
����������	

��������

Principles of

Distributed Computing

Roger Wattenhofer

wattenhofer@ethz.ch

Spring 2014

Contents

1 Vertex Coloring 5
1.1 Problem & Model . 5
1.2 Coloring Trees . 8

2 Leader Election 15
2.1 Anonymous Leader Election . 15
2.2 Asynchronous Ring . 16
2.3 Lower Bounds . 18
2.4 Synchronous Ring . 21

3 Tree Algorithms 23
3.1 Broadcast . 23
3.2 Convergecast . 24
3.3 BFS Tree Construction . 25
3.4 MST Construction . 27

4 Distributed Sorting 31
4.1 Array & Mesh . 31
4.2 Sorting Networks . 34
4.3 Counting Networks . 37

5 Shared Memory 45
5.1 Introduction . 45
5.2 Mutual Exclusion . 46
5.3 Store & Collect . 49

5.3.1 Problem Definition . 49
5.3.2 Splitters . 50
5.3.3 Binary Splitter Tree . 51
5.3.4 Splitter Matrix . 53

6 Shared Objects 57
6.1 Introduction . 57
6.2 Arrow and Friends . 58
6.3 Ivy and Friends . 63

7 Maximal Independent Set 69
7.1 MIS . 69
7.2 Original Fast MIS . 71
7.3 Fast MIS v2 . 74

i

ii CONTENTS

7.4 Applications . 78

8 Locality Lower Bounds 83

8.1 Locality . 84

8.2 The Neighborhood Graph . 86

9 Social Networks 91

9.1 Small World Networks . 92

9.2 Propagation Studies . 98

10 Synchronization 101

10.1 Basics . 101

10.2 Synchronizer α . 102

10.3 Synchronizer β . 103

10.4 Synchronizer γ . 104

10.5 Network Partition . 106

10.6 Clock Synchronization . 108

11 Hard Problems 115

11.1 Diameter & APSP . 115

11.2 Lower Bound Graphs . 117

11.3 Communication Complexity . 120

11.4 Distributed Complexity Theory 125

12 Stabilization 129

12.1 Self-Stabilization . 129

12.2 Advanced Stabilization . 134

13 Wireless Protocols 139

13.1 Basics . 139

13.2 Initialization . 141

13.2.1 Non-Uniform Initialization 141

13.2.2 Uniform Initialization with CD 141

13.2.3 Uniform Initialization without CD 142

13.3 Leader Election . 143

13.3.1 With High Probability . 143

13.3.2 Uniform Leader Election 143

13.3.3 Fast Leader Election with CD 144

13.3.4 Even Faster Leader Election with CD 145

13.3.5 Lower Bound . 147

13.3.6 Uniform Asynchronous Wakeup without CD 148

13.4 Useful Formulas . 148

14 Peer-to-Peer Computing 153

14.1 Introduction . 153

14.2 Architecture Variants . 154

14.3 Hypercubic Networks . 155

14.4 DHT & Churn . 161

14.5 Storage and Multicast . 163

CONTENTS iii

15 Dynamic Networks 171
15.1 Synchronous Edge-Dynamic Networks 171
15.2 Problem Definitions . 172
15.3 Basic Information Dissemination 173
15.4 Small Messages . 176

15.4.1 k-Verification . 176
15.4.2 k-Committee Election . 177

15.5 More Stable Graphs . 179

16 All-to-All Communication 183

17 Consensus 189
17.1 Impossibility of Consensus . 189
17.2 Randomized Consensus . 194

18 Multi-Core Computing 199
18.1 Introduction . 199

18.1.1 The Current State of Concurrent Programming 199
18.2 Transactional Memory . 201
18.3 Contention Management . 202

19 Dominating Set 209
19.1 Sequential Greedy Algorithm . 210
19.2 Distributed Greedy Algorithm . 211

20 Routing 217
20.1 Array . 217
20.2 Mesh . 218
20.3 Routing in the Mesh with Small Queues 219
20.4 Hot-Potato Routing . 220
20.5 More Models . 222

21 Routing Strikes Back 223
21.1 Butterfly . 223
21.2 Oblivious Routing . 224
21.3 Offline Routing . 225

iv CONTENTS

Introduction

What is Distributed Computing?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
Typical “old school” examples are parallel computers, or the Internet. More re-
cent application examples of distributed systems include peer-to-peer systems,
sensor networks, and multi-core architectures.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they may have their own hardware, their own code, and
sometimes their own independent task. Nevertheless, the nodes may share com-
mon resources and information, and, in order to solve a problem that concerns
several—or maybe even all—nodes, coordination is necessary.

Despite these commonalities, a peer-to-peer system, for example, is quite
different from a multi-core architecture. Due to such differences, many differ-
ent models and parameters are studied in the area of distributed computing.
In some systems the nodes operate synchronously, in other systems they oper-
ate asynchronously. There are simple homogeneous systems, and heterogeneous
systems where different types of nodes, potentially with different capabilities,
objectives etc., need to interact. There are different communication techniques:
nodes may communicate by exchanging messages, or by means of shared mem-
ory. Occasionally the communication infrastructure is tailor-made for an appli-
cation, sometimes one has to work with any given infrastructure. The nodes
in a system often work together to solve a global task, occasionally the nodes
are autonomous agents that have their own agenda and compete for common
resources. Sometimes the nodes can be assumed to work correctly, at times they
may exhibit failures. In contrast to a single-node system, distributed systems
may still function correctly despite failures as other nodes can take over the work
of the failed nodes. There are different kinds of failures that can be considered:
nodes may just crash, or they might exhibit an arbitrary, erroneous behavior,
maybe even to a degree where it cannot be distinguished from malicious (also
known as Byzantine) behavior. It is also possible that the nodes follow the rules
indeed, however they tweak the parameters to get the most out of the system;
in other words, the nodes act selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in greater detail now, but simply

1

2 CONTENTS

define them when we use them. Towards the end of the course a general picture
should emerge. Hopefully!

This course introduces the basic principles of distributed computing, high-
lighting common themes and techniques. In particular, we study some of the
fundamental issues underlying the design of distributed systems:

• Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

• Coordination: How can you coordinate a distributed system so that it
performs some task efficiently?

• Fault-tolerance: As mentioned above, one major advantage of a distrib-
uted system is that even in the presence of failures the system as a whole
may survive.

• Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
In this course, we will address the fundamental question in distributed
computing whether a local solution is possible for a wide range of problems.

• Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

• Symmetry breaking: Sometimes some nodes need to be selected to orches-
trate the computation (and the communication). This is achieved by a
technique called symmetry breaking.

• Synchronization: How can you implement a synchronous algorithm in an
asynchronous system?

• Uncertainty: If we need to agree on a single term that fittingly describes
this course, it is probably “uncertainty”. As the whole system is distrib-
uted, the nodes cannot know what other nodes are doing at this exact
moment, and the nodes are required to solve the tasks at hand despite the
lack of global knowledge.

Finally, there are also a few areas that we will not cover in this course,
mostly because these topics have become so important that they deserve and
have their own courses. Examples for such topics are distributed programming,
software engineering, as well as security and cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!

Chapter Notes

Many excellent text books have been written on the subject. The book closest
to this course is by David Peleg [Pel00], as it shares about half of the material.

BIBLIOGRAPHY 3

A main focus of Peleg’s book are network partitions, covers, decompositions,
spanners, and labeling schemes, an interesting area that we will only touch in
this course. There exist a multitude of other text books that overlap with one or
two chapters of this course, e.g., [Lei92, Bar96, Lyn96, Tel01, AW04, HKP+05,
CLRS09, Suo12]. Another related course is by James Aspnes [Asp].

Some chapters of this course have been developed in collaboration with (for-
mer) Ph.D. students, see chapter notes for details. Many students have helped
to improve exercises and script. Thanks go to Philipp Brandes, Raphael Ei-
denbenz, Roland Flury, Klaus-Tycho Förster, Stephan Holzer, Barbara Keller,
Fabian Kuhn, Christoph Lenzen, Thomas Locher, Remo Meier, Thomas Mosci-
broda, Regina O’Dell, Yvonne-Anne Pignolet, Jochen Seidel, Stefan Schmid,
Johannes Schneider, Jara Uitto, Pascal von Rickenbach (in alphabetical order).

Bibliography

[Asp] James Aspnes. Notes on Theory of Distributed Systems.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[Bar96] Valmir C. Barbosa. An introduction to distributed algorithms. MIT
Press, Cambridge, MA, USA, 1996.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[HKP+05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and ar-
chitectures: array, trees, hypercubes. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[Suo12] Jukka Suomela. Deterministic Distributed Algorithms. 2012.

[Tel01] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 2nd edition, 2001.

4 CONTENTS

Chapter 1

Vertex Coloring

1.1 Problem & Model

Vertex coloring is an infamous graph theory problem. It is also a useful toy
example to see the style of this course already in the first lecture. Vertex coloring
does have quite a few practical applications, for example in the area of wireless
networks where coloring is the foundation of so-called TDMA MAC protocols.
Generally speaking, vertex coloring is used as a means to break symmetries, one
of the main themes in distributed computing. In this chapter we will not really
talk about vertex coloring applications, but treat the problem abstractly. At the
end of the class you probably learned the fastest (but not constant!) algorithm
ever! Let us start with some simple definitions and observations.

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V,E), assign
a color cu to each vertex u ∈ V such that the following holds: e = (v, w) ∈
E ⇒ cv 6= cw.

Remarks:

• Throughout this course, we use the terms vertex and node interchangeably.

• The application often asks us to use few colors! In a TDMA MAC protocol,
for example, less colors immediately imply higher throughput. However,
in distributed computing we are often happy with a solution which is sub-
optimal. There is a tradeoff between the optimality of a solution (efficacy),
and the work/time needed to compute the solution (efficiency).

3

1 2

3

Figure 1.1: 3-colorable graph with a valid coloring.

5

6 CHAPTER 1. VERTEX COLORING

Assumption 1.2 (Node Identifiers). Each node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only log n bits
if the system has n nodes.

Remarks:

• Sometimes we might even assume that the nodes exactly have identifiers
1, . . . , n.

• It is easy to see that node identifiers (as defined in Assumption 1.2) solve
the coloring problem 1.1, but not very well (essentially requiring n colors).
How many colors are needed is a well-studied problem.

Definition 1.3 (Chromatic Number). Given an undirected Graph G = (V,E),
the chromatic number χ(G) is the minimum number of colors to solve Problem
1.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1 Greedy Sequential

1: while ∃ uncolored vertex v do
2: color v with the minimal color (number) that does not conflict with the

already colored neighbors
3: end while

Definition 1.4 (Degree). The number of neighbors of a vertex v, denoted by
δ(v), is called the degree of v. The maximum degree vertex in a graph G defines
the graph degree ∆(G) = ∆.

Theorem 1.5 (Analysis of Algorithm 1). The algorithm is correct and termi-
nates in n “steps”. The algorithm uses at most ∆ + 1 colors.

Proof: Correctness and termination are straightforward. Since each node has at
most ∆ neighbors, there is always at least one color free in the range {1, . . . ,∆+
1}.

Remarks:

• In Definition 1.7 we will see what is meant by “step”.

• For many graphs coloring can be done with much less than ∆ + 1 colors.

• This algorithm is not distributed at all; only one processor is active at a
time. Still, maybe we can use the simple idea of Algorithm 1 to define a
distributed coloring subroutine that may come in handy later.

Now we are ready to study distributed algorithms for this problem. The fol-
lowing procedure can be executed by every vertex v in a distributed coloring
algorithm. The goal of this subroutine is to improve a given initial coloring.

1.1. PROBLEM & MODEL 7

Procedure 2 First Free
Require: Node Coloring {e.g., node IDs as defined in Assumption 1.2}

Give v the smallest admissible color {i.e., the smallest node color not used by
any neighbor}

Remarks:

• With this subroutine we have to make sure that two adjacent vertices are
not colored at the same time. Otherwise, the neighbors may at the same
time conclude that some small color c is still available in their neighbor-
hood, and then at the same time decide to choose this color c.

Definition 1.6 (Synchronous Distributed Algorithm). In a synchronous al-
gorithm, nodes operate in synchronous rounds. In each round, each processor
executes the following steps:

1. Do some local computation (of reasonable complexity).

2. Send messages to neighbors in graph (of reasonable size).

3. Receive messages (that were sent by neighbors in step 2 of the same round).

Remarks:

• Any other step ordering is fine.

• What does “reasonable” mean in this context? We are somewhat flexible
here, and different model variants exist. Generally, we will deal with algo-
rithms that only do very simple computations (a comparison, an addition,
etc.). Exponential-time computation is usually considered cheating in this
context. Similarly, sending a message with a node ID, or a value is con-
sidered okay, whereas sending really long messages is considered cheating.
We will have more exact definitions later, when we need them.

Algorithm 3 Reduce

1: Assume that initially all nodes have IDs (Assumption 1.2)
2: Each node v executes the following code
3: node v sends its ID to all neighbors
4: node v receives IDs of neighbors
5: while node v has an uncolored neighbor with higher ID do
6: node v sends “undecided” to all neighbors
7: node v receives new decisions from neighbors
8: end while
9: node v chooses a free color using subroutine First Free (Procedure 2)

10: node v informs all its neighbors about its choice

Definition 1.7 (Time Complexity). For synchronous algorithms (as defined in
1.6) the time complexity is the number of rounds until the algorithm terminates.

8 CHAPTER 1. VERTEX COLORING

31

100

5

31

2

5

Figure 1.2: Vertex 100 receives the lowest possible color.

Remarks:

• The algorithm terminates when the last processor has decided to termi-
nate.

• To guarantee correctness the procedure requires a legal input (i.e., pairwise
different node IDs).

Theorem 1.8 (Analysis of Algorithm 3). Algorithm 3 is correct and has time
complexity n. The algorithm uses at most ∆ + 1 colors.

Remarks:

• Quite trivial, but also quite slow.

• However, it seems difficult to come up with a fast algorithm.

• Maybe it’s better to first study a simple special case, a tree, and then go
from there.

1.2 Coloring Trees

Lemma 1.9. χ(Tree) ≤ 2

Constructive Proof: If the distance of a node to the root is odd (even), color
it 1 (0). An odd node has only even neighbors and vice versa. If we assume
that each node knows its parent (root has no parent) and children in a tree, this
constructive proof gives a very simple algorithm:

Algorithm 4 Slow Tree Coloring

1: Color the root 0, root sends 0 to its children
2: Each node v concurrently executes the following code:
3: if node v receives a message x (from parent) then
4: node v chooses color cv = 1− x
5: node v sends cv to its children (all neighbors except parent)
6: end if

1.2. COLORING TREES 9

Remarks:

• With the proof of Lemma 1.9, Algorithm 4 is correct.

• How can we determine a root in a tree if it is not already given? We will
figure that out later.

• The time complexity of the algorithm is the height of the tree.

• If the root was chosen unfortunately, and the tree has a degenerated topol-
ogy, the time complexity may be up to n, the number of nodes.

• Also, this algorithm does not need to be synchronous . . . !

Definition 1.10 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message . . . , do . . . ”). Pro-
cessors cannot access a global clock. A message sent from one processor to
another will arrive in finite but unbounded time.

Remarks:

• The asynchronous model and the synchronous model (Definition 1.6) are
the cornerstone models in distributed computing. As they do not neces-
sarily reflect reality there are several models in between synchronous and
asynchronous. However, from a theoretical point of view the synchronous
and the asynchronous model are the most interesting ones (because every
other model is in between these extremes).

• Note that in the asynchronous model, messages that take a longer path
may arrive earlier.

Definition 1.11 (Time Complexity). For asynchronous algorithms (as defined
in 1.6) the time complexity is the number of time units from the start of the
execution to its completion in the worst case (every legal input, every execution
scenario), assuming that each message has a delay of at most one time unit.

Remarks:

• You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay upper
bound.

Definition 1.12 (Message Complexity). The message complexity of a syn-
chronous or asynchronous algorithm is determined by the number of messages
exchanged (again every legal input, every execution scenario).

Theorem 1.13 (Analysis of Algorithm 4). Algorithm 4 is correct. If each node
knows its parent and its children, the (asynchronous) time complexity is the tree
height which is bounded by the diameter of the tree; the message complexity is
n− 1 in a tree with n nodes.

10 CHAPTER 1. VERTEX COLORING

Remarks:

• In this case the asynchronous time complexity is the same as the syn-
chronous time complexity.

• Nice trees, e.g., balanced binary trees, have logarithmic height, that is we
have a logarithmic time complexity.

• This algorithm is not very exciting. Can we do better than logarithmic?

The following algorithm terminates in log∗ n time. Log-Star?! That’s the num-
ber of logarithms (to the base 2) you need to take to get down to at least 2,
starting with n:

Definition 1.14 (Log-Star).
∀x ≤ 2 : log∗ x := 1 ∀x > 2 : log∗ x := 1 + log∗(log x)

Remarks:

• Log-star is an amazingly slowly growing function. Log-star of all the atoms
in the observable universe (estimated to be 1080) is 5. There are functions
which grow even more slowly, such as the inverse Ackermann function,
however, the inverse Ackermann function of all the atoms is 4. So log-star
increases indeed very slowly!

Here is the idea of the algorithm: We start with color labels that have log n bits.
In each synchronous round we compute a new label with exponentially smaller
size than the previous label, still guaranteeing to have a valid vertex coloring!
But how are we going to do that?

Algorithm 5 “6-Color”

1: Assume that initially the vertices are legally colored. Using Assumption 1.2
each label only has log n bits

2: The root assigns itself the label 0.
3: Each other node v executes the following code (synchronously in parallel)
4: send cv to all children
5: repeat
6: receive cp from parent
7: interpret cv and cp as little-endian bit-strings: c(k), . . . , c(1), c(0)
8: let i be the smallest index where cv and cp differ
9: the new label is i (as bitstring) followed by the bit cv(i) itself

10: send cv to all children
11: until cw ∈ {0, . . . , 5} for all nodes w

Example:

Algorithm 5 executed on the following part of a tree:

Grand-parent 0010110000 → 10010 → . . .
Parent 1010010000 → 01010 → 111
Child 0110010000 → 10001 → 001

Theorem 1.15. Algorithm 5 terminates in log∗ n time.

1.2. COLORING TREES 11

Remarks:

• Colors 11∗ (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a total
of 6 colors (i.e., colors 0,. . . , 5).

• Can one reduce the number of colors in only constant steps? Note that
Algorithm 3 does not work (since the degree of a node can be much higher
than 6)! For fewer colors we need to have siblings monochromatic!

• Before we explore this problem we should probably have a second look at
the end game of the algorithm, the UNTIL statement. Is this algorithm
truly local?! Let’s discuss!

Algorithm 6 Shift Down

1: Root chooses a new (different) color from {0, 1, 2}
2: Each other node v concurrently executes the following code:
3: Recolor v with the color of parent

Lemma 1.16 (Analysis of Algorithm 6). Algorithm 6 preserves coloring legality;
also siblings are monochromatic.

Now Algorithm 3 (Reduce) can be used to reduce the number of used colors
from six to three.

Algorithm 7 Six-2-Three

1: Each node v concurrently executes the following code:
2: Run Algorithm 5 for log∗ n rounds.
3: for x = 5, 4, 3 do
4: Perform subroutine Shift down (Algorithm 6)
5: if cv = x then
6: choose new color cv ∈ {0, 1, 2} using subroutine First Free (Algorithm

2)
7: end if
8: end for

Theorem 1.17 (Analysis of Algorithm 7). Algorithm 7 colors a tree with three
colors in time O(log∗ n).

Remarks:

• The term O() used in Theorem 1.15 is called “big O” and is often used in
distributed computing. Roughly speaking, O(f) means “in the order of
f , ignoring constant factors and smaller additive terms.” More formally,
for two functions f and g, it holds that f ∈ O(g) if there are constants x0

and c so that |f(x)| ≤ c|g(x)| for all x ≥ x0. For an elaborate discussion
on the big O notation we refer to other introductory math or computer
science classes.

12 CHAPTER 1. VERTEX COLORING

Figure 1.3: Possible execution of Algorithm 7.

• As one can easily prove, a fast tree-coloring with only 2 colors is more
than exponentially more expensive than coloring with 3 colors. In a tree
degenerated to a list, nodes far away need to figure out whether they are
an even or odd number of hops away from each other in order to get a
2-coloring. To do that one has to send a message to these nodes. This
costs time linear in the number of nodes.

• The idea of this algorithm can be generalized, e.g., to a ring topology. Also
a general graph with constant degree ∆ can be colored with ∆ + 1 colors
in O(log∗ n) time. The idea is as follows: In each step, a node compares
its label to each of its neighbors, constructing a logarithmic difference-tag
as in 6-color (Algorithm 5). Then the new label is the concatenation of
all the difference-tags. For constant degree ∆, this gives a 3∆-label in
O(log∗ n) steps. Algorithm 3 then reduces the number of colors to ∆ + 1
in 23∆ (this is still a constant for constant ∆!) steps.

• Unfortunately, coloring a general graph is not yet possible with this tech-
nique. We will see another technique for that in Chapter 7. With this
technique it is possible to color a general graph with ∆ + 1 colors in
O(log n) time.

BIBLIOGRAPHY 13

• A lower bound shows that many of these log-star algorithms are asymp-
totically (up to constant factors) optimal. We will also see that later.

Chapter Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86].
The technique can be generalized and extended, e.g., to a ring topology or to
graphs with constant degree [GP87, GPS88, KMW05]. Using it as a subroutine,
one can solve many problems in log-star time. For instance, one can color so-
called growth bounded graphs (a model which includes many natural graph
classes, for instance unit disk graphs) asymptotically optimally in O(log∗ n)
time [SW08]. Actually, Schneider et al. show that many classic combinatorial
problems beyond coloring can be solved in log-star time in growth bounded and
other restricted graphs.

In a later chapter we learn a Ω(log∗ n) lower bound for coloring and related
problems [Lin92]. Linial’s paper also contains a number of other results on
coloring, e.g., that any algorithm for coloring d-regular trees of radius r that
run in time at most 2r/3 require at least Ω(

√
d) colors.

For general graphs, later we will learn fast coloring algorithms that use a
maximal independent sets as a base. Since coloring exhibits a trade-off between
efficacy and efficiency, many different results for general graphs exist, e.g., [PS96,
KSOS06, BE09, Kuh09, SW10, BE11b, KP11, BE11a].

Some parts of this chapter are also discussed in Chapter 7 of [Pel00], e.g.,
the proof of Theorem 1.15.

Bibliography

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring
in linear (in delta) time. In 41st ACM Symposium On Theory of
Computing (STOC), 2009.

[BE11a] Leonid Barenboim and Michael Elkin. Combinatorial Algorithms for
Distributed Graph Coloring. In 25th International Symposium on
DIStributed Computing, 2011.

[BE11b] Leonid Barenboim and Michael Elkin. Deterministic Distributed Ver-
tex Coloring in Polylogarithmic Time. J. ACM, 58(5):23, 2011.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algo-
rithms. In 18th annual ACM Symposium on Theory of Computing
(STOC), 1986.

[GP87] Andrew V. Goldberg and Serge A. Plotkin. Parallel (∆+1)-coloring
of constant-degree graphs. Inf. Process. Lett., 25(4):241–245, June
1987.

[GPS88] Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon.
Parallel Symmetry-Breaking in Sparse Graphs. SIAM J. Discrete
Math., 1(4):434–446, 1988.

14 CHAPTER 1. VERTEX COLORING

[KMW05] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On
the Locality of Bounded Growth. In 24th ACM Symposium on the
Principles of Distributed Computing (PODC), Las Vegas, Nevada,
USA, July 2005.

