Institut für Optimierung und Operations Research
Dr. Lucia Draque Penso
Dr. Jens Maßberg
Sommersemester 2014

Mathematics of Games

Exercise Session 4

Exercise Session 4 due on 26.05.2014, by 12:15pm, N24-H14.
Total : 20 Points
Hand-in IN PAIRS!

1. Solve Rubinstein-Ståhl's finite-horizon bargaining problem for T even and then for T odd, and show that the outcomes of the two cases converge to a common limit as $T \rightarrow \infty$.
[6 Points]
2. Consider the following infinitely repeated game with discount factor δ, based on the Cournot 2-firm-game with symmetric cost as stage game. Assume that both firms play: "Produce half the monopoly quantity, $q_{m} / 2=(a-c) / 4$, in the first period. In the $t^{t h}$ period, produce $q_{m} / 2$ if both firms have produced $q_{m} / 2$ in each of the $t-1$ previous periods; otherwise, produce the Cournot quantity, $q_{C}=(a-c) / 3$."
For which values of δ is the above stragegy a subgame-perfect Nash Equilibrium?
[5 Points]
3. Consider the infinitely repeated 2-player-game with discount factor δ, based on the stage game described by the figure below.

	A	B
A	1,1	6,0
B	0,6	3,3

Assume the following strategy, where each player:
"Play B in the first stage. In the $t^{t h}$ stage, if the outcome of all $t-1$ preceeding stages has been (B, B), then play B, otherwise, play A."
For which values of δ is this stragegy a subgame-perfect Nash Equilibrium?
[5 Points]
4. The accompanying simultaneous-move game is played twice, with the outcome of the first stage observed before the second stage begins. There is no discounting. The variable x is greater than 4 , so that $(4,4)$ is not an equilibrium payoff in the one-shot game. For which values of x is the following strategy (played by both players) a subgame-perfect NE?

Play Q_{i} in the first stage. If the first-stage outcome is $\left(Q_{1}, Q_{2}\right)$, play P_{i} in the second stage. If the first-stage outcome is $\left(y, Q_{2}\right)$ where $y \neq Q_{1}$, play R_{i} in the second stage. If the first-stage outcome is $\left(Q_{1}, z\right)$ where $z \neq Q_{2}$, play S_{i} in the second stage. If the first-stage outcome is (y, z) where $y \neq Q_{1}$ and $z \neq Q_{2}$, play P_{i} in the second stage.

	P_{2}	Q_{2}	R_{2}	S_{2}
P_{1}	2,2	$\mathrm{x}, 0$	$-1,0$	0,0
Q_{1}	$0, \mathrm{x}$	4,4	$-1,0$	0,0
R_{1}	0,0	0,0	0,2	0,0
S_{1}	$0,-1$	$0,-1$	$-1,-1$	2,0

[4 Points]

