

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2014

Mathematics of Games

Exercise Session 4

Exercise Session 4 due on 26.05.2014, by 12:15pm, N24-H14. Total : 20 Points Hand-in IN PAIRS!

1. Solve Rubinstein-Ståhl's finite-horizon bargaining problem for T even and then for T odd, and show that the outcomes of the two cases converge to a common limit as $T \to \infty$.

[6 Points]

2. Consider the following infinitely repeated game with discount factor δ , based on the Cournot 2-firm-game with symmetric cost as stage game. Assume that both firms play:

"Produce half the monopoly quantity, $q_m/2 = (a - c)/4$, in the first period. In the t^{th} period, produce $q_m/2$ if both firms have produced $q_m/2$ in each of the t - 1 previous periods; otherwise, produce the Cournot quantity, $q_C = (a - c)/3$."

For which values of δ is the above stragegy a subgame-perfect Nash Equilibrium?

[5 Points]

3. Consider the infinitely repeated 2-player-game with discount factor δ , based on the stage game described by the figure below.

	А	В	
Α	1,1	6,0	
В	0,6	3,3	

Assume the following strategy, where each player:

"Play B in the first stage. In the t^{th} stage, if the outcome of all t-1 preceeding stages has been (B, B), then play B, otherwise, play A."

For which values of δ is this stragegy a subgame-perfect Nash Equilibrium?

[5 Points]

4. The accompanying simultaneous-move game is played twice, with the outcome of the first stage observed before the second stage begins. There is no discounting. The variable x is greater than 4, so that (4, 4) is not an equilibrium payoff in the one-shot game. For which values of x is the following strategy (played by both players) a subgame-perfect NE?

Play Q_i in the first stage. If the first-stage outcome is (Q_1, Q_2) , play P_i in the second stage. If the first-stage outcome is (y, Q_2) where $y \neq Q_1$, play R_i in the second stage. If the first-stage outcome is (Q_1, z) where $z \neq Q_2$, play S_i in the second stage. If the first-stage outcome is (y, z) where $y \neq Q_1$ and $z \neq Q_2$, play P_i in the second stage.

	P_2	Q_2	R_2	S_2
P_1	2,2	x,0	-1,0	0,0
Q_1	0,x	4,4	-1,0	0,0
R_1	0,0	0,0	0,2	0,0
S_1	0,-1	0,-1	-1,-1	2,0

[4 Points]