[KP11] Kishore Kothapalli and Sriram V. Pemmaraju. Distributed graph
coloring in a few rounds. In 30th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), 2011.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Christian
Schindelhauer. Distributed coloring in O(

√
log n) Bit Rounds. In

20th international conference on Parallel and Distributed Processing
(IPDPS), 2006.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2009.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193–201, February 1992.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity of
Distributed Network Decomposition. J. Algorithms, 20(2):356–374,
1996.

[SW08] Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed
Maximal Independent Set Algorithm for Growth-Bounded Graphs.
In 27th ACM Symposium on Principles of Distributed Computing
(PODC), Toronto, Canada, August 2008.

[SW10] Johannes Schneider and Roger Wattenhofer. A New Technique For
Distributed Symmetry Breaking. In 29th Symposium on Principles
of Distributed Computing (PODC), Zurich, Switzerland, July 2010.

Chapter 2

Leader Election

2.1 Anonymous Leader Election

Some algorithms (e.g. the slow tree coloring algorithm 4) ask for a special node,
a so-called “leader”. Computing a leader is a very simple form of symmetry
breaking. Algorithms based on leaders do generally not exhibit a high degree
of parallelism, and therefore often suffer from poor time complexity. However,
sometimes it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. Many interesting chal-
lenges in distributed computing already reveal the root of the problem in the
special case of the ring. Paying special attention to the ring also makes sense
from a practical point of view as some real world systems are based on a ring
topology, e.g., the token ring standard for local area networks.

Problem 2.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

• More formally, nodes are in one of three states: undecided, leader, not
leader. Initially every node is in the undecided state. When leaving the
undecided state, a node goes into a final state (leader or not leader).

Definition 2.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 2.3 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)
or asymmetric (star, single node with highest degree, etc.). Simplifying slightly,
in this context a symmetric graph is a graph in which the extended neighborhood

15

16 CHAPTER 2. LEADER ELECTION

of each node has the same structure. We will now show that non-uniform
anonymous leader election for synchronous rings is impossible. The idea is that
in a ring, symmetry can always be maintained.

Lemma 2.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sk.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.6). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 2.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 2.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 2.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

• Sense of direction is the ability of nodes to distinguish neighbor nodes in
an anonymous setting. In a ring, for example, a node can distinguish the
clockwise and the counterclockwise neighbor. Sense of direction does not
help in anonymous leader election.

• Theorem 2.5 also holds for other symmetric network topologies (e.g., com-
plete graphs, complete bipartite graphs, . . .).

• Note that Theorem 2.5 does generally not hold for randomized algorithms;
if nodes are allowed to toss a coin, some symmetries can be broken.

• However, more surprisingly, randomization does not always help. A ran-
domized uniform anonymous algorithm can for instance not elect a leader
in a ring. Randomization does not help to decide whether the ring has
n = 3 or n = 6 nodes: Every third node may generate the same random
bits, and as a result the nodes cannot distinguish the two cases. However,
an approximation of n which is strictly better than a factor 2 will help.

2.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 1.10. Through-
out this section we assume non-anonymity; each node has a unique identifier
as proposed in Assumption 1.2. Having ID’s seems to lead to a trivial leader
election algorithm, as we can simply elect the node with, e.g., the highest ID.

Theorem 2.6 (Analysis of Algorithm 8). Algorithm 8 is correct. The time
complexity is O(n). The message complexity is O(n2).

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,

2.2. ASYNCHRONOUS RING 17

Algorithm 8 Clockwise

1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its clockwise

neighbor. {If node v already received a message w with w > v, then node
v can skip this step; if node v receives its first message w with w < v, then
node v will immediately send v.}

3: if v receives a message w with w > v then
4: v forwards w to its clockwise neighbor
5: v decides not to be the leader, if it has not done so already.
6: else if v receives its own identifier v then
7: v decides to be the leader
8: end if

eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n2.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 1.11) we assume that
each message takes at most one time unit to arrive at its destination. After at
most n − 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n − 1. Every other node decides before
node z.

Remarks:

• Note that in Algorithm 8 nodes need to distinguish between clockwise
and counterclockwise neighbors. In fact they do not: It is okay to simply
send your own identifier to any neighbor, and forward a message m to the
neighbor you did not receive the message m from. So nodes only need to
be able to distinguish their two neighbors.

• Careful analysis shows, that while having worst-case message complexity
of O(n2), Algorithm 8 has an average message complexity of O(n log n).
Can we improve this algorithm?

Theorem 2.7 (Analysis of Algorithm 9). Algorithm 9 is correct. The time
complexity is O(n). The message complexity is O(n log n).

Proof: Correctness is as in Theorem 2.6. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2, 4, 8, 16, . . . , 2 · 2k with k ≤ log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2r (or less) survives round r. That is, node v is the only node in its
2r-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2r nodes are active in round r+1. Being active in round
r costs 2 · 2 · 2r messages. Therefore, round r costs at most 2 · 2 · 2r · n

2r−1 = 8n
messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

18 CHAPTER 2. LEADER ELECTION

Algorithm 9 Radius Growth (For readability we provide pseudo-code only; for
a formal version please consult [Attiya/Welch Alg. 3.1])

1: Each node v does the following:
2: Initially all nodes are active. {all nodes may still become leaders}
3: Whenever a node v sees a message w with w > v, then v decides to not be

a leader and becomes passive.
4: Active nodes search in an exponentially growing neighborhood (clockwise

and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL and
forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

6: Upon receiving the reply message: If there was no node with higher ID
in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7: If a node v receives its own probe message (not a reply) v decides to be the
leader.

Remarks:

• This algorithm is asynchronous and uniform as well.

• The question may arise whether one can design an algorithm with an even
lower message complexity. We answer this question in the next section.

2.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first lower
bound. We show that Algorithm 9 is asymptotically optimal.

Definition 2.8 (Execution). An execution of a distributed algorithm is a list of
events, sorted by time. An event is a record (time, node, type, message), where
type is “send” or “receive”.

Remarks:

• We assume throughout this course that no two events happen at exactly
the same time (or one can break ties arbitrarily).

2.3. LOWER BOUNDS 19

• An execution of an asynchronous algorithm is generally not only deter-
mined by the algorithm but also by a “god-like” scheduler. If more than
one message is in transit, the scheduler can choose which one arrives first.

• If two messages are transmitted over the same directed edge, then it is
sometimes required that the message first transmitted will also be received
first (“FIFO”).

For our lower bound, we assume the following model:

• We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

• We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

• During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 2.9 (Open Schedule). A schedule is an execution chosen by the
scheduler. An open (undirected) edge is an edge where no message traversing
the edge has been received so far. A schedule for a ring is open if there is an
open edge in the ring.

The proof of the lower bound is by induction. First we show the base case:

Lemma 2.10. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge is.

Proof: Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges. An example can be
seen in Figure 2.1.

Lemma 2.11. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M(n/2) + n/4 messages have to be exchanged in order to solve leader
election.

Proof by induction: We divide the ring into two sub-rings R1 and R2 of size
n/2. These subrings cannot be distinguished from rings with n/2 nodes if no
messages are received from “outsiders”. We can ensure this by not scheduling

20 CHAPTER 2. LEADER ELECTION

Figure 2.1: The rings R1, R2 are glued together at their open edge.

such messages until we want to. Note that executing both given open schedules
on R1 and R2 “in parallel” is possible because we control not only the scheduling
of the messages, but also when nodes wake up. By doing so, we make sure that
2M(n/2) messages are sent before the nodes in R1 and R2 learn anything of
each other!

Without loss of generality, R1 contains the maximum identifier. Hence, each
node in R2 must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We look into
the future: we check what happens when we close only one of these connecting
edges.

Since we know that n/2 nodes have to be informed in R2, there must be
at least n/2 messages that must be received. Closing both edges must inform
n/2 nodes, thus for one of the two edges there must be a node in distance n/4
which will be informed upon creating that edge. This results in n/4 additional
messages. Thus, we pick this edge and leave the other one open which yields
the claim.

Lemma 2.12. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) ≥ n

4 (log n+ 1).

Proof by induction: For the sake of simplicity we assume n being a power of
2. The base case n = 2 works because of Lemma 2.10 which implies that
M(2) ≥ 1 = 2

4 (log 2 + 1). For the induction step, using Lemma 2.11 and the
induction hypothesis we have

M(n) = 2 ·M
(n

2

)
+
n

4

≥ 2 ·
(n

8

(
log

n

2
+ 1
))

+
n

4

=
n

4
log n+

n

4
=
n

4
(log n+ 1) .

2

Remarks:

• To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Ω(g) if there are constants
x0 and c > 0 such that |f(x)| ≥ c|g(x)| for all x ≥ x0. Again we refer
to standard text books for a formal definition. Rewriting Lemma 2.12 we
get:

2.4. SYNCHRONOUS RING 21

Theorem 2.13 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Ω(n log n) message com-
plexity.

2.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as well! First we make some additional
assumptions:

• We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

• We assume that every node starts at the same time.

• The node with the minimum identifier becomes the leader; identifiers are
integers.

Algorithm 10 Synchronous Leader Election

1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase consists of n

time steps. Node v counts phases, starting with 0.
3: if phase = v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message “v is leader” around the ring
6: end if

Remarks:

• Message complexity is indeed n.

• But the time complexity is huge! If m is the minimum identifier it is m ·n.

• The synchronous start and the non-uniformity assumptions can be drop-
ped by using a wake-up technique (upon receiving a wake-up message,
wake up your clockwise neighbors) and by letting messages travel slowly.

• There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Ω(n log n) as well.

• In general graphs efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see next
chapter), bounding the message complexity is generally more difficult.

22 CHAPTER 2. LEADER ELECTION

Chapter Notes

[Ang80] was the first to mention the now well-known impossibility result for
anonymous rings and other networks, even when using randomization. The
first algorithm for asynchronous rings was presented in [Lan77], which was im-
proved to the presented clockwise algorithm in [CR79]. Later, [HS80] found the
radius growth algorithm, which decreased the worst case message complexity.
Algorithms for the unidirectional case with runtime O(n log n) can be found in
[DKR82, Pet82]. The Ω(n log n) message complexity lower bound for compari-
son based algorithms was first published in [FL87]. In [Sch89] an algorithm with
constant error probability for anonymous networks is presented. General results
about limitations of computer power in synchronous rings are in [ASW88, AS88].

Bibliography

[Ang80] Dana Angluin. Local and global properties in networks of proces-
sors (Extended Abstract). In 12th ACM Symposium on Theory of
Computing (STOC), 1980.

[AS88] Hagit Attiya and Marc Snir. Better Computing on the Anonymous
Ring. In Aegean Workshop on Computing (AWOC), 1988.

[ASW88] Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on
an anonymous ring. volume 35, pages 845–875, 1988.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations of processes.
Commun. ACM, 22(5):281–283, May 1979.

[DKR82] Danny Dolev, Maria M. Klawe, and Michael Rodeh. An O(n log n)
Unidirectional Distributed Algorithm for Extrema Finding in a Circle.
J. Algorithms, 3(3):245–260, 1982.

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a
synchronous ring. J. ACM, 34(1):98–115, 1987.

[HS80] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in
circular configurations of processors. Commun. ACM, 23(11):627–628,
November 1980.

[Lan77] Gérard Le Lann. Distributed Systems - Towards a Formal Ap-
proach. In International Federation for Information Processing (IFIP)
Congress, 1977.

[Pet82] Gary L. Peterson. An O(n log n) Unidirectional Algorithm for the
Circular Extrema Problem. 4(4):758–762, 1982.

[Sch89] B. Schieber. Calling names on nameless networks. In Proceedings
of the eighth annual ACM Symposium on Principles of distributed
computing, PODC ’89, pages 319–328, New York, NY, USA, 1989.
ACM.

Chapter 3

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit on the simple side. But maybe that’s not really bad
news?!

3.1 Broadcast

Definition 3.1 (Broadcast). A broadcast operation is initiated by a single pro-
cessor, the source. The source wants to send a message to all other nodes in
the system.

Definition 3.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between u and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any node in the graph. The diameter of a graph is the maximum distance
between two arbitrary nodes.

Remarks:

• Clearly there is a close relation between the radius R and the diameter D
of a graph, such as R ≤ D ≤ 2R.

• The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph.
For this graph it has long been believed that the actor Kevin Bacon has
a particularly small radius. The number of hops from Bacon even got a
name, the Bacon Number. In the meantime, however, it has been shown
that there are “better” centers in the Hollywood universe, such as Sean
Connery, Christopher Lee, Rod Steiger, Gene Hackman, or Michael Caine.
The center of other social networks has also been explored, Paul Erdös for
instance is well known in the math community.

Theorem 3.3 (Broadcast Lower Bound). The message complexity of broadcast
is at least n− 1. The source’s radius is a lower bound for the time complexity.

23

24 CHAPTER 3. TREE ALGORITHMS

Proof: Every node must receive the message.

Remarks:

• You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search spanning
tree (for a given source), then the time complexity is tight as well.

Definition 3.4 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 3.5 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Remarks:

• This lower bound proof directly brings us to the well known flooding al-
gorithm.

Algorithm 11 Flooding

1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the

message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-

card the message.

Remarks:

• If node v receives the message first from node u, then node v calls node
u parent. This parent relation defines a spanning tree T . If the flooding
algorithm is executed in a synchronous system, then T is a breadth-first
search spanning tree (with respect to the root).

• More interestingly, also in asynchronous systems the flooding algorithm
terminates after R time units, R being the radius of the source. However,
the constructed spanning tree may not be a breadth-first search spanning
tree.

3.2 Convergecast

Convergecast is the same as broadcast, just reversed: Instead of a root sending
a message to all other nodes, all other nodes send information to a root. The
simplest convergecast algorithm is the echo algorithm:

3.3. BFS TREE CONSTRUCTION 25

Algorithm 12 Echo

Require: This algorithm is initiated at the leaves.
1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message

to the parent.

Remarks:

• Usually the echo algorithm is paired with the flooding algorithm, which is
used to let the leaves know that they should start the echo process; this
is known as flooding/echo.

• One can use convergecast for termination detection, for example. If a root
wants to know whether all nodes in the system have finished some task, it
initiates a flooding/echo; the message in the echo algorithm then means
“This subtree has finished the task.”

• Message complexity of the echo algorithm is n − 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the graph.

• The time complexity of the echo algorithm is determined by the depth of
the spanning tree (i.e., the radius of the root within the tree) generated
by the flooding algorithm.

• The flooding/echo algorithm can do much more than collecting acknowl-
edgements from subtrees. One can for instance use it to compute the
number of nodes in the system, or the maximum ID (for leader election),
or the sum of all values stored in the system, or a route-disjoint matching.

• Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation. And
so on . . .

3.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize this
idea by developing the BFS tree layer by layer:

Theorem 3.6 (Analysis of Algorithm 13). The time complexity of Algorithm
13 is O(D2), the message complexity is O(m + nD), where D is the diameter
of the graph, n the number of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in Tp needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the BFS tree height is bounded

26 CHAPTER 3. TREE ALGORITHMS

Algorithm 13 Dijkstra BFS

1: The algorithm proceeds in phases. In phase p the nodes with distance p to
the root are detected. Let Tp be the tree in phase p. We start with T1 which
is the root plus all direct neighbors of the root. We start with phase p = 1:

2: repeat
3: The root starts phase p by broadcasting “start p” within Tp.
4: When receiving “start p” a leaf node u of Tp (that is, a node that was

newly discovered in the last phase) sends a “join p + 1” message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree Tp+1.

6: A node v receiving any further “join” message replies with “NACK”.
7: The leaves of Tp collect all the answers of their neighbors; then the leaves

start an echo algorithm back to the root.
8: When the echo process terminates at the root, the root increments the

phase
9: until there was no new node detected

by the diameter, we have D phases, giving a total time complexity of O(D2).
Each node participating in broadcast/echo only receives (broadcasts) at most 1
message and sends (echoes) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m+ nD).

Remarks:

• The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a
neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 14 Bellman-Ford BFS

1: Each node u stores an integer du which corresponds to the distance from u
to the root. Initially droot = 0, and du =∞ for every other node u.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < du from a neighbor v then
4: node u sets du := y
5: node u sends “y + 1” to all neighbors (except v)
6: end if

Theorem 3.7 (Analysis of Algorithm 14). The time complexity of Algorithm
14 is O(D), the message complexity is O(nm), where D,n,m are defined as in
Theorem 3.6.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root

3.4. MST CONSTRUCTION 27

knows by time 0 that it is the root. A node v at distance d has a neighbor u
at distance d− 1. Node u by induction sends a message “d” to v at time d− 1
or before, which is then received by v at time d or before. Message complexity
is easier: A node can reduce its distance at most n − 1 times; each of these
times it sends a message to all its neighbors. If all nodes do this we have O(nm)
messages.

Remarks:

• Algorithm 13 has the better message complexity and Algorithm 14 has the
better time complexity. The currently best algorithm (optimizing both)
needs O(m + n log3 n) messages and O(D log3 n) time. This “trade-off”
algorithm is beyond the scope of this chapter, but we will later learn the
general technique.

3.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight ωe.

Definition 3.8 (MST). Given a weighted graph G = (V,E, ω), the MST of G is
a spanning tree T minimizing ω(T), where ω(G′) =

∑
e∈G′ ωe for any subgraph

G′ ⊆ G.

Remarks:

• In the following we assume that no two edges of the graph have the same
weight. This simplifies the problem as it makes the MST unique; however,
this simplification is not essential as one can always break ties by adding
the IDs of adjacent vertices to the weight.

• Obviously we are interested in computing the MST in a distributed way.
For this we use a well-known lemma:

Definition 3.9 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T ′ ⊆ T a subgraph of T (also called a fragment). Edge e = (u, v) is an
outgoing edge of T ′ if u ∈ T ′ and v /∈ T ′ (or vice versa). The minimum weight
outgoing edge b(T ′) is the so-called blue edge of T ′.

Lemma 3.10. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T ′ be a fragment of T . Then the blue edge
of T ′ is also part of T , i.e., T ′ ∪ b(T ′) ⊆ T .

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e 6= b(T ′) connecting T ′ with the remainder of T . Adding the blue edge b(T ′) to
the MST T we get a cycle including both e and b(T ′). If we remove e from this
cycle we still have a spanning tree, and since by the definition of the blue edge
ωe > ωb(T ′), the weight of that new spanning tree is less than than the weight
of T . We have a contradiction.

28 CHAPTER 3. TREE ALGORITHMS

Remarks:

• In other words, the blue edges seem to be the key to a distributed al-
gorithm for the MST problem. Since every node itself is a fragment of
the MST, every node directly has a blue edge! All we need to do is to
grow these fragments! Essentially this is a distributed version of Kruskal’s
sequential algorithm.

• At any given time the nodes of the graph are partitioned into fragments
(rooted subtrees of the MST). Each fragment has a root, the ID of the
fragment is the ID of its root. Each node knows its parent and its children
in the fragment. The algorithm operates in phases. At the beginning of a
phase, nodes know the IDs of the fragments of their neighbor nodes.

Algorithm 15 GHS (Gallager–Humblet–Spira)

1: Initially each node is the root of its own fragment. We proceed in phases:
2: repeat
3: All nodes learn the fragment IDs of their neighbors.
4: The root of each fragment uses flooding/echo in its fragment to determine

the blue edge b = (u, v) of the fragment.
5: The root sends a message to node u; while forwarding the message on the

path from the root to node u all parent-child relations are inverted {such
that u is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u, v).
7: if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly

10: else
11: node v is the new parent of node u
12: end if
13: the newly elected root node informs all nodes in its fragment (again using

flooding/echo) about its identity
14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

Remarks:

• Algorithm 15 was stated in pseudo-code, with a few details not really
explained. For instance, it may be that some fragments are much larger
than others, and because of that some nodes may need to wait for others,
e.g., if node u needs to find out whether neighbor v also wants to merge
over the blue edge b = (u, v). The good news is that all these details can
be solved. We can for instance bound the asynchronicity by guaranteeing
that nodes only start the new phase after the last phase is done, similarly
to the phase-technique of Algorithm 13.

Theorem 3.11 (Analysis of Algorithm 15). The time complexity of Algorithm
15 is O(n log n), the message complexity is O(m log n).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,

BIBLIOGRAPHY 29

the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and
O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most log n phases. The theorem
follows directly.

Remarks:

• The GHS algorithm can be applied in different ways. GHS for instance
directly solves leader election in general graphs: The leader is simply the
last surviving root!

Chapter Notes

Trees are one of the oldest graph structures, already appearing in the first book
about graph theory [Koe36]. Broadcasting in distributed computing is younger,
but not that much [DM78]. Overviews about broadcasting can be found for
example in Chapter 3 of [Pel00] and Chapter 7 of [HKP+05]. For a introduction
to centralized tree-construction, see e.g. [Eve79] or [CLRS09]. Overviews for the
distributed case can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96].
The classic papers on routing are [For56, Bel58, Dij59]. In a later chapter, we
will later learn a general technique to derive algorithms with an almost optimal
time and message complexity.

Algorithm 15 is called “GHS” after Gallager, Humblet, and Spira, three
pioneers in distributed computing [GHS83]. Their algorithm won the presti-
gious Edsger W. Dijkstra Prize in Distributed Computing in 2004, among other
reasons because it was one of the first non-trivial asynchronous distributed al-
gorithms. As such it can be seen as one of the seeds of this research area. We
presented a simplified version of GHS. The original paper featured an improved
message complexity of O(m + n log n). Later, Awerbuch managed to further
improve the GHS algorithm to get O(n) time and O(m+n log n) message com-
plexity, both asymptotically optimal [Awe87].

Bibliography

[Awe87] B. Awerbuch. Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems. In
Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 230–240, New York, NY, USA, 1987.
ACM.

[Bel58] Richard Bellman. On a Routing Problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

30 CHAPTER 3. TREE ALGORITHMS

[Dij59] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[DM78] Y.K. Dalal and R.M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 12:1040–148, 1978.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Rockville, MD,
1979.

[For56] Lester R. Ford. Network Flow Theory. The RAND Corporation
Paper P-923, 1956.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. Distributed Algo-
rithm for Minimum-Weight Spanning Trees. ACM Transactions on
Programming Languages and Systems, 5(1):66–77, January 1983.

[HKP+05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Koe36] Denes Koenig. Theorie der endlichen und unendlichen Graphen.
Teubner, Leipzig, 1936.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

Chapter 4

Distributed Sorting

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

– Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting—
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 4.1 (Sorting). We choose a graph with n nodes v1, . . . , vn. Initially
each node stores a value. After applying a sorting algorithm, node vk stores the
kth smallest value.

Remarks:

• What if we route all values to the same central node v, let v sort the values
locally, and then route them to the correct destinations?! According to the
message passing model studied in the first few chapters this is perfectly
legal. With a star topology sorting finishes in O(1) time!

Definition 4.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

• Using Definition 4.2 sorting on a star graph takes linear time.

4.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:

31

32 CHAPTER 4. DISTRIBUTED SORTING

Algorithm 16 Odd/Even Sort

1: Given an array of n nodes (v1, . . . , vn), each storing a value (not sorted).
2: repeat
3: Compare and exchange the values at nodes i and i+ 1, i odd
4: Compare and exchange the values at nodes i and i+ 1, i even
5: until done

Remarks:

• The compare and exchange primitive in Algorithm 16 is defined as follows:
Let the value stored at node i be vi. After the compare and exchange node
i stores value min(vi, vi+1) and node i+ 1 stores value max(vi, vi+1).

• How fast is the algorithm, and how can we prove correctness/efficiency?

• The most interesting proof uses the so-called 0-1 Sorting Lemma. It allows
us to restrict our attention to an input of 0’s and 1’s only, and works for any
“oblivious comparison-exchange” algorithm. (Oblivious means: Whether
you exchange two values must only depend on the relative order of the
two values, and not on anything else.)

