

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2013

Mathematics of Games

Exercise session 6

10.06.2013, 12pm-2pm, N24-H15

Hand-in before class starts.

1. Consider a variant of Rubinstein's infinite-horizon bargaining game where partitions (x_1, x_2) , with $x_1 + x_2 = 1$, are restricted to be integer multiples of 0.01, that is, x_i can be 0, 0.01, 0.02, ..., 0.99, or 1 for i = 1, 2. There is a common discount factor δ . Prove that, if $\delta > 0.99$, any partition can be supported as a subgame-perfect NE.

Hint: If player *i* always offers (x_i, x_j) , which would be the threshold value *t* for *i* to accept an offer (y_i, y_j) from *j*? Can player *i* gain by making an offer with a value lower or higher than x_i for its partition? Can player *i* lose by accepting any offer from *j* of at least *t* or by rejecting any offer from *j* less than *t*?

2. Consider the static Bertrand duopoly model (with homogeneous products): The two firms name prices simultaneously; demand for firm *i*'s product is $a - p_i$ if $p_i < p_j$, is 0 if $p_i > p_j$, and is $(a - p_i)/2$ if $p_i = p_j$; marginal costs are c < a. Consider the infinitely repeated game based on this stage game. Assume that both players play the following strategy:

"Play price $\frac{a+c}{2}$ in the first period. In the t^{th} period, play price $\frac{a+c}{2}$ if both played $\frac{a+c}{2}$ in each of the t-1 previous periods, otherwise, play price c."

Show that the above strategy for both firms is a subgame-perfect Nash equilibrium if and only if $\delta \geq 1/2$.

3. Three players bargain over the division of a pie of size 1. A division is a triple (x_1, x_2, x_3) of shares for each player, where $x_i \ge 0$, $\sum_{i=1}^3 x_i = 1$. At dates $3k+1, k=0, 1, \ldots$, player 1 offers a division, then players 2 and 3 simultaneously decide whether they accept or veto. If players 2 and 3 both accept, the game is over. If one or both of them veto, bargaining goes on. Similarly, at dates 3k + 2 (respectively, 3k), player 2 (respectively, player 3) makes the offer. The game stops once an offer by one player has been accepted by the other two players. The players have common discount factor δ .

Show that for every $\delta \in (0, 1)$, any partition can be supported as a subgame-perfect Nash equilibrium.