

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2014

Mathematics of Games

Exercise Session 2

Exercise Session 2 due on 12.05.2014, by 12:15pm, N24-H14. Total : 20 Points Hand-in individual!

1. **Theorem 1 (Nash, 1950)** Every finite normal-form static game of complete information has a mixed-strategy Nash equilibrium.

The idea of the proof of Nash's theorem is to apply Kakutani's fixed-point theorem to the players' "reaction correspondences". Let player *i*'s reaction correspondence r_i map each strategy profile σ to the set of mixed strategies that maximize player *i*'s payoff when his opponents play σ_{-i} . We define the correspondence $r : \Sigma \to \Sigma$ to be the Cartesian product of the r_i . A fixed point of r is a σ such that $\sigma \in r(\sigma)$, so for every player, $\sigma_i \in r_i(\sigma)$. Thus, a fixed point of r is a Nash equilibrium. From Kakutani's theorem, the following are sufficient conditions for $r : \Sigma \to \Sigma$ to have a fixed point:

- (a) Σ is a compact, convex, nonempty subset of a finite-dimensional Euclidean space.
- (b) $r(\sigma)$ is nonempty for all σ . [1 Point]
- (c) $r(\sigma)$ is convex for all σ . [2 Points]
- (d) $r(\cdot)$ has a *closed graph*: For any two sequences $(\sigma^n), (\hat{\sigma}^n)$ with $\hat{\sigma}^n \in r(\sigma^n)$ for all n, $\sigma^n \to \sigma$ and $\hat{\sigma}^n \to \hat{\sigma}$, the following holds: $\hat{\sigma} \in r(\sigma)$. [3 Points]

First note that each Σ_i is a simplex of dimension $(|\Sigma_i| - 1)$, which is nonempty, compact, and convex. So this also holds for the cartesian product Σ .

Now prove that the conditions (b)-(d) are satisfied. Use the following information.

- A set X in a linear vector space is *convex* if, for any x and y belonging to X and any $\lambda \in [0, 1]$, $\lambda x + (1 \lambda)y$ belongs to X.
- In a game as in the theorem above, each player's payoff function is *multilinear*, that is,

$$u_i(\lambda \sigma'_i + (1 - \lambda)\sigma''_i, \sigma_{-i}) = \lambda u_i(\sigma'_i, \sigma_{-i}) + (1 - \lambda)u_i(\sigma''_i, \sigma_{-i})$$

for all $\sigma'_i, \sigma''_i \in \Sigma_i$ and $\lambda \in [0, 1]$. Linear functions are continuous.

• Continuous functions on nonempty convex and compact sets attain maxima.

[6 Points]

2. Solve for the mixed-strategy Nash equilibria in the following normal-form game.

	L	С	R
Т	2,0	1,1	4,2
М	3,4	1,2	2,3
В	1,3	0,2	3,0

[4 Points]

3. Suppose there are I farmers, each of whom has the right to graze cows on the village common. The amount of milk a cow produces depends on the number of cows, N, grazing on the green. The revenue produced by n_i cows is $n_i u(N)$ for $N < N^*$ and u(N) = 0 for $N \ge N^*$, where u(0) > 0, u' < 0 and u'' < 0. Each cow costs c, and cows are perfectly divisible. Suppose u(0) > c. Farmers simultaneously decide how many cows to purchase. All purchased cows will graze on the common. Write this game as a static game of complete information, give a pure-strategy Nash Equilibrium and compare it against the social optimum. How does this game relate to the Cournot oligopoly model?

[6 Points]

4. Consider the Cournot duopoly model from the lecture. Apply the first two steps of the iterated elimination of strictly dominated strategies: prove that the monopoly quantity $q_m = \frac{a-c}{2}$ strictly dominates any higher quantity and that half the monopoly quantity $q_{\frac{m}{2}} = \frac{a-c}{4}$ strictly dominates any lower quantity. How many steps are required in total?

[4 Points]