Lemma 4.3 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts arbitrary inputs.

Proof. We prove the opposite direction (does not sort arbitrary inputs ⇒ does
not sort 0’s and 1’s). Assume that there is an input x = x1, . . . , xn that is not
sorted correctly. Then there is a smallest value k such that the value at node
vk after running the sorting algorithm is strictly larger than the kth smallest
value x(k). Define an input x∗i = 0 ⇔ xi ≤ x(k), x∗i = 1 else. Whenever the
algorithm compares a pair of 1’s or 0’s, it is not important whether it exchanges
the values or not, so we may simply assume that it does the same as on the
input x. On the other hand, whenever the algorithm exchanges some values
x∗i = 0 and x∗j = 1, this means that xi ≤ x(k) < xj . Therefore, in this case the
respective compare-exchange operation will do the same on both inputs. We
conclude that the algorithm will order x∗ the same way as x, i.e., the output
with only 0’s and 1’s will also not be correct.

Theorem 4.4. Algorithm 16 sorts correctly in n steps.

Proof. Thanks to Lemma 4.3 we only need to consider an array with 0’s and
1’s. Let j1 be the node with the rightmost (highest index) 1. If j1 is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node vn. Let jk be the node with
the kth rightmost 1. We show by induction that jk is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at k = 1. Since jk−1 moves after step k − 1, jk gets
a right 0-neighbor for each step after step k. (For matters of presentation we
omitted a couple of simple details.)

4.1. ARRAY & MESH 33

Algorithm 17 Shearsort

1: We are given a mesh with m rows and m columns, m even, n = m2.
2: The sorting algorithm operates in phases, and uses the odd/even sort algo-

rithm on rows or columns.
3: repeat
4: In the odd phases 1, 3, . . . we sort all the rows, in the even phases 2, 4, . . .

we sort all the columns, such that:
5: Columns are sorted such that the small values move up.
6: Odd rows (1, 3, . . . ,m− 1) are sorted such that small values move left.
7: Even rows (2, 4, . . . ,m) are sorted such that small values move right.
8: until done

Remarks:

• Linear time is not very exciting, maybe we can do better by using a dif-
ferent topology? Let’s try a mesh (a.k.a. grid) topology first.

Theorem 4.5. Algorithm 17 sorts n values in
√
n(log n+ 1) time in snake-like

order.

Proof. Since the algorithm is oblivious, we can use Lemma 4.3. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 . . . 11111

11111 . . . 00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0| = |1|”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have Lemma 4.3!).

All in all we need 2 logm = log n phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort.

34 CHAPTER 4. DISTRIBUTED SORTING

Remarks:

• There are algorithms that sort in 3m + o(m) time on an m by m mesh
(by diving the mesh into smaller blocks). This is asymptotically optimal,
since a value might need to move 2m times.

• Such a
√
n-sorter is cute, but we are more ambitious. There are non-

distributed sorting algorithms such as quicksort, heapsort, or mergesort
that sort n values in (expected) O(n log n) time. Using our n-fold paral-
lelism effectively we might therefore hope for a distributed sorting algo-
rithm that sorts in time O(log n)!

4.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation from previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for her application.

Definition 4.6 (Sorting Networks). A comparator is a device with two inputs
x, y and two outputs x′, y′ such that x′ = min(x, y) and y′ = max(x, y). We
construct so-called comparison networks that consist of wires that connect com-
parators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to comparator outputs, and some
are not connected to comparator inputs. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires. We will
also use the term width to indicate the number of wires in the sorting network.

Remarks:

• The odd/even sorter explained in Algorithm 16 can be described as a
sorting network.

• Often we will draw all the wires on n horizontal lines (n being the “width”
of the network). Comparators are then vertically connecting two of these
lines.

• Note that a sorting network is an oblivious comparison-exchange network.
Consequently we can apply Lemma 4.3 throughout this section. An ex-
ample sorting network is depicted in Figure 4.1.

Definition 4.7 (Depth). The depth of an input wire is 0. The depth of a
comparator is the maximum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the maximum depth (of an output wire).

Definition 4.8 (Bitonic Sequence). A bitonic sequence is a sequence of numbers
that first monotonically increases, and then monotonically decreases, or vice
versa.

4.2. SORTING NETWORKS 35

Figure 4.1: A sorting network.

Remarks:

• < 1, 4, 6, 8, 3, 2 > or < 5, 3, 2, 1, 4, 8 > are bitonic sequences.

• < 9, 6, 2, 3, 5, 4 > or < 7, 4, 2, 5, 9, 8 > are not bitonic.

• Since we restrict ourselves to 0’s and 1’s (Lemma 4.3), bitonic sequences
have the form 0i1j0k or 1i0j1k for i, j, k ≥ 0.

Algorithm 18 Half Cleaner

1: A half cleaner is a comparison network of depth 1, where we compare wire
i with wire i+ n/2 for i = 1, . . . , n/2 (we assume n to be even).

Lemma 4.9. Feeding a bitonic sequence into a half cleaner (Algorithm 18), the
half cleaner cleans (makes all-0 or all-1) either the upper or the lower half of
the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0i1j0k for i, j, k ≥ 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of Theorem 4.5. The case 1i0j1k is symmetric.

Algorithm 19 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n/2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 4.10. A bitonic sequence sorter (Algorithm 19) of width n sorts bitonic
sequences. It has depth log n.

36 CHAPTER 4. DISTRIBUTED SORTING

Proof. The proof follows directly from the Algorithm 19 and Lemma 4.9.

Remarks:

• Clearly we want to sort arbitrary and not only bitonic sequences! To do
this we need one more concept, merging networks.

Algorithm 20 Merging Network

1: A merging network of width n is a merger of width n followed by two bitonic
sequence sorters of width n/2. A merger is a depth-one network where we
compare wire i with wire n− i+ 1, for i = 1, . . . , n/2.

Remarks:

• Note that a merging network is a bitonic sequence sorter where we replace
the (first) half-cleaner by a merger.

Lemma 4.11. A merging network of width n (Algorithm 20) merges two sorted
input sequences of length n/2 each into one sorted sequence of length n.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use the same argument as
in Theorem 4.5 and Lemma 4.9: Again, after the merger step either the upper
or the lower half is clean, the other is bitonic. The bitonic sequence sorters
complete sorting.

Remarks:

• How do you sort n values when you are able to merge two sorted sequences
of size n/2? Piece of cake, just apply the merger recursively.

Algorithm 21 Batcher’s “Bitonic” Sorting Network

1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See Figure
4.2.)

2: A batcher sorting network of width 1 is empty.

Theorem 4.12. A sorting network (Algorithm 21) sorts an arbitrary sequence
of n values. It has depth O(log2 n).

Proof. Correctness is immediate: at recursive stage k (k = 1, 2, 3, . . . , log n) we
merge 2k) sorted sequences into 2k−1 sorted sequences. The depth d(n) of the
sorting network of level n is the depth of a sorting network of level n/2 plus
the depth m(n) of a merging network with width n. The depth of a sorter of
level 1 is 0 since the sorter is empty. Since a merging network of width n has
the same depth as a bitonic sequence sorter of width n, we know by Lemma
4.10 that m(n) = log n. This gives a recursive formula for d(n) which solves to
d(n) = 1

2 log2 n+ 1
2 log n.

4.3. COUNTING NETWORKS 37

..
. B
[w

/2
]

B
[w

/2
]

B
[w

/2
]

M
[w

]

B[w]

..
.

..
.

..
.

..
.

..
.

Figure 4.2: A batcher sorting network

Remarks:

• Simulating Batcher’s sorting network on an ordinary sequential computer
takes time O(n log2 n). As said, there are sequential sorting algorithms
that sort in asymptotically optimal time O(n log n). So a natural question
is whether there is a sorting network with depth O(log n). Such a network
would have some remarkable advantages over sequential asymptotically
optimal sorting algorithms such as heapsort. Apart from being highly
parallel, it would be completely oblivious, and as such perfectly suited for
a fast hardware solution. In 1983, Ajtai, Komlos, and Szemeredi presented
a celebrated O(log n) depth sorting network. (Unlike Batcher’s sorting
network the constant hidden in the big-O of the “AKS” sorting network
is too large to be practical, however.)

• It can be shown that Batcher’s sorting network and similarly others can
be simulated by a Butterfly network and other hypercubic networks, see
next chapter.

• What if a sorting network is asynchronous?!? Clearly, using a synchronizer
we can still sort, but it is also possible to use it for something else. Check
out the next section!

4.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 4.13 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-
and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.

38 Counting Networks

Remarks:

• A naive distributed counter stores the system’s counter value with a dis-
tinguished central node. When other nodes initiate the test-and-increment
operation, they send a request message to the central node and in turn
receive a reply message with the current counter value. However, with a
large number of nodes operating on the distributed counter, the central
processor will become a bottleneck. There will be a congestion of request
messages at the central processor, in other words, the system will not
scale.

• Is a scalable implementation (without any kind of bottleneck) of such a
distributed counter possible, or is distributed counting a problem which
is inherently centralized?!?

• Distributed counting could for instance be used to implement a load bal-
ancing infrastructure, i.e. by sending the job with counter value i (modulo
n) to server i (out of n possible servers).

Definition 4.14 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 22 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.
3: The message is then routed through the network, following the rules of the

asynchronous balancers.
4: Each output wire is completed with a “mini-counter.”
5: The mini-counter of wire k replies the value “k + i · w” to the initiator of

the ith message it receives.

Definition 4.15 (Step Property). A sequence y0, y1, . . . , yw−1 is said to have
the step property, if 0 ≤ yi − yj ≤ 1, for any i < j.

Remarks:

• If the output wires have the step property, then with r requests, exactly
the values 1, . . . , r will be assigned by the mini-counters. All we need to
show is that the counting network has the step property. For that we need
some additional facts...

Facts 4.16. For a balancer, we denote the number of consumed messages on the
ith input wire with xi, i = 0, 1. Similarly, we denote the number of sent messages
on the ith output wire with yi, i = 0, 1. A balancer has these properties:

(1) A balancer does not generate output-messages; that is, x0 + x1 ≥ y0 + y1

in any state.

(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then x0 + x1 = y0 + y1.

39

(3) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any
state y0 = d(y0 + y1)/2e (thus y1 = b(y0 + y1)/2c).

Facts 4.17. If a sequence y0, y1, . . . , yw−1 has the step property,

(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2−1∑
i=0

y2i =

⌈
1

2

w−1∑
i=0

yi

⌉
and

w/2−1∑
i=0

y2i+1 =

⌊
1

2

w−1∑
i=0

yi

⌋
.

Facts 4.18. If two sequences x0, x1, . . . , xw−1 and y0, y1, . . . , yw−1 have the step
property,

(1) and
∑w−1
i=0 xi =

∑w−1
i=0 yi, then xi = yi for i = 0, . . . , w − 1.

(2) and
∑w−1
i=0 xi =

∑w−1
i=0 yi+1, then there exists a unique j (j = 0, 1, . . . , w−

1) such that xj = yj + 1, and xi = yi for i = 0, . . . , w − 1, i 6= j.

Remarks:

• An alternative representation of Batcher’s network has been introduced
in [AHS94]. It is isomorphic to Batcher’s network, and relies on a Merger
Network M [w] which is defined inductively: M [w] consists of two M [w/2]
networks (an upper and a lower one) whose output is fed to w/2 balancers.
The upper balancer merges the even subsequence x0, x2, . . . , xw−2, while
the lower balancer merges the odd subsequence x1, x3, . . . , xw−1. Call the
outputs of these two M [w/2], z and z′ respectively. The final stage of the
network combines z and z′ by sending each pair of wires zi and z′i into a
balancer whose outputs yield y2i and y2i+1.

• It is enough to prove that a merger network M [w] preserves the step
property.

Lemma 4.19. Let M [w] be a merger network of width w. In a quiescent state
(no message in transit), if the inputs x0, x1, . . . , xw/2−1 resp. xw/2, xw/2+1, . . . , xw−1

have the step property, then the output y0, y1, . . . , yw−1 has the step property.

Proof. By induction on the width w.
For w = 2: M [2] is a balancer and a balancer’s output has the step property

(Fact 4.16.3).
For w > 2: Let z resp. z′ be the output of the upper respectively lower

M [w/2] subnetwork. Since x0, x1, . . . , xw/2−1 and xw/2, xw/2+1, . . . , xw−1 both
have the step property by assumption, their even and odd subsequences also
have the step property (Fact 4.17.1). By induction hypothesis, the output of

both M [w/2] subnetworks have the step property. Let Z :=
∑w/2−1
i=0 zi and

Z ′ :=
∑w/2−1
i=0 z′i. From Fact 4.17.2 we conclude that Z = d 1

2

∑w/2−1
i=0 xie +

b 1
2

∑w−1
i=w/2 xic and Z ′ = b 1

2

∑w/2−1
i=0 xic + d 1

2

∑w−1
i=w/2 xie. Since dae + bbc and

bac+ dbe differ by at most 1 we know that Z and Z ′ differ by at most 1.

40 Counting Networks

If Z = Z ′, Fact 4.18.1 implies that zi = z′i for i = 0, . . . , w/2− 1. Therefore,
the output of M [w] is yi = zbi/2c for i = 0, . . . , w − 1. Since z0, . . . , zw/2−1 has
the step property, so does the output of M [w] and the lemma follows.

If Z and Z ′ differ by 1, Fact 4.18.2 implies that zi = z′i for i = 0, . . . , w/2−1,
except a unique j such that zj and z′j differ by only 1, for j = 0, . . . , w/2 − 1.
Let l := min(zj , z

′
j). Then, the output yi (with i < 2j) is l + 1. The output

yi (with i > 2j + 1) is l. The output y2j and y2j+1 are balanced by the final
balancer resulting in y2j = l + 1 and y2j+1 = l. Therefore M [w] preserves the
step property.

A bitonic counting network is constructed to fulfill Lemma 4.19, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following theorem follows immediately.

Theorem 4.20 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

• Is every sorting network also a counting network? No. But surprisingly,
the other direction is true!

Theorem 4.21 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s ith

input wire if and only if I(C)’s i input wire is 0. Since C is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C) will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through I(C)
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying Lemma 4.3 shows that I(C) is a sorting
network.

Remarks:

• We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 4.22 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
formally, if there is a pair of operations o1, o2, where operation o1 terminates be-
fore operation o2 starts, and the logical order is “o2 before o1”, then a distributed
system is not linearizable.

Lemma 4.23 (Linearizability). The bitonic counting network is not lineariz-
able.

41

Proof. Consider the bitonic counting network with width 4 in Figure 4.3: As-
sume that two inc operations were initiated and the corresponding messages
entered the network on wire 0 and 2 (both in light gray color). After hav-
ing passed the second resp. the first balancer, these traversing messages “fall
asleep”; In other words, both messages take unusually long time before they are
received by the next balancer. Since we are in an asynchronous setting, this
may be the case.

0

zzz

zzz

2

Figure 4.3: Linearizability Counter Example.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in Figure 4.3), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 4.22, the bitonic counting network is not linearizable.

Remarks:

• Note that the example in Figure 4.3 behaves correctly in the quiescent
state: Finally, exactly the values 0, 1, 2, 3 are allotted.

• It was shown that linearizability comes at a high price (the depth grows
linearly with the width).

Chapter Notes

The technique used for the famous lower bound of comparison-based sequential
sorting first appeared in [FJ59]. Comprehensive introductions to the vast field of
sorting can certainly be found in [Knu73]. Knuth also presents the 0/1 principle
in the context of sorting networks, supposedly as a special case of a theorem
for decision trees of W. G. Bouricius, and includes a historic overview of sorting
network research.

Using a rather complicated proof not based on the 0/1 principle, [Hab72]
first presented and analyzed Odd/Even sort on arrays. Shearsort for grids first
appeared in [SSS86] as a sorting algorithm both easy to implement and to prove

42 Counting Networks

correct. Later it was generalized to meshes with higher dimension in [SS89]. A
bubble sort based algorithm is presented in [SI86]; it takes time O(

√
n log n),

but is fast in practice. Nevertheless, already [TK77] presented an asymptotically
optimal algorithms for grid network which runs in 3n+O(n2/3 log n) rounds for
an n×n grid. A simpler algorithm was later found by [SS86] using 3n+O(n3/4)
rounds.

Batcher presents his famous O(log2 n) depth sorting network in [Bat68]. It
took until [AKS83] to find a sorting network with asymptotically optimal depth
O(log n). Unfortunately, the constants hidden in the big-O-notation render it
rather impractical.

The notion of counting networks was introduced in [AHS91], and shortly
afterward the notion of linearizability was studied by [HSW91]. Follow-up work
in [AHS94] presents bitonic counting networks and studies contention in the
counting network. An overview of research on counting networks can be found
in [BH98].

Bibliography

[AHS91] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks
and multi-processor coordination. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, STOC ’91, pages
348–358, New York, NY, USA, 1991. ACM.

[AHS94] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks.
J. ACM, 41(5):1020–1048, September 1994.

[AKS83] Miklos Ajtai, Janos Komlós, and Endre Szemerédi. An 0(n log n)
sorting network. In Proceedings of the fifteenth annual ACM sympo-
sium on Theory of computing, STOC ’83, pages 1–9, New York, NY,
USA, 1983. ACM.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In
Proceedings of the April 30–May 2, 1968, spring joint computer con-
ference, AFIPS ’68 (Spring), pages 307–314, New York, NY, USA,
1968. ACM.

[BH98] Costas Busch and Maurice Herlihy. A Survey on Counting Networks.
In WDAS, pages 13–20, 1998.

[FJ59] Lester R. Ford and Selmer M. Johnson. A Tournament Problem. The
American Mathematical Monthly, 66(5):pp. 387–389, 1959.

[Hab72] Nico Habermann. Parallel neighbor-sort (or the glory of the induc-
tion principle). Paper 2087, Carnegie Mellon University - Computer
Science Departement, 1972.

[HSW91] M. Herlihy, N. Shavit, and O. Waarts. Low contention linearizable
counting. In Foundations of Computer Science, 1991. Proceedings.,
32nd Annual Symposium on, pages 526–535, oct 1991.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

BIBLIOGRAPHY 43

[SI86] Kazuhiro Sado and Yoshihide Igarashi. Some parallel sorts on a mesh-
connected processor array and their time efficiency. Journal of Parallel
and Distributed Computing, 3(3):398–410, 1986.

[SS86] Claus Peter Schnorr and Adi Shamir. An optimal sorting algorithm
for mesh connected computers. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, STOC ’86, pages 255–263,
New York, NY, USA, 1986. ACM.

[SS89] Isaac D. Scherson and Sandeep Sen. Parallel sorting in two-
dimensional VLSI models of computation. Computers, IEEE Trans-
actions on, 38(2):238–249, feb 1989.

[SSS86] Isaac Scherson, Sandeep Sen, and Adi Shamir. Shear sort – A true
two-dimensional sorting technique for VLSI networks. 1986 Interna-
tional Conference on Parallel Processing, 1986.

[TK77] Clark David Thompson and Hsiang Tsung Kung. Sorting on a mesh-
connected parallel computer. Commun. ACM, 20(4):263–271, April
1977.

44 Counting Networks

Chapter 5

Shared Memory

5.1 Introduction

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).

A third major model is somehow between these two extremes, the shared
memory model. In a shared memory system, asynchronous processes (or proces-
sors) communicate via a common memory area of shared variables or registers:

Definition 5.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. An atomic modification appears to the rest of the system
instantaneously. Apart from this shared memory, processes can also have some
local (private) memory.

Remarks:

• Various shared memory systems exist. A main difference is how they allow
processes to access the shared memory. All systems can atomically read
or write a shared register R. Most systems do allow for advanced atomic
read-modify-write (RMW) operations, for example:

– test-and-set(R): t := R; R := 1; return t

– fetch-and-add(R, x): t := R; R := R+ x; return t

– compare-and-swap(R, x, y): if R = x then R := y; return true; else
return false; endif;

– load-link(R)/store-conditional(R, x): Load-link returns the current
value of the specified register R. A subsequent store-conditional to
the same register will store a new value x (and return true) only
if no updates have occurred to that register since the load-link. If
any updates have occurred, the store-conditional is guaranteed to fail

45

46 CHAPTER 5. SHARED MEMORY

(and return false), even if the value read by the load-link has since
been restored.

• The power of RMW operations can be measured with the so-called consensus-
number : The consensus-number k of a RMW operation defines whether
one can solve consensus for k processes. Test-and-set for instance has
consensus-number 2 (one can solve consensus with 2 processes, but not
3), whereas the consensus-number of compare-and-swap is infinite. It can
be shown that the power of a shared memory system is determined by the
consensus-number (“universality of consensus”.) This insight has a re-
markable theoretical and practical impact. In practice for instance, after
this was known, hardware designers stopped developing shared memory
systems supporting weak RMW operations.

• Many of the results derived in the message passing model have an equiva-
lent in the shared memory model. Consensus for instance is traditionally
studied in the shared memory model.

• Whereas programming a message passing system is rather tricky (in partic-
ular if fault-tolerance has to be integrated), programming a shared mem-
ory system is generally considered easier, as programmers are given access
to global variables directly and do not need to worry about exchanging
messages correctly. Because of this, even distributed systems which phys-
ically communicate by exchanging messages can often be programmed
through a shared memory middleware, making the programmer’s life eas-
ier.

• We will most likely find the general spirit of shared memory systems in
upcoming multi-core architectures. As for programming style, the multi-
core community seems to favor an accelerated version of shared memory,
transactional memory.

• From a message passing perspective, the shared memory model is like a
bipartite graph: On one side you have the processes (the nodes) which
pretty much behave like nodes in the message passing model (asynchro-
nous, maybe failures). On the other side you have the shared registers,
which just work perfectly (no failures, no delay).

5.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 5.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:
<Entry> → <Critical Section> → <Exit> → <Remaining Code>
A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds

5.2. MUTUAL EXCLUSION 47

• Mutual Exclusion: At all times at most one process is in the critical sec-
tion.

• No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

• No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

• Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 23 shows an example with the test-and-set primitive.

Algorithm 23 Mutual Exclusion: Test-and-Set

Input: Shared register R := 0
<Entry>

1: repeat
2: r := test-and-set(R)
3: until r = 0
<Critical Section>

4: . . .
<Exit>

5: R := 0
<Remainder Code>

6: . . .

Theorem 5.3. Algorithm 23 solves the mutual exclusion problem as in Defini-
tion 5.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let pi be the ith process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time ti. At time t′i process pi resets the shared register R to 0. Between ti
and t′i no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.

Proving no deadlock works similar: One of the processes loitering in the
entry section will successfully test-and-set as soon as the process in the critical
section exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Remarks:

• No lockout, on the other hand, is not given by this algorithm. Even with
only two processes there are asynchronous executions where always the
same process wins the test-and-set.

• Algorithm 23 can be adapted to guarantee fairness (no lockout), essentially
by ordering the processes in the entry section in a queue.

48 CHAPTER 5. SHARED MEMORY

• A natural question is whether one can achieve mutual exclusion with only
reads and writes, that is without advanced RMW operations. The answer
is yes!

Our read/write mutual exclusion algorithm is for two processes p0 and p1 only.
In the remarks we discuss how it can be extended. The general idea is that
process pi has to mark its desire to enter the critical section in a “want” register
Wi by setting Wi := 1. Only if the other process is not interested (W1−i = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable Π. See Algorithm 24.

Algorithm 24 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared registers W0,W1,Π, all initially 0.
Code for process pi , i = {0, 1}
<Entry>

1: Wi := 1
2: Π := 1− i
3: repeat until Π = i or W1−i = 0
<Critical Section>

4: . . .
<Exit>

5: Wi := 0
<Remainder Code>

6: . . .

