

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2013

Mathematics of Games

Exercise session 5

03.06.2013, 12pm-2pm, N24-H15

Hand-in in PAIRS, before class starts!

- 1. Solve Rubinstein-Ståhl's finite-horizon bargaining problem for T even and then for T odd, and show that the outcomes of the two cases converge to a common limit as $T \to \infty$.
- 2. Consider the Cournot game for two firms known from the lecture. Consider the infinitely repeated game based on this stage game. Assume that both firms play the following strategy:

"Produce half the monopoly quantity, $q_m/2 = (a - c)/4$, in the first period. In the t^{th} period, produce $q_m/2$ if both firms have produced $q_m/2$ in each of the t - 1 previous periods; otherwise, produce the Cournot quantity, $q_C = (a - c)/3$."

Compute the values of δ for which the above stragegy for both firms is a subgame-perfect Nash equilibrium.

- 3. Draw a game tree for the following game and solve for the subgame-perfect Nash equilibria. Are there Nash equilibria which are not subgame-perfect? If yes, give one.
 - 1. Player 1 chooses an action a_1 from the feasible set $A_1 = \{B, C\}$.
 - 2. Player 2 observes a_1 and chooses an action a_2 from the feasible set $A_2 = \{D, E\}$. If $a_1 = C$, the game ends after player 2's action, with payoffs (2, 0, 3) if $a_2 = D$ and (0, 2, 1) if $a_2 = E$.
 - 3. Player 3 observes a_1 (but not a_2) and if $a_1 = B$, player 3 chooses an action a_3 from the feasible set $A_3 = \{F, G\}$, which ends the game with payoffs given in the table below.

(a_1, a_2, a_3)	Player 1	Player 2	Player 3
(B, D, F)	2	4	3
(B, D, G)	1	5	0
(B, E, F)	0	1	2
(B, E, G)	3	0	1