoting the quantity produced by firm *i* and $Q = q_1 + q_2$, but firms have asymmetric marginal costs: c_1 for firm 1 and c_2 for firm 2. Thus, the total cost for firm *i* is $C_i(q_i) = c_i q_i$. $(i \in \{1, 2\})$. What is the pure-strategy Nash equilibrium if $0 < c_i < a/2$ for each firm? What if $c_1 < c_2 < a$ but $2c_2 > a + c_1$?

4. In the following normal-form games, what strategies survive iterated elimination of strictly dominated strategies? What are the pure-strategy Nash equilibria?

(a) -				L		C		R	t
		Т		2,0		1,1		4,	2
		М		3,4		1,2		2,	3
			В	3 1,		0,	2	3,	,0
			A			В	С		D
	Е		6	,3	3	,7	2	,5	1,5
(b)	F		1,1		4,3		3,2		2,2
	G	8		,1	3	,3	2,6		6,2
	Η		10),6	$\overline{2}$,4	1	,3	$5,\!9$