Remarks:

• Note that line 3 in Algorithm 24 represents a “spinlock” or “busy-wait”,
similarly to the lines 1-3 in Algorithm 23.

Theorem 5.4. Algorithm 24 solves the mutual exclusion problem as in Defini-
tion 5.2.

Proof. The shared variable Π elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pΠ can access the
critical section because of Π. The other process p1−Π cannot access the critical
section because WΠ = 1 (and Π 6= 1− Π). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with Π: Process pΠ gets direct access to the
critical section, no matter what the other process does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable Π also no lockout (fairness) is achieved: If a
process pi loses against its competitor p1−i in line 2, it will have to wait until
the competitor resets W1−i := 0 in the exit section. If process pi is unlucky it
will not check W1−i = 0 early enough before process p1−i sets W1−i := 1 again
in line 1. However, as soon as p1−i hits line 2, process pi gets the priority due
to Π, and can enter the critical section.

5.3. STORE & COLLECT 49

Remarks:

• Extending Peterson’s Algorithm to more than 2 processes can be done by
a tournament tree, like in tennis. With n processes every process needs to
win log n matches before it can enter the critical section. More precisely,
each process starts at the bottom level of a binary tree, and proceeds to
the parent level if winning. Once winning the root of the tree it can enter
the critical section. Thanks to the priority variables Π at each node of the
binary tree, we inherit all the properties of Definition 5.2.

5.3 Store & Collect

5.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes p1, . . . , pn. Every process pi has a read/write register Ri in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.

We say that an operation op1 precedes an operation op2 iff op1 terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 5.5 (Collect). There are two operations: A store(val) by process
pi sets val to be the latest value of its register Ri. A collect operation returns
a view, a partial function V from the set of processes to a set of values, where
V (pi) is the latest value stored by pi, for each process pi. For a collect
operation cop, the following validity properties must hold for every process pi:

• If V (pi) = ⊥, then no store operation by pi precedes cop.

• If V (pi) = v 6= ⊥, then v is the value of a store operation sop of pi that
does not follow cop, and there is no store operation by pi that follows
sop and precedes cop.

Hence, a collect operation cop should not read from the future or miss a
preceding store operation sop.

We assume that the read/write register Ri of every process pi is initialized
to ⊥. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 25.

Algorithm 25 Collect: Simple (Non-Adaptive) Solution

Operation store(val) (by process pi) :
1: Ri := val

Operation collect:
2: for i := 1 to n do
3: V (pi) := Ri // read register Ri
4: end for

50 CHAPTER 5. SHARED MEMORY

Remarks:

• Algorithm 25 clearly works. The step complexity of every store operation
is 1, the step complexity of a collect operation is n.

• At first sight, the step complexities of Algorithm 25 seem optimal. Because
there are n processes, there clearly are cases in which a collect operation
needs to read all n registers. However, there are also scenarios in which
the step complexity of the collect operation seems very costly. Assume
that there are only two processes pi and pj that have stored a value in
their registers Ri and Rj . In this case, a collect in principle only needs
to read the registers Ri and Rj and can ignore all the other registers.

• Assume that up to a certain time t, k ≤ n processes have finished or
started at least one operation. We call an operation op at time t adap-
tive to contention if the step complexity of op only depends on k and is
independent of n.

• In the following, we will see how to implement adaptive versions of store
and collect.

5.3.2 Splitters

Algorithm 26 Splitter Code

Shared Registers: X : {⊥} ∪ {1, . . . , n}; Y : boolean
Initialization: X := ⊥; Y := false

Splitter access by process pi:
1: X := i;
2: if Y then
3: return right
4: else
5: Y := true
6: if X = i then
7: return stop
8: else
9: return left

10: end if
11: end if

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 5.6 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k − 1 processes exit with left and right, respectively.

Hence, it is guaranteed that if a single process enters the splitter, then it
obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain

5.3. STORE & COLLECT 51

k processors

at most 1

left

at most k−1

right

at most k−1

stop

Figure 5.1: A Splitter

different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 5.1. The code
implementing a splitter is given by Algorithm 26.

Lemma 5.7. Algorithm 26 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that i is the last process that sets X := i. If i does
not return right, it will find X = i in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume pi and pj
are two processes that return stop and assume that pi sets X := i before pj sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time pi arrives
at line 6, X 6= i (pj and maybe some other processes have overwritten X by
then). Therefore, pi does not return stop and we get a contradiction to the
assumption that both pi and pj return stop.

5.3.3 Binary Splitter Tree

Assume that we are given 2n − 1 splitters and that for every splitter S, there
is an additional shared variable ZS : {⊥} ∪ {1, . . . , n} that is initialized to ⊥
and an additional shared variable MS : boolean that is initialized to false. We
call a splitter S marked if MS = true. The 2n − 1 splitters are arranged in a
complete binary tree of height n − 1. Let S(v) be the splitter associated with
a node v of the binary tree. The store and collect operations are given by
Algorithm 27.

Theorem 5.8. Algorithm 27 correctly implements store and collect. Let k
be the number of participating processes. The step complexity of the first store
of a process pi is O(k), the step complexity of every additional store of pi is
O(1), and the step complexity of collect is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most k − 1 ≤ n− 1 when
invoking the first store operation to prove correctness. We prove that at most
k − i processes enter a subtree at depth i (i.e., a subtree where the root has
distance i to the root of the whole tree). By definition of k, the number of

52 CHAPTER 5. SHARED MEMORY

Algorithm 27 Adaptive Collect: Binary Tree Algorithm

Operation store(val) (by process pi) :
1: Ri := val
2: if first store operation by pi then
3: v := root node of binary tree
4: α := result of entering splitter S(v);
5: MS(v) := true
6: while α 6= stop do
7: if α = left then
8: v := left child of v
9: else

10: v := right child of v
11: end if
12: α := result of entering splitter S(v);
13: MS(v) := true
14: end while
15: ZS(v) := i
16: end if

Operation collect:
Traverse marked part of binary tree:
17: for all marked splitters S do
18: if ZS 6= ⊥ then
19: i := ZS ; V (pi) := Ri // read value of process pi
20: end if
21: end for // V (pi) = ⊥ for all other processes

processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For i > 1, the claim follows by induction because of the at most k − i
processes entering the splitter at the root of a depth i subtree, at most k− i− 1
obtain left and right, respectively. Hence, at the latest when reaching depth
k − 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of store is
O(k).

To show that the step complexity of collect is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables MS associated to them and their
neighbors. Hence, showing that at most 2k − 1 nodes of the binary tree are
marked is sufficient. Let xk be the maximum number of marked nodes in a tree,
where k processes access the root. We claim that xk ≤ 2k − 1, which is true
for k = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1, . . . , k − 1. Not all k processes may exit
the splitter with left (or right), i.e., kl ≤ k − 1 processes will turn left and
kr ≤ min{k − kl, k − 1} turn right. The left and right children of the root are
the roots of their subtrees, hence the induction hypothesis yields

xk = xkl + xkr + 1 ≤ (2kl − 1) + (2kr − 1) + 1 ≤ 2k − 1,

concluding induction and proof.

5.3. STORE & COLLECT 53

left

right

Figure 5.2: 5× 5 Splitter Matrix

Remarks:

• The step complexities of Algorithm 27 are very good. Clearly, the step
complexity of the collect operation is asymptotically optimal. In order
for the algorithm to work, we however need to allocate the memory for the
complete binary tree of depth n−1. The space complexity of Algorithm 27
therefore is exponential in n. We will next see how to obtain a polynomial
space complexity at the cost of a worse collect step complexity.

5.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n2 splitters in an n×n
matrix as shown in Figure 5.2. The algorithm is analogous to Algorithm 27.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n2). The following theorem gives bounds on
the step complexities of store and collect.

Theorem 5.9. Let k be the number of participating processes. The step com-
plexity of the first store of a process pi is O(k), the step complexity of every
additional store of pi is O(1), and the step complexity of collect is O(k2).

Proof. Let the top row be row 0 and the left-most column be column 0. Let xi
be the number of processes entering a splitter in row i. By induction on i, we
show that xi ≤ k − i. Clearly, x0 ≤ k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row i−1 and column j. By the properties of splitters, not all processes entering
the splitter in row i− 1 and column j obtain left. Therefore, not all processes
entering a splitter in row i − 1 move on to row i. Because at least one process

54 CHAPTER 5. SHARED MEMORY

stays in every row, we get that xi ≤ k − i. Similarly, the number of processes
entering column j is at most k − j. Hence, every process stops at the latest in
row k − 1 and column k − 1 and the number of marked splitters is at most k2.
Thus, the step complexity of collect is at most O(k2). Because the longest
path in the splitter matrix is 2k, the step complexity of store is O(k).

Remarks:

• With a slightly more complicated argument, it is possible to show that the
number of processes entering the splitter in row i and column j is at most
k − i− j. Hence, it suffices to only allocate the upper left half (including
the diagonal) of the n× n matrix of splitters.

• The binary tree algorithm can be made space efficient by using a random-
ized version of a splitter. Whenever returning left or right, a randomized
splitter returns left or right with probability 1/2. With high probability,
it then suffices to allocate a binary tree of depth O(log n).

• Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity and
O(n2) space complexity.

Chapter Notes

Already in 1965 Edsger Dijkstra gave a deadlock-free solution for mutual ex-
clusion [Dij65]. Later, Maurice Herlihy suggested consensus-numbers [Her91],
where he proved the “universality of consensus”, i.e., the power of a shared
memory system is determined by the consensus-number. For this work, Mau-
rice Herlihy was awarded the Dijkstra Prize in Distributed Computing in 2003.
Petersons Algorithm is due to [PF77, Pet81], and adaptive collect was studied
in the sequence of papers [MA95, AFG02, AL05, AKP+06].

Bibliography

[AFG02] Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algo-
rithm with applications. Distributed Computing, 15(2):87–96, 2002.

[AKP+06] Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, Mirjam Wattenhofer,
and Roger Wattenhofer. Efficient adaptive collect using randomiza-
tion. Distributed Computing, 18(3):179–188, 2006.

[AL05] Yehuda Afek and Yaron De Levie. Space and Step Complexity Effi-
cient Adaptive Collect. In DISC, pages 384–398, 2005.

[Dij65] Edsger W. Dijkstra. Solution of a problem in concurrent program-
ming control. Commun. ACM, 8(9):569, 1965.

[Her91] Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124–149, 1991.

[MA95] Mark Moir and James H. Anderson. Wait-Free Algorithms for Fast,
Long-Lived Renaming. Sci. Comput. Program., 25(1):1–39, 1995.

BIBLIOGRAPHY 55

[Pet81] J.L. Peterson. Myths About the Mutual Exclusion Problem. Infor-
mation Processing Letters, 12(3):115–116, 1981.

[PF77] G.L. Peterson and M.J. Fischer. Economical solutions for the crit-
ical section problem in a distributed system. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 91–97.
ACM, 1977.

56 CHAPTER 5. SHARED MEMORY

Chapter 6

Shared Objects

6.1 Introduction

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this mutual exclusion, we need protocols that allow the nodes
of a network to store and manage access to such a shared object. A simple and
obvious solution is to store the shared object at a central location (see Algorithm
28).

Algorithm 28 Shared Object: Centralized Solution

Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).

Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:

• Instead of a spanning tree, one can use routing.

• Algorithm 28 works, but it is not very efficient. Assume that the object is
accessed by a single node v repeatedly. Then we get a high message/time
complexity. Instead v could store the object, or at least cache it. But then,
in case another node w accesses the object, we might run into consistency
problems.

• Alternative idea: The accessing node should become the new master of
the object. The shared object then becomes mobile. There exist several
variants of this idea. The simplest version is a home-based solution like
in Mobile IP (see Algorithm 29).

57

58 CHAPTER 6. SHARED OBJECTS

Algorithm 29 Shared Object: Home-Based Solution

Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.

Accessing Object: (by node v)
1: v acquires a lock at the home base, receives object.

Remarks:

• Home-based solutions suffer from the triangular routing problem. If two
close-by nodes take turns to access the object, all the traffic is routed
through the potentially far away home-base.

6.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 30. For simplicity,
we assume that a node u only starts a find request if u is not currently the
holder of the shared object and if u has finished all previous find requests (i.e.,
it is not currently waiting to receive the object).

Remarks:

• The parent pointers in Algorithm 30 are only needed for the find operation.
Sending the variable to u in line 13 or to w.successor in line 23 is done
using routing (on the spanning tree or on the underlying network).

• When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node holding
the variable)

• What is really great about the Arrow algorithm is that it works in a
completely asynchronous and concurrent setting (i.e., there can be many
find requests at the same time).

Theorem 6.1. (Arrow, Analysis) In an asynchronous and concurrent setting,
a “find” operation terminates with message and time complexity D, where D is
the diameter of the spanning tree.

6.2. ARROW AND FRIENDS 59

Algorithm 30 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 28, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:
1: do atomically
2: u sends “find by u” message to parent node
3: u.parent := u
4: u.wait := true
5: end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7: if w.parent 6= w then
8: w sends “find by u” message to parent
9: w.parent := v

10: else
11: w.parent := v
12: if not w.wait then
13: send variable to u // w holds var. but does not need it any more
14: else
15: w.successor := u // w will send variable to u a.s.a.p.
16: end if
17: end if
18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically
21: w.wait := false
22: if w.successor 6= null then
23: send variable to w.successor
24: w.successor := null
25: end if
26: end do

60 CHAPTER 6. SHARED OBJECTS

Before proving Theorem 6.1, we prove the following lemma.

Lemma 6.2. An edge {u, v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.l.o.g., assume that initially the edge {u, v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1.

Proof of Theorem 6.1. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u, v} for the second time and assume that e is the first edge that is
traversed twice by f . The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to u). This is a contradiction to Lemma 6.2.

Remarks:

• Finding a good tree is an interesting problem. We would like to have a
tree with low stretch, low diameter, low degree, etc.

• It seems that the Arrow algorithm works especially well when lots of “find”
operations are initiated concurrently. Most of them will find a “close-by”
node, thus having low message/time complexity. For the sake of simplicity
we analyze a synchronous system.

Theorem 6.3. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complexity of all “find” operations is O(log |S|·
m∗) where m∗ is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u1 at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u1. A
node u2 that finds (is queued behind) u1 cannot distinguish the system from
a system where there was no request u1, and instead the root was initially
located at u1. The message cost of u2 is consequentially the distance between
u1 and u2 on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst

6.2. ARROW AND FRIENDS 61

case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof.

Remarks:

• An average request set S on a not-too-bad tree gives usually a much better
bound. However, there is an almost tight log |S|/ log log |S| worst-case
example.

• It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In particular
the message complexity of the dynamic analysis can be shown to have a
logD overhead only, where D is the diameter of the spanning tree (note
that for logarithmic trees, the overhead becomes log log n).

• What if the spanning tree is a star? Then with Theorem 6.1, each find will
terminate in 2 steps! Since also an optimal algorithm has message cost 1,
the algorithm is 2-competitive. . . ? Yes, but because of its high degree the
star center experiences contention. . . It can be shown that the contention
overhead is at most proportional to the largest degree ∆ of the spanning
tree.

• Thought experiment: Assume a balanced binary spanning tree—by Theo-
rem 6.1, the message complexity per operation is log n. Because a binary
tree has maximum degree 3, the time per operation therefore is at most
3 log n.

• There are better and worse choices for the spanning tree. The stretch of
an edge {u, v} is defined as distance between u and v in a spanning tree.
The maximum stretch of a spanning tree is the maximum stretch over all
edges. A few years ago, it was shown how to construct spanning trees that
are O(log n)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 31).

Theorem 6.4. Algorithm 31 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
w0, r1, r2, . . . , rk, w1. After w0, the object is stored at w0 and not cached
anywhere else. All reads cost twice the smallest subtree T spanning the write
w0 and all the reads since each read only goes to the first copy. The write w1

costs T plus the path P from w1 to T . Since any data management scheme
must use an edge in T and P at least once, and our algorithm uses edges in T
at most 3 times (and in P at most once), the theorem follows.

62 CHAPTER 6. SHARED OBJECTS

Algorithm 31 Shared Object: Read/Write Caching

• Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).
• Nodes store three items: a parent pointer pointing to one of the neighbors

(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.
• Initially the object is stored at a single node u; all the parent pointers point

towards u, all the cache bits are false.
• When initiating a read, a message follows the arrows (this time: without

inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.
• A write at u writes the new value locally (at node u), then searches (follow the

parent pointers and reverse them towards u) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

• Concurrent reads are not a problem, also multiple concurrent reads and
one write work just fine.

• What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

• Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows the
whole access sequence in advance. It can then cache the object before the
request even appears!

• Algorithms on trees are often simpler, but have the disadvantage that they
introduce the extra stretch factor. In a ring, for example, any tree has
stretch n− 1; so there is always a bad request pattern.

6.3. IVY AND FRIENDS 63

Algorithm 32 Shared Object: Pointer Forwarding

Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).

Accessing Object: (by node u)
1: follow parent pointers to current root r of T
2: send object from r to u
3: r.parent := u; u.parent := u; // u is the new root

Algorithm 33 Shared Object: Ivy

Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.

Start Find Request at Node u:
1: u sends “find by u” message to parent node
2: u.parent := u

Upon v receiving “Find by u” Message:
3: if v.parent = v then
4: send object to u
5: else
6: send “find by u” message to v.parent
7: end if
8: v.parent := u // u will become the new root

6.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 32.

Remarks:

• If the graph is not complete, routing can be used to find the root.

• Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linear linked list. Pointer
forwarding is therefore bad in a worst-case.

• If edges are not FIFO, it can even happen that the number of steps is
unbounded for a node having bad luck. An algorithm with such a property
is named “not fair,” or “not wait-free.” (Example: Initially we have the
list 4 → 3 → 2 → 1; 4 starts a find; when the message of 4 passes 3, 3
itself starts a find. The message of 3 may arrive at 2 and then 1 earlier,
thus the new end of the list is 2→ 1→ 3; once the message of 4 passes 2,
the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited

64 CHAPTER 6. SHARED OBJECTS

Figure 6.1: Reversal of the path x0, x1, x2, x3, x4, x5.

during a find message to the new root. The details are given by Algorithm 33.
Figure 6.1 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node x0 on the left tree).

Remarks:

• Also with Algorithm 33, we might have a bad linked list situation. How-
ever, if the start of the list acquires the object, the linked list turns into
a star. As the following theorem shows, the search paths are not long
on average. Since paths sometimes can be bad, we will need amortized
analysis.

Theorem 6.5. If the initial tree is a star, a find request of Algorithm 33 needs
at most log n steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential Φ of the whole tree
T as (V is the set of all nodes)

Φ(T) =
∑
u∈V

log s(u)

2
.

Assume that the path traversed by the ith operation has length ki, i.e., the ith

operation redirects ki pointers to the new root. Clearly, the number of steps
of the ith operation is proportional to ki. We are interested in the cost of m
consecutive operations,

∑m
i=1 ki.

Let T0 be the initial tree and let Ti be the tree after the ith operation.
Further, let ai = ki−Φ(Ti−1)+Φ(Ti) be the amortized cost of the ith operation.
We have

m∑
i=1

ai =

m∑
i=1

(
ki − Φ(Ti−1) + Φ(Ti)

)
=

m∑
i=1

ki − Φ(T0) + Φ(Tm).

For any tree T , we have Φ(T) ≥ log(n)/2. Because we assume that T0 is a star,
we also have Φ(T0) = log(n)/2. We therefore get that

m∑
i=1

ai ≥
m∑
i=1

ki.

6.3. IVY AND FRIENDS 65

Hence, it suffices to upper bound the amortized cost of every operation. We
thus analyze the amortized cost ai of the ith operation. Let x0, x1, x2, . . . , xki
be the path that is reversed by the operation. Further for 0 ≤ j ≤ ki, let sj be
the size of the subtree rooted at xj before the reversal. The size of the subtree
rooted at x0 after the reversal is ski and the size of the one rooted at xj after
the reversal, for 1 ≤ j ≤ ki, is sj−sj−1 (see Figure 6.1). For all other nodes, the
sizes of their subtrees are the same, therefore the corresponding terms cancel
out in the ammortized cost ai. We can thus write ai as

ai = ki −

 ki∑
j=0

1

2
log sj

+

1

2
log ski +

ki∑
j=1

1

2
log(sj − sj−1)

= ki +

1

2
·
ki−1∑
j=0

(
log(sj+1 − sj)− log sj

)
= ki +

1

2
·
ki−1∑
j=0

log

(
sj+1 − sj

sj

)
.

For 0 ≤ j ≤ ki−1, let αj = sj+1/sj . Note that sj+1 > sj and thus that αj > 1.
Further note, that (sj+1 − sj)/sj = αj − 1. We therefore have that

ai = ki +
1

2
·
ki−1∑
j=0

log(αj − 1)

=

ki−1∑
j=0

(
1 +

1

2
log(αj − 1)

)
.

For α > 1, it can be shown that 1+log(α−1)/2 ≤ logα (see Lemma 6.6). From
this inequality, we obtain

ai ≤
ki−1∑
j=0

logαj =

ki−1∑
j=0

log
sj+1

sj
=

ki−1∑
j=0

(log sj+1 − log sj)

= log ski − log s0 ≤ log n,

because ski = n and s0 ≥ 1. This concludes the proof.

Lemma 6.6. For α > 1, 1 + log(α− 1)/2 ≤ logα.

Proof. The claim can be verified by the following chain of reasoning:

0 ≤ (α− 2)2

0 ≤ α2 − 4α+ 4

4(α− 1) ≤ α2

log2

(
4(α− 1)

)
≤ log2

(
α2
)

2 + log2(α− 1) ≤ 2 log2 α

1 +
1

2
log2(α− 1) ≤ log2 α.

66 CHAPTER 6. SHARED OBJECTS

Remarks:

• Systems guys (the algorithm is called Ivy because it was used in a system
with the same name) have some fancy heuristics to improve performance
even more: For example, the root every now and then broadcasts its name
such that paths will be shortened.

• What about concurrent requests? It works with the same argument as
in Arrow. Also for Ivy an argument including congestion is missing (and
more pressing, since the dynamic topology of a tree cannot be chosen to
have low degree and thus low congestion as in Arrow).

• Sometimes the type of accesses allows that several accesses can be com-
bined into one to reduce congestion higher up the tree. Let the tree in
Algorithm 28 be a balanced binary tree. If the access to a shared variable
for example is “add value x to the shared variable”, two or more accesses
that accidentally meet at a node can be combined into one. Clearly ac-
cidental meeting is rare in an asynchronous model. We might be able to
use synchronizers (or maybe some other timing tricks) to help meeting a
little bit.

Chapter Notes

The Arrow protocol was designed by Raymond [Ray89]. There are real life im-
plementations of the Arrow protocol, such as the Aleph Toolkit [Her99]. The
performance of the protocol under high loads was tested in [HW99] and other im-
plementations and variations of the protocol were given in, e.g., [PR99, HTW00].

It has been shown that the find operations of the protocol do not backtrack,
i.e., the time and message complexities are O(D) [DH98], and that the Arrow
protocol is fault tolerant [HT01]. Given a set of concurrent request, Herlihy et
al. [HTW01] showed that the time and message complexities are within factor
logR from the optimal, where R is the number of requests. Later, this analysis
was extended to long-lived and asynchronous systems. In particular, Herlihy et
al. [HKTW06] showed that the competitive ratio in this asynchronous concur-
rent setting is O(logD). Thanks to the lower bound of the greedy TSP heuristic,
this is almost tight.

