

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Wintersemester 2014/2015

Online and Distributed Algorithms

Exercise Session 10

- 1. MIS and Dominating Set: Every MIS is a dominating set.
 - (a) How much larger however can it be compared to the size of an optimal minimum dominating set? Give an example.
 - (b) A graph is said to be of bounded independence if each neighbourhood contains at most a constant number of independent (i.e., mutually non-adjacent) nodes. Show that in graphs of bounded independence, a constant-factor approximation to a minimum dominating set can be found in $O(\log n)$ time with high probability. (An approximation algorithm \mathcal{A} for an optimization problem II has a factor of r if for all its instances $I \in II$, $\frac{OPT(I)}{\mathcal{A}(I)} \leq r$.)
 - (c) Are there other problems that can be solved with the help of MIS? Show that one can $\Delta + 1$ -color an arbitrary graph in $O(\log n)$ time with high probability, Δ being the largest degree in the graph.
- 2. k-Domination and k-Distance: Consider the following game in a graph G between two players. Player 1 chooses first a node p_1 in G and then player 2 chooses a node $p_2 \neq p_1$ in G. If a node v has distance k_1 to p_1 and the same node v has distance k_2 to p_2 , v belongs only to player 1 if $k_1 < k_2$, only to player 2 if $k_2 < k_1$, and to both if $k_1 = k_2$. The objective of each player is to maximize the number of owned nodes in G. Note that each player i owns at least p_i . In many graphs (but not all) it is an advantage for the first player to decide first. To see that, consider for instance, a star and its center. Show a graph where the second player always wins, independent of the decision of the first player.