

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2013

## Mathematics of Games

Exercise session 8

20.06.2013, 2pm-4pm, N24-H15

Hand-in before class starts.

1. Theorem 1 (Abreu 1998) If the stage game is finite, any distribution over infinite histories that can be generated by some subgame-perfect equilibrium  $\sigma$  can be generated with a strategy profile  $\sigma^*$  that specifies that play switches to the worst equilibrium  $\underline{w}(i)$  for player i if player i is the first to play an action to which  $\sigma$  assigns probability 0.

*Hint:* Consider  $\sigma^*(h^t) = \sigma(h^t)$  as long as  $\sigma$  gives the history  $h^t$  positive probability. What happens if  $\sigma$  gives positive probability to  $h^{t'}$  for all t' < t, and player *i* is the only player to play an action with probability 0 in  $\sigma(h^t)$  at period *t*?

- 2. Consider a first-price, sealed-bid auction in which the bidders' valuations are independently and uniformly distributed on [0, 1]. Bidder *i* has valuation  $v_i$  for the good that is, if bidder *i* gets the good and pays the price *p*, then *i*'s payoff is  $v_i p$ . The bids  $b_i \ge 0$  are submitted simultaneously, the higher bidder wins the good and pays the bidden price, the other bidders get and pay 0. In case of a tie, the winner is determined uniformly at random. Show that if there are *n* bidders, then the strategy of bidding  $\frac{n-1}{n}$  times one's valuation is a Bayesian Nash equilibrium of this auction.
- 3. Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a Q, where  $Q = q_1 + q_2$  is the aggregate quantity on the market. Both firms have total costs  $c_i(q_i) = cq_i$  with a constant c, but demand is uncertain: it is high  $(a = a_H)$  with probability  $\theta$  and low  $(a = a_L)$  with probability  $1 - \theta$ . So the payoff depends on a and is  $u_i(q_i, q_j, a) = (P(Q) - c)q_i$  for both firms. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All of this is common knowledge. The two firms simultaneously choose quantities. What is the pure-strategy Bayesian Nash equilibrium of this game?
- 4. Consider the following model of Bertrand duopoly with differentiated products. Demand for firm *i* is  $q_i(p_i, p_j) = a - p_i - b_i \cdot p_j$ . Costs are zero for both firms. The sensitivity of firm *i*'s demand to firm *j*'s price is either high or low. That is,  $b_i$  is either  $b_H$  or  $b_L$ , where  $b_H > b_L > 0$ . For each firm,  $b_i = b_H$  with probability  $\theta$  and  $b_i = b_L$  with probability  $1 - \theta$ , independent of the realization of  $b_j$ . Each firm knows its own  $b_i$  but not its competitor's. All of this is common knowledge. Which (four) conditions define a pure-strategy Bayesian Nash equilibrium of this game? Solve for such an equilibrium in the case  $\theta = 1$ .