The Ivy system was introduced in [Li88, LH89]. On the theory side, it was
shown by Ginat et al. [GST89] that the amortized cost of a single request of
the Ivy protocol is Θ(log n). Closely related work to the Ivy protocol on the
practical side is research on virtual memory and parallel computing on loosely
coupled multiprocessors. For example [BB81, LSHL82, FR86] contain studies on
variations of the network models, limitations on data sharing between processes
and different approaches.

Later, the research focus shifted towards systems where most data operations
were read operations, i.e., efficient caching became one of the main objects of
study, e.g., [MMVW97].

BIBLIOGRAPHY 67

Bibliography

[BB81] Thomas J. Buckholtz and Helen T. Buckholtz. Apollo Domain
Architecture. Technical report, Apollo Computer, Inc., 1981.

[DH98] Michael J. Demmer and Maurice Herlihy. The Arrow Distributed
Directory Protocol. In Proceedings of the 12th International Sym-
posium on Distributed Computing (DISC), 1998.

[FR86] Robert Fitzgerald and Richard F. Rashid. The Integration of
Virtual Memory Management and Interprocess Communication in
Accent. ACM Transactions on Computer Systems, 4(2):147–177,
1986.

[GST89] David Ginat, Daniel Sleator, and Robert Tarjan. A Tight Amor-
tized Bound for Path Reversal. Information Processing Letters,
31(1):3–5, 1989.

[Her99] Maurice Herlihy. The Aleph Toolkit: Support for Scalable Dis-
tributed Shared Objects. In Proceedings of the Third Interna-
tional Workshop on Network-Based Parallel Computing: Commu-
nication, Architecture, and Applications (CANPC), pages 137–149,
1999.

[HKTW06] Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger
Wattenhofer. Dynamic Analysis of the Arrow Distributed Protocol.
In Theory of Computing Systems, Volume 39, Number 6, November
2006.

[HT01] Maurice Herlihy and Srikanta Tirthapura. Self Stabilizing Distrib-
uted Queuing. In Proceedings of the 15th International Conference
on Distributed Computing (DISC), pages 209–223, 2001.

[HTW00] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Or-
dered Multicast and Distributed Swap. In Operating Systems Re-
view, Volume 35/1, 2001. Also in PODC Middleware Symposium,
Portland, Oregon, July 2000.

[HTW01] Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer.
Competitive Concurrent Distributed Queuing. In Twentieth ACM
Symposium on Principles of Distributed Computing (PODC), Au-
gust 2001.

[HW99] Maurice Herlihy and Michael Warres. A Tale of Two Directories:
Implementing Distributed Shared Objects in Java. In Proceedings
of the ACM 1999 conference on Java Grande (JAVA), pages 99–
108, 1999.

[LH89] Kai Li and Paul Hudak. Memory Coherence in Shared Vir-
tual Memory Systems. ACM Transactions on Computer Systems,
7(4):312–359, November 1989.

[Li88] Kai Li. IVY: Shared Virtual Memory System for Parallel Comput-
ing. In International Conference on Parallel Processing, 1988.

68 CHAPTER 6. SHARED OBJECTS

[LSHL82] Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H.
Levine. UIDs as Internal Names in a Distributed File System. In
Proceedings of the First ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages 34–41, 1982.

[MMVW97] B. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Wester-
mann. Exploiting Locality for Data Management in Systems of
Limited Bandwidth. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), 1997.

[PR99] David Peleg and Eilon Reshef. A Variant of the Arrow Distributed
Directory Protocol with Low Average Complexity. In Proceedings
of the 26th International Colloquium on Automata, Languages and
Programming (ICALP), pages 615–624, 1999.

[Ray89] Kerry Raymond. A Tree-based Algorithm for Distributed Mu-
tual Exclusion. ACM Transactions on Computer Systems, 7:61–77,
1989.

Chapter 7

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter
1).

7.1 MIS

Definition 7.1 (Independent Set). Given an undirected Graph G = (V,E) an
independent set is a subset of nodes U ⊆ V , such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

2

1

2

Figure 7.1: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

69

70 CHAPTER 7. MAXIMAL INDEPENDENT SET

Remarks:

• Computing a maximum independent set (MaxIS) is a notoriously difficult
problem. It is equivalent to maximum clique on the complementary graph.
Both problems are NP-hard, in fact not approximable within n

1
2−ε.

• In this course we concentrate on the maximal independent set (MIS) prob-
lem. Please note that MIS and MaxIS can be quite different, indeed e.g.
on a star graph there exists an MIS that is Θ(n) smaller than the MaxIS
(cf. Figure 7.1).

• Computing a MIS sequentially is trivial: Scan the nodes in arbitrary order.
If a node u does not violate independence, add u to the MIS. If u violates
independence, discard u. So the only question is how to compute a MIS
in a distributed way.

Algorithm 34 Slow MIS

Require: Node IDs
Every node v executes the following code:

1: if all neighbors of v with larger identifiers have decided not to join the MIS
then

2: v decides to join the MIS
3: end if

Remarks:

• Not surprisingly the slow algorithm is not better than the sequential algo-
rithm in the worst case, because there might be one single point of activity
at any time. Formally:

Theorem 7.2 (Analysis of Algorithm 34). Algorithm 34 features a time com-
plexity of O(n) and a message complexity of O(m).

Remarks:

• This is not very exciting.

• There is a relation between independent sets and node coloring (Chapter
1), since each color class is an independent set, however, not necessarily a
MIS. Still, starting with a coloring, one can easily derive a MIS algorithm:
We first choose all nodes of the first color. Then, for each additional color
we add “in parallel” (without conflict) as many nodes as possible. Thus
the following corollary holds:

Corollary 7.3. Given a coloring algorithm that needs C colors and runs in
time T , we can construct a MIS in time C + T .

7.2. ORIGINAL FAST MIS 71

Remarks:

• Using Theorem 1.17 and Corollary 7.3 we get a distributed determinis-
tic MIS algorithm for trees (and for bounded degree graphs) with time
complexity O(log∗ n).

• With a lower bound argument one can show that this deterministic MIS
algorithm is asymptotically optimal for rings.

• There have been attempts to extend Algorithm 5 to more general graphs,
however, so far without much success. Below we present a radically dif-
ferent approach that uses randomization.

7.2 Original Fast MIS

Algorithm 35 Fast MIS

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability 1

2d(v) , where d(v) is the current

degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

• Correctness in the sense that the algorithm produces an independent set
is relatively simple: Steps 1 and 2 make sure that if a node v joins the
MIS, then v’s neighbors do not join the MIS at the same time. Step 3
makes sure that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node with
the highest degree will mark itself at some point in Step 1.

• So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

Lemma 7.4 (Joining MIS). A node v joins the MIS in Step 2 with probability
p ≥ 1

4d(v) .

Proof: Let M be the set of marked nodes in Step 1. Let H(v) be the set of
neighbors of v with higher degree, or same degree and higher identifier. Using

72 CHAPTER 7. MAXIMAL INDEPENDENT SET

independence of the random choices of v and nodes in H(v) in Step 1 we get

P [v /∈ MIS|v ∈M] = P [∃w ∈ H(v), w ∈M |v ∈M]

= P [∃w ∈ H(v), w ∈M]

≤
∑

w∈H(v)

P [w ∈M] =
∑

w∈H(v)

1

2d(w)

≤
∑

w∈H(v)

1

2d(v)
≤ d(v)

2d(v)
=

1

2
.

Then

P [v ∈ MIS] = P [v ∈ MIS|v ∈M] · P [v ∈M] ≥ 1

2
· 1

2d(v)
.

2

Lemma 7.5 (Good Nodes). A node v is called good if

∑
w∈N(v)

1

2d(w)
≥ 1

6
.

Otherwise we call v a bad node. A good node will be removed in Step 3 with
probability p ≥ 1

36 .

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in Step 3 of the algorithm.

If there is a neighbor w ∈ N(v) with degree at most 2 we are done: With
Lemma 7.4 the probability that node w joins the MIS is at least 1

8 , and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

For any neighbor w of v we have 1
2d(w) ≤

1
6 . Since

∑
w∈N(v)

1

2d(w)
≥ 1

6
there is a

subset of neighbors S ⊆ N(v) such that
1

6
≤
∑
w∈S

1

2d(w)
≤ 1

3

We can now bound the probability that node v will be removed. Let therefore
R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

P [R] ≥ P [∃u ∈ S, u ∈ MIS]

≥
∑
u∈S

P [u ∈ MIS]−
∑

u,w∈S;u6=w

P [u ∈ MIS and w ∈ MIS] .

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after

7.2. ORIGINAL FAST MIS 73

Step 1. Using P [u ∈M] ≥ P [u ∈ MIS] we get

P [R] ≥
∑
u∈S

P [u ∈ MIS]−
∑

u,w∈S;u 6=w

P [u ∈M and w ∈M]

≥
∑
u∈S

P [u ∈ MIS]−
∑
u∈S

∑
w∈S

P [u ∈M] · P [w ∈M]

≥
∑
u∈S

1

4d(u)
−
∑
u∈S

∑
w∈S

1

2d(u)

1

2d(w)

≥
∑
u∈S

1

2d(u)

(
1

2
−
∑
w∈S

1

2d(w)

)
≥ 1

6

(
1

2
− 1

3

)
=

1

36
.

2

Remarks:

• We would be almost finished if we could prove that many nodes are good
in each phase. Unfortunately this is not the case: In a star-graph, for
instance, only a single node is good! We need to find a work-around.

Lemma 7.6 (Good Edges). An edge e = (u, v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 7.7. A bad node has outdegree (number of edges pointing away from
bad node) at least twice its indegree (number of edges pointing towards bad node).

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then∑

w∈N(v)

1

2d(w)
≥
∑
w∈S

1

2d(w)
≥
∑
w∈S

1

2d(v)
≥ d(v)

3

1

2d(v)
=

1

6

which means v is good, a contradiction. 2

Continuing the proof of Lemma 7.6: According to Lemma 7.7 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 7.8 (Analysis of Algorithm 35). Algorithm 35 terminates in expected
time O(log n).

Proof: With Lemma 7.5 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 7.6) a constant fraction of edges will be deleted in each phase.

74 CHAPTER 7. MAXIMAL INDEPENDENT SET

More formally: With Lemmas 7.5 and 7.6 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number
of edges to be removed in a certain phase. Using linearity of expectation (cf.
Theorem 7.9) we know that E [R] ≥ m/72, m being the total number of edges at
the start of the phase. Now let p := P [R ≤ E [R] /2]. Bounding the expectation
yields

E [R] =
∑
r

P [R = r] · r ≤ P [R ≤ E[R]/2] · E[R]/2 + P [R > E[R]/2] ·m

= p · E [R] /2 + (1− p) ·m.

Solving for p we get

p ≤ m− E [R]

m− E [R] /2
<
m− E [R] /2

m
≤ 1− 1/144.

In other words, with probability at least 1/144 at least m/144 edges are removed
in a phase. After expected O(logm) phases all edges are deleted. Since m ≤ n2

and thus O(logm) = O(log n) the Theorem follows. 2

Remarks:

• With a bit of more math one can even show that Algorithm 35 terminates
in time O(log n) “with high probability”.

7.3 Fast MIS v2

Algorithm 36 Fast MIS 2

The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) ∈ [0, 1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w ∈ N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

• Correctness in the sense that the algorithm produces an independent set
is simple: Steps 1 and 2 make sure that if a node v joins the MIS, then
v’s neighbors do not join the MIS at the same time. Step 3 makes sure
that v’s neighbors will never join the MIS.

• Likewise the algorithm eventually produces a MIS, because the node with
the globally smallest value will always join the MIS, hence there is progress.

• So the only remaining question is how fast the algorithm terminates. To
understand this, we need to dig a bit deeper.

7.3. FAST MIS V2 75

• Our proof will rest on a simple, yet powerful observation about expected
values of random variables that may not be independent :

Theorem 7.9 (Linearity of Expectation). Let Xi, i = 1, . . . , k denote random
variables, then

E

[∑
i

Xi

]
=
∑
i

E [Xi] .

Proof. It is sufficient to prove E [X + Y] = E [X]+E [Y] for two random variables
X and Y , because then the statement follows by induction. Since

P [(X,Y) = (x, y)] = P [X = x] · P [Y = y|X = x]

= P [Y = y] · P [X = x|Y = y]

we get that

E [X + Y] =
∑

(X,Y)=(x,y)

P [(X,Y) = (x, y)] · (x+ y)

=
∑
X=x

∑
Y=y

P [X = x] · P [Y = y|X = x] · x

+
∑
Y=y

∑
X=x

P [Y = y] · P [X = x|Y = y] · y

=
∑
X=x

P [X = x] · x+
∑
Y=y

P [Y = y] · y

= E [X] + E [Y] .

2

Remarks:

• How can we prove that the algorithm only needs O(log n) phases in expec-
tation? It would be great if this algorithm managed to remove a constant
fraction of nodes in each phase. Unfortunately, it does not.

• Instead we will prove that the number of edges decreases quickly. Again,
it would be great if any single edge was removed with constant probability
in Step 3. But again, unfortunately, this is not the case.

• Maybe we can argue about the expected number of edges to be removed
in one single phase? Let’s see: A node v enters the MIS with probability
1/(d(v) + 1), where d(v) is the degree of node v. By doing so, not only
are v’s edges removed, but indeed all the edges of v’s neighbors as well –
generally these are much more than d(v) edges. So there is hope, but we
need to be careful: If we do this the most naive way, we will count the
same edge many times.

• How can we fix this? The nice observation is that it is enough to count
just some of the removed edges. Given a new MIS node v and a neighbor
w ∈ N(v), we count the edges only if r(v) < r(x) for all x ∈ N(w). This
looks promising. In a star graph, for instance, only the smallest random
value can be accounted for removing all the edges of the star.

76 CHAPTER 7. MAXIMAL INDEPENDENT SET

Lemma 7.10 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof. To simplify the notation, at the start of our phase, the graph is simply
G = (V,E). In addition, to ease presentation, we replace each undirected edge
{v, w} by the two directed edges (v, w) and (w, v).

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for all
neighbors w ∈ N(v). If in addition we have r(v) < r(x) for all neighbors x of a
neighbor w of v, we call this event (v → w). The probability of event (v → w)
is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number of nodes
adjacent to v or w (or both). As v joins the MIS, all (directed) edges (w, x)
with x ∈ N(w) will be removed; there are d(w) of these edges.

We now count the removed edges. Whether we remove the edges adjacent
to w because of event (v → w) is a random variable X(v→w). If event (v → w)
occurs, X(v→w) has the value d(w), if not it has the value 0. For each undirected
edge {v, w} we have two such variables, X(v→w) and X(w→v). Due to Theorem
7.9, the expected value of the sum X of all these random variables is at least

E [X] =
∑

{v,w}∈E

E[X(v→w)] + E[X(w→v)]

=
∑

{v,w}∈E

P [Event (v → w)] · d(w) + P [Event (w → v)] · d(v)

≥
∑

{v,w}∈E

d(w)

d(v) + d(w)
+

d(v)

d(w) + d(v)

=
∑

{v,w}∈E

1 = |E|.

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not double count any edge removals, as a directed edge
(v, w) can only be removed by an event (u → v). The event (u → v) inhibits
a concurrent event (u′ → v) since r(u) < r(u′) for all u′ ∈ N(v). We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed. 2

Remarks:

• This enables us to follow a bound on the expected running time of Algo-
rithm 36 quite easily.

Theorem 7.11 (Expected running time of Algorithm 36). Algorithm 36 ter-
minates after at most 3 log4/3m+ 1 ∈ O(log n) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3 · 1 + 2/3 · 1/4 = 1/2. This contradicts Lemma 7.10.

Hence, at least every third phase is “good” and removes at least a quarter
of the edges. To get rid of all but two edges we need log4/3m good phases in

7.3. FAST MIS V2 77

expectation. The last two edges will certainly be removed in the next phase.
Hence a total of 3 log4/3m+ 1 phases are enough in expectation.

Remarks:

• Sometimes one expects a bit more of an algorithm: Not only should the
expected time to terminate be good, but the algorithm should always
terminate quickly. As this is impossible in randomized algorithms (after
all, the random choices may be “unlucky” all the time!), researchers often
settle for a compromise, and just demand that the probability that the
algorithm does not terminate in the specified time can be made absurdly
small. For our algorithm, this can be deduced from Lemma 7.10 and
another standard tool, namely Chernoff’s Bound.

Definition 7.12 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1− 1/nc

for any choice of c ≥ 1. Here c may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 7.13 (Chernoff’s Bound). Let X =
∑k
i=1Xi be the sum of k inde-

pendent 0− 1 random variables. Then Chernoff’s bound states that w.h.p.

|X − E[X]| ∈ O
(

log n+
√
E[X] log n

)
.

Corollary 7.14 (Running Time of Algorithm 36). Algorithm 36 terminates
w.h.p. in O(log n) time.

Proof: In Theorem 7.11 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C1 and C2, let us check
after C1 log n+C2 ∈ O(log n) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C1 log n+C2)

many. Now we look at the random variable X =
∑C1 logn+C2

i=1 Xi, where the Xi

are independent 0− 1 variables being one with exactly probability p. Certainly,
if X is at least x with some probability, then the probability that we have
x good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C1

and C2 are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that |X−E[X]| ≤ E[X]/2, implying
X ≥ E[X]/2. Choosing C1 large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(log n) phases.

Remarks:

• The algorithm can be improved a bit more even. Drawing random real
numbers in each phase for instance is not necessary. One can achieve
the same by sending only a total of O(log n) random (and as many non-
random) bits over each edge.

• One of the main open problems in distributed computing is whether one
can beat this logarithmic time, or at least achieve it with a deterministic
algorithm.

• Let’s turn our attention to applications of MIS next.

78 CHAPTER 7. MAXIMAL INDEPENDENT SET

7.4 Applications

Definition 7.15 (Matching). Given a graph G = (V,E) a matching is a subset
of edges M ⊆ E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

• In contrast to MaxIS, a maximum matching can be found in polynomial
time, and is also easy to approximate (in fact, already any maximal match-
ing is a 2-approximation).

• An independent set algorithm is also a matching algorithm: Let G =
(V,E) be the graph for which we want to construct the matching. The
auxiliary graph G′ is defined as follows: for every edge in G there is a node
in G′; two nodes in G′ are connected by an edge if their respective edges
in G are adjacent. A (maximal) independent set in G′ is a (maximal)
matching in G, and vice versa. Using Algorithm 36 directly produces a
O(log n) bound for maximal matching.

• More importantly, our MIS algorithm can also be used for vertex coloring
(Problem 1.1):

Definition 7.16. An approximation algorithm A for a maximization problem Π
has an approximation factor of r if the following condition holds for all instances
I ∈ Π:

OPT (I)

A(I)
≤ r.

Algorithm 37 General Graph Coloring

1: Given a graph G = (V,E) we virtually build a graph G′ = (V ′, E′) as
follows:

2: Every node v ∈ V clones itself d(v)+1 times (v0, . . . , vd(v) ∈ V ′), d(v) being
the degree of v in G.

3: The edge set E′ of G′ is as follows:
4: First all clones are in a clique: (vi, vj) ∈ E′, for all v ∈ V and all 0 ≤ i <
j ≤ d(v)

5: Second all ith clones of neighbors in the original graph G are connected:
(ui, vi) ∈ E′, for all (u, v) ∈ E and all 0 ≤ i ≤ min(d(u), d(v)).

6: Now we simply run (simulate) the fast MIS Algorithm 36 on G′.
7: If node vi is in the MIS in G′, then node v gets color i.

Theorem 7.17 (Analysis of Algorithm 37). Algorithm 37 (∆ + 1)-colors an
arbitrary graph in O(log n) time, with high probability, ∆ being the largest degree
in the graph.

7.4. APPLICATIONS 79

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G′ has O

(
n2
)

nodes and the exponent
becomes a constant factor when applying the logarithm.

Remarks:

• This solves our open problem from Chapter 1.1!

• Together with Corollary 7.3 we get quite close ties between (∆+1)-coloring
and the MIS problem.

• Computing a MIS also solves another graph problem on graphs of bounded
independence.

Definition 7.18 (Bounded Independence). G = (V,E) is of bounded indepen-
dence, if each neighborhood contains at most a constant number of independent
(i.e., mutually non-adjacent) nodes.

Definition 7.19 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

• In general, finding a dominating set less than factor log n larger than an
minimum dominating set is NP-hard.

• Any MIS is a dominating set: if a node was not covered, it could join the
independent set.

• In general a MIS and a minimum dominating sets have not much in com-
mon (think of a star). For graphs of bounded independence, this is differ-
ent.

Corollary 7.20. On graphs of bounded independence, a constant-factor approx-
imation to a minimum dominating set can be found in time O(log n) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from I is in M or adjacent to a node in M . Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, |I| ∈ O(|M |). Therefore, we can compute
a MIS with Algorithm 36 and output it as the dominating set, which takes
O(log n) rounds w.h.p.

Chapter Notes

The fast MIS algorithm is a simplified version of an algorithm by Luby [Lub86].
Around the same time there have been a number of other papers dealing with the
same or related problems, for instance by Alon, Babai, and Itai [ABI86], or by
Israeli and Itai [II86]. The analysis presented in Section 7.2 takes elements of all
these papers, and from other papers on distributed weighted matching [WW04].
The analysis in the book [Pel00] by David Peleg is different, and only achieves

80 CHAPTER 7. MAXIMAL INDEPENDENT SET

O(log2 n) time. The new MIS variant (with the simpler analysis) of Section
7.3 is by Métivier, Robson, Saheb-Djahromi and Zemmari [MRSDZ11]. With
some adaptations, the algorithms [Lub86, MRSDZ11] only need to exchange
a total of O(log n) bits per node, which is asymptotically optimum, even on
unoriented trees [KSOS06]. However, the distributed time complexity for MIS
is still somewhat open, as the strongest lower bounds are Ω(

√
log n) or Ω(log ∆)

[KMW04]. Recent research regarding the MIS problem focused on improving
the O(log n) time complexity for special graph classes, for instances growth-
bounded graphs [SW08] or trees [LW11]. There are also results that depend
on the degree of the graph [BE09, Kuh09]. Deterministic MIS algorithms are
still far from the lower bounds, as the best deterministic MIS algorithm takes
2O(
√

logn) time [PS96]. The maximum matching algorithm mentioned in the
remarks is the blossom algorithm by Jack Edmonds.

Bibliography

[ABI86] Noga Alon, László Babai, and Alon Itai. A Fast and Simple
Randomized Parallel Algorithm for the Maximal Independent Set
Problem. J. Algorithms, 7(4):567–583, 1986.

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-
coloring in linear (in delta) time. In 41st ACM Symposium On
Theory of Computing (STOC), 2009.

[II86] Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel
Algorithm for Maximal Matching. Inf. Process. Lett., 22(2):77–80,
1986.

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC), July 2004.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Chris-
tian Schindelhauer. Distributed coloring in O(

√
log n) Bit Rounds.

In 20th international conference on Parallel and Distributed Pro-
cessing (IPDPS), 2006.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), 2009.

[Lub86] Michael Luby. A Simple Parallel Algorithm for the Maximal Inde-
pendent Set Problem. SIAM J. Comput., 15(4):1036–1053, 1986.

[LW11] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In PODC,
pages 41–48, 2011.

[MRSDZ11] Yves Métivier, John Michael Robson, Nasser Saheb-Djahromi, and
Akka Zemmari. An optimal bit complexity randomized distributed
MIS algorithm. Distributed Computing, 23(5-6):331–340, 2011.

BIBLIOGRAPHY 81

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[PS96] Alessandro Panconesi and Aravind Srinivasan. On the Complexity
of Distributed Network Decomposition. J. Algorithms, 20(2):356–
374, 1996.

[SW08] Johannes Schneider and Roger Wattenhofer. A Log-Star Distrib-
uted Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada, August 2008.

[WW04] Mirjam Wattenhofer and Roger Wattenhofer. Distributed
Weighted Matching. In 18th Annual Conference on Distributed
Computing (DISC), Amsterdam, Netherlands, October 2004.

82 CHAPTER 7. MAXIMAL INDEPENDENT SET

Chapter 8

Locality Lower Bounds

In Chapter 1, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log∗ n+O(1)
rounds. In this chapter, we will reconsider the distributed coloring problem.
We will look at a classic lower bound that shows that the result of Chapter 1
is tight: Coloring rings (and rooted trees) indeed requires Ω(log∗ n) rounds. In
particular, we will prove a lower bound for coloring in the following setting:

• We consider deterministic, synchronous algorithms.

• Message size and local computations are unbounded.

• We assume that the network is a directed ring with n nodes.

• Nodes have unique labels (identifiers) from 1 to n.

Remarks:

• A generalization of the lower bound to randomized algorithms is possible.

• Except for restricting to deterministic algorithms, all the conditions above
make a lower bound stronger: Any lower bound for synchronous algo-
rithms certainly also holds for asynchronous ones. A lower bound that is
true if message size and local computations are not restricted is clearly also
valid if we require a bound on the maximal message size or the amount
of local computations. Similarly also assuming that the ring is directed
and that node labels are from 1 to n (instead of choosing IDs from a more
general domain) strengthen the lower bound.

• Instead of directly proving that 3-coloring a ring needs Ω(log∗ n) rounds,
we will prove a slightly more general statement. We will consider deter-
ministic algorithms with time complexity r (for arbitrary r) and derive a
lower bound on the number of colors that are needed if we want to prop-
erly color an n-node ring with an r-round algorithm. A 3-coloring lower
bound can then be derived by taking the smallest r for which an r-round
algorithm needs 3 or fewer colors.

83

84 CHAPTER 8. LOCALITY LOWER BOUNDS

Algorithm 38 Synchronous Algorithm: Canonical Form

1: In r rounds: send complete initial state to nodes at distance at most r
2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4: // do all the computation in the end

8.1 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in r rounds,
a node v can exactly learn all the node labels and inputs up to distance r.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 8.1. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 38 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm A. We want to show that A can be
brought to the canonical form given by Algorithm 38. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after i rounds, every node knows the
initial state of all other nodes at distance at most i. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the r communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on i. For all
nodes at distance at most r − i + 1 from v, node v can compute all messages
of the first i rounds of a regular execution of A. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i = 1). Let us now consider the induction step from i to i+ 1. By the induction
hypothesis, v can compute the messages of the first i rounds of all nodes in
its (r − i + 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r − i)-neighborhood in the first i rounds. This is of
course exactly what is needed to compute the messages of round i+ 1 of nodes
in the (r − i)-neighborhood.

8.1. LOCALITY 85

Remarks:

• It is straightforward to generalize the canonical form to randomized algo-
rithms: Every node first computes all the random bits it needs throughout
the algorithm. The random bits are then part of the initial state of a node.

Definition 8.2 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

• Assume that initially, every node knows its degree, its label (identifier)
and potentially some additional input. The r-hop view of a node v then
includes the complete topology of the r-neighborhood (excluding edges
between nodes at distance r) and the labels and additional inputs of all
nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 8.1.

Corollary 8.3. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 8.1, we know that we can transform Algorithm A to the
canonical form given by Algorithm 38. After r communication rounds, every
node v knows exactly its r-hop view. This information suffices to compute the
output of node v.

Remarks:

• Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

• For coloring algorithms, the only input of a node v is its label. The r-hop
view of a node therefore is its labeled r-neighborhood.

• If we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
an oriented ring is simply a (2r + 1)-tuple (`−r, `−r+1, . . . , `0, . . . , `r) of
distinct node labels where `0 is the label of v. Assume that for i > 0, `i
is the label of the ith clockwise neighbor of v and `−i is the label of the
ith counterclockwise neighbor of v. A deterministic coloring algorithm for
oriented rings therefore is a function that maps (2r + 1)-tuples of node
labels to colors.

• Consider two r-hop views Vr = (`−r, . . . , `r) and V ′r = (`′−r, . . . , `
′
r). If

`′i = `i+1 for −r ≤ i ≤ r − 1 and if `′r 6= `i for −r ≤ i ≤ r, the r-hop view
V ′r can be the r-hop view of a clockwise neighbor of a node with r-hop view
Vr. Therefore, every algorithm A that computes a valid coloring needs to
assign different colors to Vr and V ′r. Otherwise, there is a ring labeling for
which A assigns the same color to two adjacent nodes.

86 CHAPTER 8. LOCALITY LOWER BOUNDS

8.2 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 8.4 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph Nr(G) is defined as follows. The node set of Nr(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods Vr and V ′r if Vr and V ′r
can be the r-hop views of two adjacent nodes.

Lemma 8.5. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with c colors iff the chromatic number of the
neighborhood graph is χ(Nr(G)) ≤ c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible r-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph Nr(G). If two r-hop views Vr and V ′r can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to Vr and V ′r.
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph Nr(G).

Instead of directly defining the neighborhood graph for directed rings, we
define directed graphs Bk,n that are closely related to the neighborhood graph.
Let k and n be two positive integers and assume that n ≥ k. The node set of
Bk,n contains all k-tuples of increasing node labels ([n] = {1, . . . , n}):

V [Bk,n] =
{

(α1, . . . , αk) : αi ∈ [n], i < j → αi < αj
}

(8.1)

For α = (α1, . . . , αk) and β = (β1, . . . , βk) there is a directed edge from α to β
iff

∀i ∈ {1, . . . , k − 1} : βi = αi+1. (8.2)

Lemma 8.6. Viewed as an undirected graph, the graph B2r+1,n is a subgraph
of the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views of
nodes in a directed ring from Section 8.1. The set of k-tuples of increasing node
labels is a subset of the set of k-tuples of distinct node labels. Two nodes of
B2r+1,n are connected by a directed edge iff the two corresponding r-hop views
are connected by a directed edge in the neighborhood graph. Note that if there
is an edge between α and β in Bk,n, α1 6= βk because the node labels in α and
β are increasing.

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of B2r+1,n. To obtain such a lower bound, we need
the following definition.

8.2. THE NEIGHBORHOOD GRAPH 87

Definition 8.7 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V,E) is defined as follows. The node set of DL(G) is
V [DL(G)] = E. There is a directed edge

(
(w, x), (y, z)

)
between (w, x) ∈ E and

(y, z) ∈ E iff x = y, i.e., if the first edge ends where the second one starts.

Lemma 8.8. If n > k, the graph Bk+1,n can be defined recursively as follows:

Bk+1,n = DL(Bk,n).

Proof. The edges of Bk,n are pairs of k-tuples α = (α1, . . . , αk) and β =
(β1, . . . , βk) that satisfy Conditions (8.1) and (8.2). Because the last k − 1
labels in α are equal to the first k − 1 labels in β, the pair (α, β) can be rep-
resented by a (k + 1)-tuple γ = (γ1, . . . , γk+1) with γ1 = α1, γi = βi−1 = αi
for 2 ≤ i ≤ k, and γk+1 = βk. Because the labels in α and the labels in β
are increasing, the labels in γ are increasing as well. The two graphs Bk+1,n

and DL(Bk,n) therefore have the same node sets. There is an edge between
two nodes (α1, β1

) and (α2, β2
) of DL(Bk,n) if β

1
= α2. This is equivalent to

requiring that the two corresponding (k + 1)-tuples γ
1

and γ
2

are neighbors in
Bk+1,n, i.e., that the last k labels of γ

1
are equal to the first k labels of γ

2
.

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 8.9. For the chromatic numbers χ(G) and χ(DL(G)) of a directed
graph G and its diline graph, it holds that

χ
(
DL(G)

)
≥ log2

(
χ(G)

)
.

Proof. Given a c-coloring ofDL(G), we show how to construct a 2c coloring ofG.
The claim of the lemma then follows because this implies that χ(G) ≤ 2χ(DL(G)).

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let Sv be the set of
colors of its outgoing edges. Let u and v be two nodes such that G contains a
directed edge (u, v) from u to v and let x be the color of (u, v). Clearly, x ∈ Su
because (u, v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color x. Therefore x 6∈ Sv. This
implies that Su 6= Sv. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is Su and the color of v is Sv. Because the
number of possible subsets of [c] is 2c, this yields a 2c-coloring of G.

Let log(i) x be the i-fold application of the base-2 logarithm to x:

log(1) x = log2 x, log(i+1) x = log2(log(i) x).

Remember from Chapter 1 that

log∗ x = 1 if x ≤ 2, log∗ x = 1 + min{i : log(i) x ≤ 2}.

For the chromatic number of Bk,n, we obtain

Lemma 8.10. For all n ≥ 1, χ(B1,n) = n. Further, for n ≥ k ≥ 2, χ(Bk,n) ≥
log(k−1) n.

88 CHAPTER 8. LOCALITY LOWER BOUNDS

Proof. For k = 1, Bk,n is the complete graph on n nodes with a directed edge
from node i to node j iff i < j. Therefore, χ(B1,n) = n. For k > 2, the claim
follows by induction and Lemmas 8.8 and 8.9.

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 8.11. Every deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log∗ n)/2− 1 rounds.

Proof. Using the connection between Bk,n and the neighborhood graph for di-
rected rings, it suffices to show that χ(B2r+1,n) > 3 for all r < (log∗ n)/2 − 1.

From Lemma 8.10, we know that χ(B2r+1,n) ≥ log(2r) n. To obtain log(2r) n ≤ 2,

we need r ≥ (log∗ n)/2− 1. Because log2 3 < 2, we therefore have log(2r) n > 3
if r < log∗ n/2− 1.

Corollary 8.12. Every deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log∗ n/2−O(1) rounds.

Remarks:

• It is straightforward to see that also for a constant c > 3, the number of
rounds needed to color a ring with c or less colors is log∗ n/2−O(1).

• There basically (up to additive constants) is a gap of a factor of 2 between
the log∗ n+O(1) upper bound of Chapter 1 and the log∗ n/2−O(1) lower
bound of this chapter. It is possible to show that the lower bound is
tight, even for undirected rings (for directed rings, this will be part of the
exercises).

• Alternatively, the lower bound can also be presented as an application of
Ramsey’s theory. Ramsey’s theory is best introduced with an example:
Assume you host a party, and you want to invite people such that there
are no three people who mutually know each other, and no three people
which are mutual strangers. How many people can you invite? This is
an example of Ramsey’s theorem, which says that for any given integer c,
and any given integers n1, . . . , nc, there is a Ramsey number R(n1, . . . , nc),
such that if the edges of a complete graph with R(n1, . . . , nc) nodes are
colored with c different colors, then for some color i the graph contains
some complete subgraph of color i of size ni. The special case in the party
example is looking for R(3, 3).

• Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of k
nodes. The party example can be explained in this context: We have
(hyper)edges of the form {i, j}, with 1 ≤ i, j ≤ n. Choosing n sufficiently
large, coloring the edges with two colors must exhibit a set S of 3 edges
{i, j} ⊂ {v1, v2, v3}, such that all edges in S have the same color. To prove
our coloring lower bound using Ramsey theory, we form all hyperedges of
size k = 2r+1, and color them with 3 colors. Choosing n sufficiently large,
there must be a set S = {v1, . . . , vk+1} of k + 1 identifiers, such that all
k + 1 hyperedges consisting of k nodes from S have the same color. Note

BIBLIOGRAPHY 89

that both {v1, . . . , vk} and {v2, . . . , vk+1} are in the set S, hence there will
be two neighboring views with the same color. Ramsey theory shows that
in this case n will grow as a power tower (tetration) in k. Thus, if n is so
large that k is smaller than some function growing like log∗ n, the coloring
algorithm cannot be correct.

• The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that with
a single round (every node sends its identifier to all neighbors) it is possible
to color a graph with (1 + o(1))∆2 lnn colors, and that every one-round
algorithm needs at least Ω(∆2/ log2 ∆ + log log n) colors.

• One may also extend the proof to other problems, for instance one may
show that a constant approximation of the minimum dominating set prob-
lem on unit disk graphs costs at least log-star time.

• Using r-hop views and the fact that nodes with equal r-hop views have to
make the same decisions is the basic principle behind almost all locality
lower bounds (in fact, we are not aware of a locality lower bound that does
not use this principle). Using this basic technique (but a completely dif-
ferent proof otherwise), it is for instance possible to show that computing
an MIS (and many other problems) in a general graph requires at least
Ω(
√

log n) and Ω(log ∆) rounds.

Chapter Notes

The lower bound proof in this chapter is by Linial [Lin92], proving asymptotic
optimality of the technique of Chapter 1. This proof can also be found in
Chapter 7.5 of [Pel00]. An alternative proof that omits the neighborhood graph
construction is presented in [?]. The lower bound is also true for randomized
algorithms [Nao91]. Recently, this lower bound technique was adapted to other
problems [CHW08, LW08]. In some sense, Linial’s seminal work raised the
question of what can be computed in O(1) time [NS93], essentially starting
distributed complexity theory.

More recently, using a different argument, Kuhn et al. [KMW04] managed
to show more substantial lower bounds for a number of combinatorial problems
including minimum vertex cover (MVC), minimum dominating set (MDS), max-
imal matching, or maximal independent set (MIS). More concretely, Kuhn et al.
showed that all these problems need polylogarithmic time (for a polylogarithmic
approximation, in case of approximation problems such as MVC and MDS). For
recent surveys regarding locality lower bounds we refer to e.g. [KMW10, Suo12].

Ramsey theory was started by Frank P. Ramsey with his 1930 article called
“On a problem of formal logic” [Ram30]. For an introduction to Ramsey theory
we refer to e.g. [NR90, LR03].

Bibliography

[CHW08] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak. Fast Distrib-
uted Approximations in Planar Graphs. In Proceedings of the 22nd
International Symposium on Distributed Computing (DISC), 2008.

90 CHAPTER 8. LOCALITY LOWER BOUNDS

[KMW04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium on
Principles of Distributed Computing (PODC), July 2004.

[KMW10] Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local
Computation: Lower and Upper Bounds. CoRR, abs/1011.5470,
2010.

[Lin92] N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193–201, February 1992.

[LR03] Bruce M. Landman and Aaron Robertson. Ramsey Theory on the
Integers. American Mathematical Society, 2003.

[LW08] Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s Lo-
cality Limit. In 22nd International Symposium on Distributed Com-
puting (DISC), Arcachon, France, September 2008.

[Nao91] Moni Naor. A Lower Bound on Probabilistic Algorithms for Distribu-
tive Ring Coloring. SIAM J. Discrete Math., 4(3):409–412, 1991.

[NR90] Jaroslav Nesetril and Vojtech Rodl, editors. Mathematics of Ramsey
Theory. Springer Berlin Heidelberg, 1990.

[NS93] Moni Naor and Larry Stockmeyer. What can be computed locally?
In Proceedings of the twenty-fifth annual ACM symposium on Theory
of computing, STOC ’93, pages 184–193, New York, NY, USA, 1993.
ACM.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[Ram30] F. P. Ramsey. On a problem in formal logic. Proc. London Math.
Soc. (3), 30:264–286, 1930.

[Suo12] Jukka Suomela. Survey of Local Algorithms.
http://www.cs.helsinki.fi/local-survey/, 2012.

Chapter 9

Social Networks

Distributed computing is applicable in various contexts. This lecture exemplar-
ily studies one of these contexts, social networks, an area of study whose origins
date back a century. To give you a first impression, consider Figure 9.1.

Zachary’s Karate Club

inst
2

3
4

5

6

7

8

9

10

11

12

13

14

1516

1718

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

admin

[Zachary 1977]

Recorded interactions in a

karate club for 2 years.

During observation,

adminstrator/instructor

conflict developed

⇒ broke into two clubs.

Who joins which club?

Split along

administrator/instructor

minimum cut (!)

4Figure 9.1: This graph shows the social relations between the members of a
karate club, studied by anthropologist Wayne Zachary in the 1970s. Two people
(nodes) stand out, the instructor and the administrator of the club, both happen
to have many friends among club members. At some point, a dispute caused
the club to split into two. Can you predict how the club partitioned? (If not,
just search the Internet for Zachary and Karate.)

91

92 CHAPTER 9. SOCIAL NETWORKS

9.1 Small World Networks

Back in 1929, Frigyes Karinthy published a volume of short stories that pos-
tulated that the world was “shrinking” because human beings were connected
more and more. Some claim that he was inspired by radio network pioneer
Guglielmo Marconi’s 1909 Nobel Prize speech. Despite physical distance, the
growing density of human “networks” renders the actual social distance smaller
and smaller. As a result, it is believed that any two individuals can be connected
through at most five (or so) acquaintances, i.e., within six hops.

The topic was hot in the 1960s. For instance, in 1964, Marshall McLuhan
coined the metaphor “Global Village”. He wrote: “As electrically contracted,
the globe is no more than a village”. He argues that due to the almost instanta-
neous reaction times of new (“electric”) technologies, each individual inevitably
feels the consequences of his actions and thus automatically deeply participates
in the global society. McLuhan understood what we now can directly observe –
real and virtual world are moving together. He realized that the transmission
medium, rather than the transmitted information is at the core of change, as
expressed by his famous phrase “the medium is the message”.

This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know
the average path length between two “random” humans, by using various ex-
periments, generally using randomly chosen individuals from the US Midwest
as starting points, and a stockbroker living in a suburb of Boston as target.
The starting points were given name, address, occupation, plus some personal
information about the target. They were asked to send a letter to the target.
However, they were not allowed to directly send the letter, rather, they had to
pass it to somebody they knew on first-name basis and that they thought to
have a higher probability to know the target person. This process was repeated,
until somebody knew the target person, and could deliver the letter. Shortly
after starting the experiment, letters have been received. Most letters were lost
during the process, but if they arrived, the average path length was about 5.5.
The observation that the entire population is connected by short acquaintance
chains got later popularized by the terms “six degrees of separation” and “small
world”.

Statisticians tried to explain Milgram’s experiments, by essentially giving
network models that allowed for short diameters, i.e., each node is connected
to each other node by only a few hops. Until today there is a thriving research
community in statistical physics that tries to understand network properties
that allow for “small world” effects.

One of the keywords in this area are power-law graphs, networks where node
degrees are distributed according to a power-law distribution, i.e., the number
of nodes with degree δ is proportional to δ−α, for some α > 1. Such power-
law graphs have been witnessed in many application areas, apart from social
networks also in the web, or in biology or physics.

Obviously, two power-law graphs might look and behave completely differ-
ently, even if α and the number of edges is exactly the same.

One well-known model towards this end is the Watts-Strogatz model. Watts
and Strogatz argued that social networks should be modeled by a combination of
two networks: As the basis we take a network that has a large cluster coefficient
. . .

9.1. SMALL WORLD NETWORKS 93

Definition 9.1. The cluster coefficient of a network is defined by the probability
that two friends of a node are likely to be friends as well, averaged over all the
nodes.

. . . , then we augment such a graph with random links, every node for in-
stance points to a constant number of other nodes, chosen uniformly at random.
This augmentation represents acquaintances that connect nodes to parts of the
network that would otherwise be far away.

Remarks:

• Without further information, knowing the cluster coefficient is of ques-
tionable value: Assume we arrange the nodes in a grid. Technically, if
we connect each node to its four closest neighbors, the graph has cluster
coefficient 0, since there are no triangles; if we instead connect each node
with its eight closest neighbors, the cluster coefficient is 3/7. The clus-
ter coefficient is quite different, even though both networks have similar
characteristics.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward
a message to one of their neighbors, even though they cannot know whether
that neighbor is really closer to the target. In other words, nodes are not just
following physical laws, but they make decisions themselves.

Let us consider an artificial network with nodes on a grid topology, plus some
additional random links per node. In a quantitative study it was shown that the
random links need a specific distance distribution to allow for efficient greedy
routing. This distribution marks the sweet spot for any navigable network.

Definition 9.2 (Augmented Grid). We take n = m2 nodes (i, j) ∈ V =

{1, . . . ,m}2 that are identified with the lattice points on an m × m grid. We
define the distance between two nodes (i, j) and (k, `) as d

(
(i, j), (k, `)

)
= |k −

i| + |` − j| as the distance between them on the m × m lattice. The network
is modeled using a parameter α ≥ 0. Each node u has a directed edge to ev-
ery lattice neighbor. These are the local contacts of a node. In addition, each
node also has an additional random link (the long-range contact). For all u
and v, the long-range contact of u points to node v with probability proportional
to d(u, v)−α, i.e., with probability d(u, v)−α/

∑
w∈V \{u} d(u,w)−α. Figure 9.2

illustrates the model.

Remarks:

• The network model has the following geographic interpretation: nodes
(individuals) live on a grid and know their neighbors on the grid. Further,
each node has some additional acquaintances throughout the network.

• The parameter α controls how the additional neighbors are distributed
across the grid. If α = 0, long-range contacts are chosen uniformly at
random (as in the Watts-Strogatz model). As α increases, long-range
contacts become shorter on average. In the extreme case, if α → ∞, all
long-range contacts are to immediate neighbors on the grid.

94 CHAPTER 9. SOCIAL NETWORKS

Figure 9.2: Augmented grid with m = 6

• It can be shown that as long as α ≤ 2, the diameter of the resulting
graph is polylogarithmic in n (polynomial in log n) with high probability.
In particular, if the long-range contacts are chosen uniformly at random
(α = 0), the diameter is O(log n).

Since the augmented grid contains random links, we do not know anything
for sure about how the random links are distributed. In theory, all links could
point to the same node! However, this is almost certainly not the case. Formally
this is captured by the term with high probability.

Definition 9.3 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p ≥ 1 −
1/nc, where c is a constant. The constant c may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Remarks:

• For instance, a running time bound of c log n or ec! log n + 5000c with
probability at least 1−1/nc would be O(log n) w.h.p., but a running time
of nc would not be O(n) w.h.p. since c might also be 50.

• This definition is very powerful, as any polynomial (in n) number of state-
ments that hold w.h.p. also holds w.h.p. at the same time, regardless of
any dependencies between random variables!

9.1. SMALL WORLD NETWORKS 95

Theorem 9.4. The diameter of the augmented grid with α = 0 is O(log n) with
high probability.

Proof Sketch. For simplicity, we will only show that we can reach a target node
t starting from some source node s. However, it can be shown that (essentially)
each of the intermediate claims holds with high probability, which then by means
of the union bound yields that all of the claims hold simultaneously with high
probability for all pairs of nodes (see exercises).

Let Ns be the dlog ne-hop neighborhood of source s on the grid, containing
Ω(log2 n) nodes. Each of the nodes in Ns has a random link, probably leading
to distant parts of the graph. As long as we have reached only o(n) nodes, any
new random link will with probability 1− o(1) lead to a node for which none of
its grid neighbors has been visited yet. Thus, in expectation we find almost |Ns|
new nodes whose neighbors are “fresh”. Using their grid links, we will reach
(4−o(1))|Ns| more nodes within one more hop. If bad luck strikes, it could still
happen that many of these links lead to a few nodes, already visited nodes, or
nodes that are very close to each other. But that is very unlikely, as we have
lots of random choices! Indeed, it can be shown that not only in expectation,
but with high probability (5− o(1))|Ns| many nodes are reached this way (see
exercises).

Because all the new nodes have (so far unused) random links, we can repeat
this reasoning inductively, implying that the number of nodes grows by (at least)
a constant factor for every two hops. Thus, after O(log n) hops, we will have
reached n/ log n nodes (which is still small compared to n). Finally, consider the
expected number of links from these nodes that enter the (log n)-neighborhood
of some target node t with respect to the grid. Since this neighborhood consists
of Ω(log2 n) nodes, in expectation Ω(log n) links come close enough to target
t. This is large enough to almost guarantee that this happens (see exercises).
Summing everything up, we still used merely O(log n) hops in total to get from
s to t.

This shows that for α = 0 (and in fact for all α ≤ 2), the resulting network
has a small diameter. Recall however that we also wanted the network to be
navigable. For this, we consider a simple greedy routing strategy (Algorithm 39).

Algorithm 39 Greedy Routing

1: while not at destination do
2: go to a neighbor which is closest to destination (considering grid distance

only)
3: end while

Lemma 9.5. In the augmented grid, Algorithm 39 finds a routing path of length
at most 2(m− 1) ∈ O(

√
n).

Proof. Because of the grid, there is always a neighbor which is closer to the
destination. Since with each hop we reduce the distance to the target at least
by one in one of the two grid dimensions, we will reach the destination within
2(m− 1) steps.

96 CHAPTER 9. SOCIAL NETWORKS

This is not really what Milgram’s experiment promises. We want to know
how much the additional random links speed up the process. To this end, we
first need to understand how likely it is that the random link of node u points
to node v, in terms of their grid distance d(u, v), the number of nodes n, and
the constant parameter α.

Lemma 9.6. Node u’s random link points to a node v with probability

• Θ(1/(d(u, v)αm2−α)) if α < 2.

• Θ(1/(d(u, v)2 log n)) if α = 2,

• Θ(1/d(u, v)α) if α > 2.

Moreover, if α > 2, the probability to see a link of length at least d is in
Θ(1/dα−2).

Proof. For a constant α 6= 2, we have that

∑
w∈V \{u}

1

d(u,w)α
∈

m∑
r=1

Θ(r)

rα
= Θ

(∫ m

r=1

1

rα−1
dr

)
= Θ

([
r2−α

2− α

]m
1

)
.

If α < 2, this gives Θ(m2−α), if α > 2, it is in Θ(1). If α = 2, we get

∑
w∈V \{u}

1

d(u,w)α
∈

m∑
r=1

Θ(r)

r2
= Θ(1) ·

m∑
r=1

1

r
= Θ(logm) = Θ(log n).

Multiplying with d(u, v)α yields the first three bounds. For the last statement,
compute∑

v∈V
d(u,v)≥d

Θ(1/d(u, v)α) = Θ

(∫ m

r=d

r

rα
dr

)
= Θ

([
r2−α

2− α

]m
d

)
= Θ(1/dα−2).

Remarks:

• If α > 2, according to the lemma, the probability to see a random link
of length at least d = m1/(α−1) is Θ(1/dα−2) = Θ(1/m(α−2)/(α−1)). In
expectation we have to take Θ(m(α−2)/(α−1)) hops until we see a random
link of length at least d. When just following links of length less than d,
it takes more than m/d = m/m1/(α−1) = m(α−2)/(α−1) hops. In other
words, in expectation, either way we need at least m(α−2)/(α−1) = mΩ(1)

hops to the destination.

• If α < 2, there is a (slightly more complicated) argument. First we draw
a border around the nodes in distance m(2−α)/3 to the target. Within this
border there are about m2(2−α)/3 many nodes in the target area. Assume
that the source is outside the target area. Starting at the source, the prob-
ability to find a random link that leads directly inside the target area is
according to the lemma at most m2(2−α)/3 ·Θ(1/m2−α)) = Θ(1/m(2−α)/3).
In other words, until we find a random link that leads into the target area,

9.1. SMALL WORLD NETWORKS 97

in expectation, we have to do Θ(m(2−α)/3) hops. This is too slow, and
our greedy strategy is probably faster, as thanks to having α < 2 there
are many long-range links. However, it means that we will probably en-
ter the border of the target area on a regular grid link. Once inside the
target area, again the probability of short-cutting our trip by a random
long-range link is Θ(1/m(2−α)/3), so we probably just follow grid links,
m(2−α)/3 = mΩ(1) many of them.

• In summary, if α 6= 2, our greedy routing algorithm takes mΩ(1) = nΩ(1)

expected hops to reach the destination. This is polynomial in the number
of nodes n, and the social network can hardly be called a “small world”.

• Maybe we can get a polylogarithmic bound on n if we set α = 2?

Definition 9.7 (Phase). Consider routing from source s to target t and assume
that we are at some intermediate node w. We say that we are in phase j at node
w if the lattice distance d(w, t) to the target node t is between 2j < d(w, t) ≤
2j+1.

Remarks:

• Enumerating the phases in decreasing order is useful, as notation becomes
less cumbersome.

• There are dlogme ∈ O(log n) phases.

Lemma 9.8. Assume that we are in phase j at node w when routing from s
to t. The probability for getting (at least) to phase j − 1 in one step is at least
Ω(1/ log n).

Proof. Let Bj be the set of nodes x with d(x, t) ≤ 2j . We get from phase j to
(at least) phase j − 1 if the long-range contact of node w points to some node
in Bj . Note that we always make progress while following the greedy routing
path. Therefore, we have not seen node w before and the long-range contact of
w points to a random node that is independent of anything seen on the path
from s to w.

For all nodes x ∈ Bj , we have d(w, x) ≤ d(w, t) + d(x, t) ≤ 2j+1 + 2j < 2j+2.
Hence, for each node x ∈ Bj , the probability that the long-range contact of w
points to x is Ω(1/22j+4 log n). Further, the number of nodes in Bj is at least
(2j)2/2 = 22j−1. Hence, the probability that some node in Bj is the long range
contact of w is at least

Ω

(
|Bj | ·

1

22j+4 log n

)
= Ω

(
22j−1

22j+4 log n

)
= Ω

(
1

log n

)
.

Theorem 9.9. Consider the greedy routing path from a node s to a node t on
an augmented grid with parameter α = 2. The expected length of the path is
O(log2 n).

Proof. We already observed that the total number of phases is O(log n) (the
distance to the target is halved when we go from phase j to phase j − 1). At
each point during the routing process, the probability of proceeding to the next
phase is at least Ω(1/ log n). Let Xj be the number of steps in phase j. Because

98 CHAPTER 9. SOCIAL NETWORKS

the probability for ending the phase is Ω(1/ log n) in each step, in expectation
we need O(log n) steps to proceed to the next phase, i.e., E[Xj] ∈ O(log n). Let
X =

∑
j Xj be the total number of steps of the routing process. By linearity of

expectation, we have

E[X] =
∑
j

E[Xj] ∈ O(log2 n).

Remarks:

• One can show that the O(log2 n) result also holds w.h.p.

• In real world social networks, the parameter α was evaluated experimen-
tally. The assumption is that you are connected to the geographically
closest nodes, and then have some random long-range contacts. For Face-
book grandpa LiveJournal it was shown that α is not really 2, but rather
around 1.25.

9.2 Propagation Studies

In networks, nodes may influence each other’s behavior and decisions. There are
many applications where nodes influence their neighbors, e.g., they may impact
their opinions, or they may bias what products they buy, or they may pass on
a disease.

On a beach (modeled as a line segment), it is best to place an ice cream
stand right in the middle of the segment, because you will be able to “control”
the beach most easily. What about the second stand, where should it settle?
The answer generally depends on the model, but assuming that people will buy
ice cream from the stand that is closer, it should go right next to the first stand.

Rumors can spread surprisingly fast through social networks. Tradition-
ally this happens by word of mouth, but with the emergence of the Internet
and its possibilities new ways of rumor propagation are available. People write
email, use instant messengers or publish their thoughts in a blog. Many factors
influence the dissemination of rumors. It is especially important where in a net-
work a rumor is initiated and how convincing it is. Furthermore the underlying
network structure decides how fast the information can spread and how many
people are reached. More generally, we can speak of diffusion of information in
networks. The analysis of these diffusion processes can be useful for viral mar-
keting, e.g., to target a few influential people to initiate marketing campaigns.
A company may wish to distribute the rumor of a new product via the most
influential individuals in popular social networks such as Facebook. A second
company might want to introduce a competing product and has hence to select
where to seed the information to be disseminated. Rumor spreading is quite
similar to our ice cream stand problem.

More formally, we may study propagation problems in graphs. Given a
graph, and two players. Let the first player choose a seed node u1; afterwards
let the second player choose a seed node u2, with u2 6= u1. The goal of the game
is to maximize the number of nodes that are closer to one’s own seed node.

In many graphs it is an advantage to choose first. In a star graph for instance
the first player can choose the center node of the star, controlling all but one

BIBLIOGRAPHY 99

node. In some other graphs, the second player can at least score even. But is
there a graph where the second player has an advantage?

Theorem 9.10. In a two player rumor game where both players select one node
to initiate their rumor in the graph, the first player does not always win.

Proof. See Figure 9.3 for an example where the second player will always win,
regardless of the decision the first player. If the first player chooses the node x0

in the center, the second player can select x1. Choice x1 will be outwitted by x2,
and x2 itself can be answered by z1. All other strategies are either symmetric,
or even less promising for the first player.

x1x2

y2

y1

z1

x0

y2

z2

Figure 9.3: Counter example.

Chapter Notes

A simple form of a social network is the famous stable marriage problem [DS62]
in which a stable matching bipartite graph has to be found. There exists a great
many of variations which are based on this initial problem, e.g., [KC82, KMV94,
EO06, FKPS10, Hoe11]. Social networks like Facebook, Twitter and others have
grown very fast in the last years and hence spurred interest to research them.
How users influence other users has been studied both from a theoretical point
of view [KKT03] and in practice [CHBG10]. The structure of these networks
can be measured and studied [MMG+07]. More than half of the users in social
networks share more information than they expect to [LGKM11].

The small world phenomenon that we presented in this chapter is analyzed
by Kleinberg [Kle00]. A general overview is in [DJ10].

This chapter has been written in collaboration with Michael Kuhn.

Bibliography

[CHBG10] Meeyoung Cha, Hamed Haddadi, Fabŕıcio Benevenuto, and P. Kr-
ishna Gummadi. Measuring User Influence in Twitter: The Million
Follower Fallacy. In ICWSM, 2010.

100 CHAPTER 9. SOCIAL NETWORKS

[DJ10] Easley David and Kleinberg Jon. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, New York, NY, USA, 2010.

[DS62] D. Gale and L.S. Shapley. College Admission and the Stability of
Marriage. American Mathematical Monthly, 69(1):9–15, 1962.

[EO06] Federico Echenique and Jorge Oviedo. A theory of stability in many-
to-many matching markets. Theoretical Economics, 1(2):233–273,
2006.

[FKPS10] Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka
Suomela. Almost Stable Matchings by Truncating the Gale-Shapley
Algorithm. Algorithmica, 58(1):102–118, 2010.

[Hoe11] Martin Hoefer. Local Matching Dynamics in Social Networks. Au-
tomata Languages and Programming, pages 113–124, 2011.

[Kar29] Frigyes Karinthy. Chain-Links, 1929.

[KC82] Alexander S. Kelso and Vincent P. Crawford. Job Matching, Coali-
tion Formation, and Gross Substitutes. Econometrica, 50(6):1483–
1504, 1982.

[KKT03] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the
spread of influence through a social network. In KDD, 2003.

[Kle00] Jon M. Kleinberg. The small-world phenomenon: an algorithm
perspective. In STOC, 2000.

[KMV94] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line
algorithms for weighted bipartite matching and stable marriages.
Theoretical Computer Science, 127:255–267, May 1994.

[LGKM11] Yabing Liu, Krishna P. Gummadi, Balanchander Krishnamurthy,
and Alan Mislove. Analyzing Facebook privacy settings: User ex-
pectations vs. reality. In Proceedings of the 11th ACM/USENIX
Internet Measurement Conference (IMC’11), Berlin, Germany,
November 2011.

[McL64] Marshall McLuhan. Understanding media: The extensions of man.
McGraw-Hill, New York, 1964.

[Mil67] Stanley Milgram. The Small World Problem. Psychology Today,
2:60–67, 1967.

[MMG+07] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter
Druschel, and Bobby Bhattacharjee. Measurement and analysis of
online social networks. In Internet Measurement Comference, 2007.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of
“small-world” networks. Nature, 393(6684):440–442, Jun 1998.

[Zac77] W W Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33(4):452–473,
1977.

Chapter 10

Synchronization

So far, we have mainly studied synchronous algorithms. Generally, asynchro-
nous algorithms are more difficult to obtain. Also it is substantially harder
to reason about asynchronous algorithms than about synchronous ones. For in-
stance, computing a BFS tree (Chapter 3) efficiently requires much more work in
an asynchronous system. However, many real systems are not synchronous, and
we therefore have to design asynchronous algorithms. In this chapter, we will
look at general simulation techniques, called synchronizers, that allow running
synchronous algorithms in asynchronous environments.

10.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 10.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the ith

clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round i of the synchronous algorithm.

Theorem 10.2. If all generated clock pulses are valid according to Definition
10.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the ith pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first i− 1 rounds of the synchronous algorithm.

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 10.1, nodes
have to send additional messages for the purpose of synchronization. The total

101

102 CHAPTER 10. SYNCHRONIZATION

complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T (S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Minit(S),
respectively. If T (A) and M(A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ttot
and Mtot of the resulting asynchronous algorithm then become

Ttot = Tinit(S)+T (A)·(1+T (S)) and Mtot = Minit(S)+M(A)+T (A)·M(S),

respectively.

Remarks:

• Because the initialization only needs to be done once for each network, we
will mostly be interested in the overheads T (S) and M(S) per round of
the synchronous algorithm.

Definition 10.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 10.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 10.1 for generating a valid next pulse.

Remarks:

• In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain pulse,
it knows that it is safe with respect to that pulse. Note that sending
acknowledgements does not increase the asymptotic time and message
complexities.

10.2 The Local Synchronizer α

Algorithm 40 Synchronizer α (at node v)

1: wait until v is safe
2: send SAFE to all neighbors
3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer α is very simple. It does not need an initialization. Using
acknowledgements, each node eventually detects that it is safe. It then reports
this fact directly to all its neighbors. Whenever a node learns that all its neigh-
bors are safe, a new pulse is generated. Algorithm 40 formally describes the
synchronizer α.

10.3. SYNCHRONIZER β 103

Theorem 10.5. The time and message complexities of synchronizer α per syn-
chronous round are

T (α) = O(1) and M(α) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer α sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety.

Remarks:

• Synchronizer α was presented in a framework, mostly set up to have a
common standard to discuss different synchronizers. Without the frame-
work, synchronizer α can be explained more easily:

1. Send message to all neighbors, include round information i and actual
data of round i (if any).

2. Wait for message of round i from all neighbors, and go to next round.

• Although synchronizer α allows for simple and fast synchronization, it
produces awfully many messages. Can we do better? Yes.

10.3 The Global Synchronizer β

Algorithm 41 Synchronizer β (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all its children in T
3: if v 6= ` then
4: send SAFE message to parent in T
5: wait until PULSE message received from parent in T
6: end if
7: send PULSE message to children in T
8: start new pulse

Synchronizer β needs an initialization that computes a leader node ` and a
spanning tree T rooted at `. As soon as all nodes are safe, this information is
propagated to ` by a convergecast. The leader then broadcasts this information
to all nodes. The details of synchronizer β are given in Algorithm 41.

Theorem 10.6. The time and message complexities of synchronizer β per syn-
chronous round are

T (β) = O(diameter(T)) ≤ O(n) and M(β) = O(n).

The time and message complexities for the initialization are

Tinit(β) = O(n) and Minit(β) = O(m+ n log n).

104 CHAPTER 10. SYNCHRONIZATION

Proof. Because the diameter of T is at most n − 1, the convergecast and the
broadcast together take at most 2n − 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n− 2 synchronization messages (one in each direction
over each edge of T).

With the improved variant of the GHS algorithm (Algorithm 15) mentioned
in Chapter 3, it is possible to construct an MST in timeO(n) withO(m+n log n)
messages in an asynchronous environment. Once the tree is computed, the tree
can be made rooted in time O(n) with O(n) messages.

Remarks:

• We now got a time-efficient synchronizer (α) and a message-efficient syn-
chronizer (β), it is only natural to ask whether we can have the best of
both worlds. And, indeed, we can. How is that synchronizer called? Quite
obviously: γ.

10.4 The Hybrid Synchronizer γ

Figure 10.1: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer γ can be seen as a combination of synchronizers α and β. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C1 and C2 are called neighboring if there are nodes u ∈ C1 and v ∈ C2 for
which (u, v) ∈ E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 10.1
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.

10.4. SYNCHRONIZER γ 105

Synchronizer γ works in two phases. In a first phase, synchronizer β is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer α between clusters. A detailed
description is given by Algorithm 42.

Algorithm 42 Synchronizer γ (at node v)

1: wait until v is safe
2: wait until v receives SAFE messages from all children in intracluster tree
3: if v is not cluster leader then
4: send SAFE message to parent in intracluster tree
5: wait until CLUSTERSAFE message received from parent
6: end if
7: send CLUSTERSAFE message to all children in intracluster tree
8: send NEIGHBORSAFE message over all intercluster edges of v
9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-

cluster edges and all children in intracluster tree
10: if v is not cluster leader then
11: send NEIGHBORSAFE message to parent in intracluster tree
12: wait until PULSE message received from parent
13: end if
14: send PULSE message to children in intracluster tree
15: start new pulse

Theorem 10.7. Let mC be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the maximum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer γ are

T (γ) = O(k) and M(γ) = O(n+mC).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n+ 2mC = O(n+mC).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =
O(k).

106 CHAPTER 10. SYNCHRONIZATION

10.5 Network Partition

We will now look at the initialization phase of synchronizer γ. Algorithm 43
describes how to construct a partition into clusters that can be used for syn-
chronizer γ. In Algorithm 43, B(v, r) denotes the ball of radius r around v,
i.e., B(v, r) = {u ∈ V : d(u, v) ≤ r} where d(u, v) is the hop distance between
u and v. The algorithm has a parameter ρ > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than ρ.

Algorithm 43 Cluster construction

1: while unprocessed nodes do
2: select an arbitrary unprocessed node v;
3: r := 0;
4: while |B(v, r + 1)| > ρ|B(v, r)| do
5: r := r + 1
6: end while
7: makeCluster(B(v, r)) // all nodes in B(v, r) are now processed
8: end while

Remarks:

• The algorithm allows a trade-off between the cluster diameter k (and thus
the time complexity) and the number of intercluster edges mC (and thus
the message complexity). We will quantify the possibilities in the next
section.

• Two very simple partitions would be to make a cluster out of every single
node or to make one big cluster that contains the whole graph. We then
get synchronizers α and β as special cases of synchronizer γ.

Theorem 10.8. Algorithm 43 computes a partition of the network graph into
clusters of radius at most logρ n. The number of intercluster edges is at most
(ρ− 1) · n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than ρ. Since there are only n nodes in the graph, this
can happen at most logρ n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C of size |C|. We know that
C = B(v, r) for some v ∈ V and r ≥ 0. Further, we know that |B(v, r + 1)| ≤
ρ · |B(v, r)|. The number of nodes adjacent to cluster C is therefore at most
|B(v, r+ 1) \B(v, r)| ≤ ρ · |C| − |C|. Because there is only one intercluster edge
connecting two clusters by definition, the number of intercluster edges adjacent
to C is at most (ρ − 1) · |C|. Summing over all clusters, we get that the total
number of intercluster edges is at most (ρ− 1) · n.

Corollary 10.9. Using ρ = 2, Algorithm 43 computes a clustering with cluster
radius at most log2 n and with at most n intercluster edges.

10.5. NETWORK PARTITION 107

Corollary 10.10. Using ρ = n1/k, Algorithm 43 computes a clustering with
cluster radius at most k and at most O(n1+1/k) intercluster edges.

Remarks:

• Algorithm 43 describes a centralized construction of the partitioning of
the graph. For ρ ≥ 2, the clustering can be computed by an asynchronous
distributed algorithm in time O(n) with O(m+n log n) (reasonably sized)
messages (showing this will be part of the exercises).

• It can be shown that the trade-off between cluster radius and number of
intercluster edges of Algorithm 43 is asymptotically optimal. There are
graphs for which every clustering into clusters of radius at most k requires
n1+c/k intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer γ.

Corollary 10.11. The time and message complexities of synchronizer γ per
synchronous round are

T (γ) = O(k) and M(γ) = O(n1+1/k).

The time and message complexities for the initialization are

Tinit(γ) = O(n) and Minit(γ) = O(m+ n log n).

Remarks:

• In Chapter 3, you have seen that by using flooding, there is a very simple
synchronous algorithm to compute a BFS tree in time O(D) with mes-
sage complexity O(m). If we use synchronizer γ to make this algorithm
asynchronous, we get an algorithm with time complexity O(n + D log n)
and message complexity O(m+ n log n+D · n) (including initialization).

• The synchronizers α, β, and γ achieve global synchronization, i.e. ev-
ery node generates every clock pulse. The disadvantage of this is that
nodes that do not participate in a computation also have to participate
in the synchronization. In many computations (e.g. in a BFS construc-
tion), many nodes only participate for a few synchronous rounds. In such
scenarios, it is possible to achieve time and message complexity O(log3 n)
per synchronous round (without initialization).

• It can be shown that if all nodes in the network need to generate all pulses,
the trade-off of synchronizer γ is asymptotically optimal.

• Partitions of networks into clusters of small diameter and coverings of net-
works with clusters of small diameters come in many variations and have
various applications in distributed computations. In particular, apart from
synchronizers, algorithms for routing, the construction of sparse spanning
subgraphs, distributed data structures, and even computations of local
structures such as a MIS or a dominating set are based on some kind of
network partitions or covers.

108 CHAPTER 10. SYNCHRONIZATION

10.6 Clock Synchronization

“A man with one clock knows what time it is – a man with two is never sure.”

Synchronizers can directly be used to give nodes in an asynchronous network a
common notion of time. In wireless networks, for instance, many basic protocols
need an accurate time. Sometimes a common time in the whole network is
needed, often it is enough to synchronize neighbors. The purpose of the time
division multiple access (TDMA) protocol is to use the common wireless channel
as efficiently as possible, i.e., interfering nodes should never transmit at the
same time (on the same frequency). If we use synchronizer β to give the nodes
a common notion of time, every single clock cycle costs D time units!

Often, each (wireless) node is equipped with an internal clock. Using this
clock, it should be possible to divide time into slots, and make each node send
(or listen, or sleep, respectively) in the appropriate slots according to the media
access control (MAC) layer protocol used.

However, as it turns out, synchronizing clocks in a network is not trivial.
As nodes’ internal clocks are not perfect, they will run at speeds that are time-
dependent. For instance, variations in temperature or supply voltage will affect
this clock drift. For standard clocks, the drift is in the order of parts per million,
i.e., within a second, it will accumulate to a couple of microseconds. Wireless
TDMA protocols account for this by introducing guard times. Whenever a node
knows that it is about to receive a message from a neighbor, it powers up its
radio a little bit earlier to make sure that it does not miss the message even
when clocks are not perfectly synchronized. If nodes are badly synchronized,
messages of different slots might collide.

In the clock synchronization problem, we are given a network (graph) with
n nodes. The goal for each node is to have a logical clock such that the logical
clock values are well synchronized, and close to real time. Each node is equipped
with a hardware clock, that ticks more or less in real time, i.e., the time between
two pulses is arbitrary between [1− ε, 1 + ε], for a constant ε� 1. Similarly as
in our asynchronous model, we assume that messages sent over the edges of the
graph have a delivery time between [0, 1]. In other words, we have a bounded
but variable drift on the hardware clocks and an arbitrary jitter in the delivery
times. The goal is to design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

Theorem 10.12. The global clock skew (the logical clock difference between any
two nodes in the graph) is Ω(D), where D is the diameter of the graph.

Proof. For a node u, let tu be the logical time of u and let (u → v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then all the messages sent by u and v at time
i according to the clock of the sender arrive at time i + 1/2 according to the
clock of the receiver.

Then consider the following cases

• tu = tv + 1/2, t(u→ v) = 1, t(v → u) = 0

• tu = tv − 1/2, t(u→ v) = 0, t(v → u) = 1,

10.6. CLOCK SYNCHRONIZATION 109

where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time i according to the clock of the sender arrive at time i + 1/2 according
to the logical clock of the receiver. Therefore, for nodes u and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes l, r cannot
distinguish tl = tr +D/2 from tl = tr −D/2.

Remarks:

• From Theorem 10.12, it directly follows that all the clock synchronization
algorithms we studied have a global skew of Ω(D).

• Many natural algorithms manage to achieve a global clock skew of O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer α pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer α. A pseudo-code repre-
sentation for the clock synchronization protocol α is given in Algorithm 44.

Algorithm 44 Clock synchronization α (at node v)

1: repeat
2: send logical time tv to all neighbors
3: if Receive logical time tu, where tu > tv, from any neighbor u then
4: tv := tu
5: end if
6: until done

Lemma 10.13. The clock synchronization protocol α has a local skew of Ω(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1, v2, . . . , vD from left to right and the logical clock of node vi by ti. Apart
from the left-most node v1 all hardware clocks run with speed 1 (real time).
Node v1 runs at maximum speed, i.e. the time between two pulses is not 1 but
1− ε. Assume that initially all message delays are 1. After some time, node v1

will start to speed up v2, and after some more time v2 will speed up v3, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t1 = tD +D − 1.

Now we start playing around with the message delays. Let t1 = T . First we
set the delay between the v1 and v2 to 0. Now node v2 immediately adjusts its
logical clock to T . After this event (which is instantaneous in our model) we set
the delay between v2 and v3 to 0, which results in v3 setting its logical clock to T
as well. We perform this successively to all pairs of nodes until vD−2 and vD−1.
Now node vD−1 sets its logical clock to T , which indicates that the difference
between the logical clocks of vD−1 and vD is T − (T − (D − 1)) = D − 1.

110 CHAPTER 10. SYNCHRONIZATION

Remarks:

• The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local skew.
In particular, a protocol that averages between all neighbors is even worse
than the introduced α algorithm. This algorithm has a clock skew of
Ω(D2) in the linked list, at all times.

• It was shown that the local clock skew is Θ(logD), i.e., there is a protocol
that achieves this bound, and there is a proof that no algorithm can be
better than this bound!

• Note that these are worst-case bounds. In practice, clock drift and message
delays may not be the worst possible, typically the speed of hardware
clocks changes at a comparatively slow pace and the message transmission
times follow a benign probability distribution. If we assume this, better
protocols do exist.

Chapter Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers α and
β were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85a]. His work also formally introduced the syn-
chronizers α and β. Improved synchronizers that exploit inactive nodes or hy-
percube networks were presented in [AP90, PU87].

Naturally, as synchronizers are motivated by practical difficulties with local
clocks, there are plenty of real life applications. Studies regarding applications
can be found in, e.g., [SM86, Awe85b, LTC89, AP90, PU87]. Synchronizers in
the presence of network failures have been discussed in [AP88, HS94].

It has been known for a long time that the global clock skew is Θ(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Ω(logD/ log logD) for the local skew. The first algorithm providing a non-
trivial local skew of O(

√
D) was given in [LW06]. Later, matching upper and

lower bounds of Θ(logD) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKS03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRW07, SW09, LSW09, FW10, FZTS11].

Bibliography

[AP88] Baruch Awerbuch and David Peleg. Adapting to Asynchronous Dy-
namic Networks with Polylogarithmic Overhead. In 24th ACM Sym-
posium on Foundations of Computer Science (FOCS), pages 206–
220, 1988.

BIBLIOGRAPHY 111

[AP90] Baruch Awerbuch and David Peleg. Network Synchronization with
Polylogarithmic Overhead. In Proceedings of the 31st IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 1990.

[Awe85a] Baruch Awerbuch. Complexity of Network Synchronization. Journal
of the ACM (JACM), 32(4):804–823, October 1985.

[Awe85b] Baruch Awerbuch. Reducing Complexities of the Distributed Max-
flow and Breadth-first-search Algorithms by Means of Network Syn-
chronization. Networks, 15:425–437, 1985.

[BvRW07] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
International Conference on Information Processing in Sensor Net-
works (IPSN), Cambridge, Massachusetts, USA, April 2007.

[Cha79] E.J.H. Chang. Decentralized Algorithms in Distributed Systems. PhD
thesis, University of Toronto, 1979.

[CL85] K. Mani Chandy and Leslie Lamport. Distributed Snapshots: De-
termining Global States of Distributed Systems. ACM Transactions
on Computer Systems, 1:63–75, 1985.

[EGE02] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained
Network Time Synchronization Using Reference Broadcasts. ACM
SIGOPS Operating Systems Review, 36:147–163, 2002.

[FW10] Roland Flury and Roger Wattenhofer. Slotted Programming for
Sensor Networks. In International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

[FZTS11] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh.
Efficient Network Flooding and Time Synchronization with Glossy.
In Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73–84, 2011.

[Gal76] Robert Gallager. Distributed Minimum Hop Algorithms. Technical
report, Lab. for Information and Decision Systems, 1976.

[GKS03] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-
sync Protocol for Sensor Networks. In Proceedings of the 1st interna-
tional conference on Embedded Networked Sensor Systems (SenSys),
2003.

[HS94] M. Harrington and A. K. Somani. Synchronizing Hypercube Net-
works in the Presence of Faults. IEEE Transactions on Computers,
43(10):1175–1183, 1994.

[KLLO10] Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. In 29th Symposium on Principles of Distributed Computing
(PODC), Zurich, Switzerland, July 2010.

112 CHAPTER 10. SYNCHRONIZATION

[KLO09] Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient Clock
Synchronization in Dynamic Networks. In 21st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

[LF04] Nancy Lynch and Rui Fan. Gradient Clock Synchronization. In
Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

[LL84] Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 62:190–204,
1984.

[LLW10] Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. In Journal of the ACM, Volume
57, Number 2, January 2010.

[LSW09] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Op-
timal Clock Synchronization in Networks. In 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), Berkeley, Cali-
fornia, USA, November 2009.

[LTC89] K. B. Lakshmanan, K. Thulasiraman, and M. A. Comeau. An Ef-
ficient Distributed Protocol for Finding Shortest Paths in Networks
with Negative Weights. IEEE Trans. Softw. Eng., 15:639–644, 1989.

[LW06] Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, September 2006.

[MKSL04] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd
international Conference on Embedded Networked Sensor Systems,
SenSys ’04, 2004.

[PSJ04] Santashil PalChaudhuri, Amit Kumar Saha, and David B. Johnson.
Adaptive Clock Synchronization in Sensor Networks. In Proceedings
of the 3rd International Symposium on Information Processing in
Sensor Networks, IPSN ’04, 2004.

[PU87] David Peleg and Jeffrey D. Ullman. An Optimal Synchronizer for
the Hypercube. In Proceedings of the sixth annual ACM Symposium
on Principles of Distributed Computing, PODC ’87, pages 77–85,
1987.

[SM86] Baruch Shieber and Shlomo Moran. Slowing Sequential Algorithms
for Obtaining Fast Distributed and Parallel Algorithms: Maximum
Matchings. In Proceedings of the fifth annual ACM Symposium on
Principles of Distributed Computing, PODC ’86, pages 282–292,
1986.

[ST87] T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626–645, 1987.

BIBLIOGRAPHY 113

[SW09] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchro-
nization in Wireless Sensor Networks. In 8th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, USA, April 2009.

114 CHAPTER 10. SYNCHRONIZATION

Chapter 11

Hard Problems

This chapter is on “hard” problems in distributed computing. In sequential com-
puting, there are NP-hard problems which are conjectured to take exponential
time. Is there something similar in distributed computing? Using flooding/echo
(Algorithms 11,12) from Chapter 3, everything so far was solvable basically in
O(D) time, where D is the diameter of the network.

11.1 Diameter & APSP

But how do we compute the diameter itself!?! With flooding/echo, of course!

Algorithm 45 Naive Diameter Construction

1: all nodes compute their radius by synchronous flooding/echo
2: all nodes flood their radius on the constructed BFS tree
3: the maximum radius a node sees is the diameter

Remarks:

• Since all these phases only take O(D) time, nodes know the diameter in
O(D) time, which is asymptotically optimal.

• However, there is a problem! Nodes are now involved in n parallel flood-
ing/echo operations, thus a node may have to handle many and big mes-
sages in one single time step. Although this is not strictly illegal in the
message passing model, it still feels like cheating! A natural question is
whether we can do the same by just sending short messages in each round.

• In Definition 1.6 of Chapter 1 we postulated that nodes should send only
messages of “reasonable” size. In this chapter we strengthen the definition
a bit, and require that each message should have at most O(log n) bits.
This is generally enough to communicate a constant number of ID’s or
values to neighbors, but not enough to communicate everything a node
knows!

• A simple way to avoid large messages is to split them into small messages
that are sent using several rounds. This can cause that messages are

115

116 CHAPTER 11. HARD PROBLEMS

getting delayed in some nodes but not in others. The flooding might not
use edges of a BFS tree anymore! These floodings might not compute
correct distances anymore! On the other hand we know that the maximal
message size in Algorithm 45 is O(n log n). So we could just simulate each
of these “big message” rounds by n “small message” rounds using small
messages. This yields a runtime of O(nD) which is not desirable. A third
possible approach is “starting each flooding/echo one after each other”
and results in O(nD) in the worst case as well.

• So let us fix the above algorithm! The key idea is to arrange the flooding-
echo processes in a more organized way: Start the flooding processes in
a certain order and prove that at any time, each node is only involved in
one flooding. This is realized in Algorithm 46.

Definition 11.1. (BFSv) Performing a breadth first search at node v produces
spanning tree BFSv (see Chapter 3). This takes time O(D) using small mes-
sages.

Remarks:

• A spanning tree of a graph G can be traversed in time O(n) by sending a
pebble over an edge in each time slot.

• This can be done using e.g. a depth first search (DFS): Start at the root
of a tree, recursively visit all nodes in the following way. If the current
node still has an unvisited child, then the pebble always visits that child
first. Return to the parent only when all children have been visited.

• Algorithm 46 works as follows: Given a graph G, first a leader l computes
its BFS tree BFSl. Then we send a pebble P to traverse tree BFSl. Each
time pebble P enters a node v for the first time, P waits one time slot,
and then starts a breadth first search (BFS) – using edges in G – from v
with the aim of computing the distances from v to all other nodes. Since
we start a BFSv from every node v, each node u learns its distance to all
these nodes v during the according execution of BFSv. There is no need
for an echo-process at the end of BFSu.

Algorithm 46 Computes APSP on G.

1: Assume we have a leader node l (if not, compute one first)
2: compute BFSl of leader l
3: send a pebble P to traverse BFSl in a DFS way;
4: while P traverses BFSl do
5: if P visits a new node v then
6: wait one time slot; // avoid congestion
7: start BFSv from node v; // compute all distances to v
8: // the depth of node u in BFSv is d(u, v)
9: end if

10: end while

11.2. LOWER BOUND GRAPHS 117

Remarks:

• Having all distances is nice, but how do we get the diameter? Well, as
before, each node could just flood its radius (its maximum distance) into
the network. However, messages are small now and we need to modify
this slightly. In each round a node only sends the maximal distance that
it is aware of to its neighbors. After D rounds each node will know the
maximum distance among all nodes.

Lemma 11.2. In Algorithm 46, at no time a node w is simultaneously active
for both BFSu and BFSv.

Proof. Assume a BFSu is started at time tu at node u. Then node w will be
involved in BFSu at time tu + d(u,w). Now, consider a node v whose BFSv
is started at time tv > tu. According to the algorithm this implies that the
pebble visits v after u and took some time to travel from u to v. In particular,
the time to get from u to v is at least d(u, v), in addition at least node v is
visited for the first time (which involves waiting at least one time slot), and
we have tv ≥ tu + d(u, v) + 1. Using this and the triangle inequality, we get
that node w is involved in BFSv strictly after being involved in BFSu since
tv + d(v, w) ≥ (tu + d(u, v) + 1) + d(v, w) ≥ tu + d(u,w) + 1 > tu + d(u,w).

Theorem 11.3. Algorithm 46 computes APSP (all pairs shortest path) in time
O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS
“interfere” with each other, i.e. all messages can be sent on time without con-
gestion. Hence, all BFS stop at most D time slots after they were started. We
conclude that the runtime of the algorithm is determined by the time O(D) we
need to build tree BFSl, plus the time O(n) that P needs to traverse BFSl, plus
the time O(D) needed by the last BFS that P initiated. Since D ≤ n, this is
all in O(n).

Remarks:

• All of a sudden our algorithm needs O(n) time, and possibly n� D. We
should be able to do better, right?!

• Unfortunately not! One can show that computing the diameter of a net-
work needs Ω(n/ log n) time.

• Note that one can easily check whether a graph has diameter 1, by ex-
changing some basic information such as degree with the neighbors. How-
ever, already checking diameter 2 is nontrivial.

11.2 Lower Bound Graphs

We define a family G of graphs that we use to prove a lower bound on the
rounds needed to compute the diameter. To simplify our analysis, we assume
that (n− 2) can be divided by 8. We start by defining four sets of nodes, each
consisting of q = q(n) := (n− 2)/4 nodes. Throughout this chapter we write [q]
as a short version of {1, . . . , q} and define:

118 CHAPTER 11. HARD PROBLEMS

L0 := {li | i ∈ [q] } // upper left in Figure 11.1

L1 := {l′i | i ∈ [q] } // lower left

R0 := {ri | i ∈ [q] } // upper right

R1 := {r′i | i ∈ [q] } // lower right

L0 R0

R1L1

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 11.1: The above skeleton G′ contains n = 10 nodes, such that q = 2.

We add node cL and connect it to all nodes in L0 and L1. Then we add
node cR, connected to all nodes in R0 and R1. Furthermore, nodes cL and cR
are connected by an edge. For i ∈ [q] we connect li to ri and l′i to r′i. Also we
add edges such that nodes in L0 are a clique, nodes in L1 are a clique, nodes
in R0 are a clique, and nodes in R1 are a clique. The resulting graph is called
G′. Graph G′ is the skeleton of any graph in family G.

More formally skeleton G′ = (V ′, E′) is:

V ′ := L0 ∪ L1 ∪ R0 ∪ R1 ∪ {cL, cR}

E′ :=
⋃

v ∈L0 ∪ L1

{(v, cL)} // connections to cL

∪
⋃

v ∈R0 ∪ R1

{(v, cR)} // connections to cR

∪
⋃
i∈[q]

{(li, ri), (l′i, r′i)} ∪ {(cL, cR)} // connects left to right

∪
⋃

S ∈ {L0,
L1, R0, R1}

⋃
u 6=v∈S

{(u, v)} // clique edges

To simplify our arguments, we partition G′ into two parts: Part L is the
subgraph induced by nodes L0 ∪ L1 ∪ {cL}. Part R is the subgraph induced
by nodes R0 ∪ R1 ∪ {cR}.

11.2. LOWER BOUND GRAPHS 119

Family G contains any graph G that is derived from G′ by adding any com-
bination of edges of the form (li, l

′
j) resp. (ri, r

′
j) with li ∈ L0, l′j ∈ L1, ri ∈ R0,

and r′j ∈ R1.

Part L Part R

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 11.2: The above graph G has n = 10 and is a member of family G. What
is the diameter of G?

Lemma 11.4. The diameter of a graph G = (V,E) ∈ G is 2 if and only if: For
each tuple (i, j) with i, j ∈ [q], there is either edge (li, l

′
j) or edge (ri, r

′
j) (or both

edges) in E.

Proof. Note that the distance between most pairs of nodes is at most 2. In
particular, the radius of cL resp. cR is 2. Thanks to cL resp. cR the distance
between, any two nodes within Part L resp. within Part R is at most 2.
Because of the cliques L0,L1,R0,R1, distances between li and rj resp. l′i and
r′j is at most 2.

The only interesting case is between a node li ∈ L0 and node r′j ∈ R1 (or,
symmetrically, between l′j ∈ L1 and node ri ∈ R0). If either edge (li, l

′
j) or

edge (ri, r
′
j) is present, then this distance is 2, since the path (li, l

′
j , r
′
j) or the

path (li, ri, r
′
j) exists. If neither of the two edges exist, then the neighborhood

of li consists of {cL, ri}, all nodes in L0, and some nodes in L1 \ {l′j}, and the
neighborhood of r′j consists of {cR, l′j} , all nodes in R1, and some nodes in
R0 \ {ri} (see for example Figure 11.3 with i = 2 and j = 2.) Since the two
neighborhoods do not share a common node, the distance between li and r′j is
(at least) 3.

Remarks:

• Each part contains up to q2 ∈ Θ(n2) edges not belonging to the skeleton.

• There are 2q + 1 ∈ Θ(n) edges connecting the left and the right part.
Since in each round we can transmit O(log n) bits over each edge (in each
direction), the bandwidth between Part L and Part R is O(n log n).

120 CHAPTER 11. HARD PROBLEMS

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 11.3: Nodes in the neighborhood of l2 are cyan, the neighborhood of r′2
is white. Since these neighborhoods do not intersect, the distance of these two
nodes is d(l2, r

′
2) > 2. If e.g. edge (l2, l

′
2) was included, their distance was 2.

• If we transmit the information of the Θ(n2) edges in a naive way with a
bandwidth of O(n log n), we need Ω(n/ log n) time. But maybe we can
do better?!? Can an algorithm be smarter and only send the information
that is really necessary to tell whether the diameter is 2?

• It turns out that any algorithm needs Ω(n/ log n) rounds, since the infor-
mation that is really necessary to tell that the diameter is larger than 2
contains basically Θ(n2) bits.

11.3 Communication Complexity

To prove the last remark formally, we can use arguments from two-party com-
munication complexity. This area essentially deals with a basic version of dis-
tributed computation: two parties are given some input each and want to solve
a task on this input.

We consider two students (Alice and Bob) at two different universities con-
nected by a communication channel (e.g. via email) and we assume this channel
to be reliable. Now Alice and Bob want to check whether they received the same
problem set for homework (we assume their professors are lazy and wrote it on
the black board instead of putting a nicely prepared document online.) Do Alice
and Bob really need to type the whole problem set into their emails? In a more
formal way: Alice receives an k-bit string x and Bob another k-bit string y, and
the goal is for both of them to compute the equality function.

Definition 11.5. (Equality.) We define the equality function EQ to be:

EQ(x, y) :=

{
1 : x = y
0 : x 6= y .

11.3. COMMUNICATION COMPLEXITY 121

Remarks:

• In a more general setting, Alice and Bob are interested in computing a
certain function f : {0, 1}k × {0, 1}k → {0, 1} with the least amount
of communication between them. Of course they can always succeed by
having Alice send her whole k-bit string to Bob, who then computes the
function, but the idea here is to find clever ways of calculating f with less
than k bits of communication. We measure how clever they can be as
follows:

Definition 11.6. (Communication complexity CC.) The communication com-
plexity of protocol A for function f is CC(A, f) := minimum number of bits
exchanged between Alice and Bob in the worst case when using A. The commu-
nication complexity of f is CC(f) := min{CC(A, f) |A solves f}. That is the
minimal number of bits that the best protocol needs to send in the worst case.

Definition 11.7. For a given function f , we define a 2k × 2k matrix Mf

representing f . That is Mf
x,y := f(x, y).

Example 11.8. For EQ, in case k = 3, matrix MEQ looks like this:

EQ 000 001 010 011 100 101 110 111 ← x
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 1
↑ y

As a next step we define a (combinatorial) monochromatic rectangle. These

are “submatrices” of Mf which contain the same entry.

Definition 11.9. (monochromatic rectangle.) A set R ⊆ {0, 1}k × {0, 1}k is
called a monochromatic rectangle, if

• whenever (x1, y1) ∈ R and (x2, y2) ∈ R then (x1, y2) ∈ R.

• there is a fixed z such that f(x, y) = z for all (x, y) ∈ R.

Example 11.10. The first three of the following rectangles are monochromatic,
the last one is not:

R1 = {011} × {011} Example 11.8: light gray
R2 = {011, 100, 101, 110} × {000, 001} Example 11.8: gray
R3 = {000, 001, 101} × {011, 100, 110, 111} Example 11.8: dark gray
R4 = {000, 001} × {000, 001} Example 11.8: boxed

Each time Alice and Bob exchange a bit, they can eliminate columns/rows of
the matrix Mf and a combinatorial rectangle is left. They can stop communi-
cating when this remaining rectangle is monochromatic. However, maybe there
is a more efficient way to exchange information about a given bit string than

122 CHAPTER 11. HARD PROBLEMS

just naively transmitting contained bits? In order to cover all possible ways of
communication, we need the following definition:

Definition 11.11. (fooling set.) A set S ⊂ {0, 1}k × {0, 1}k fools f if there is
a fixed z such that

• f(x, y) = z for each (x, y) ∈ S

• For any (x1, y1) 6= (x2, y2) ∈ S, the rectangle {x1, x2} × {y1, y2} is not
monochromatic: Either f(x1, y2) 6= z, f(x2, y1) 6= z or both 6= z.

Example 11.12. Consider S = {(000, 000), (001, 001)}. Take a look at the
non-monochromatic rectangle R4 in Example 11.10. Verify that S is indeed a
fooling set for EQ!

Remarks:

• Can you find a larger fooling set for EQ?

• We assume that Alice and Bob take turns in sending a bit. This results in
2 possible actions (send 0/1) per round and in 2t action patterns during
a sequence of t rounds.

Lemma 11.13. If S is a fooling set for f , then CC(f) = Ω(log |S|).

Proof. We prove the statement via contradiction: fix a protocol A and assume
that it needs t < log(|S|) rounds in the worst case. Then there are 2t possible
action patterns, with 2t < |S|. Hence at least two elements of S, let us call them
(x1, y1), (x2, y2), protocol A produces the same action pattern P . Naturally, the
action pattern on the alternative inputs (x1, y2), (x2, y1) will be P as well: in the
first round Alice and Bob have no information on the other party’s string and
send the same bit that was sent in P . Based on this, they determine the second
bit to be exchanged, which will be the same as the second one in P since they
cannot distinguish the cases. This continues for all t rounds. We conclude that
after t rounds, Alice does not know whether Bob’s input is y1 or y2 and Bob
does not know whether Alice’s input is x1 or x2. By the definition of fooling
sets, either

• f(x1, y2) 6= f(x1, y1) in which case Alice (with input x1) does not know
the solution yet,

or

• f(x2, y1) 6= f(x1, y1) in which case Bob (with input y1) does not know the
solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs
after t rounds. Therefore at least log(|S|) rounds are necessary.

Theorem 11.14. CC(EQ) = Ω(k).

Proof. The set S := {(x, x) | x ∈ {0, 1}k} fools EQ and has size 2k. Now apply
Lemma 11.13.

Definition 11.15. Denote the negation of a string z by z and by x ◦ y the
concatenation of strings x and y.

11.3. COMMUNICATION COMPLEXITY 123

Lemma 11.16. Let x, y be k-bit strings. Then x 6= y if and only if there is an
index i ∈ [2k] such that the ith bit of x ◦ x and the ith bit of y ◦ y are both 0.

Proof. If x 6= y, there is an j ∈ [k] such that x and y differ in the jth bit.
Therefore either the jth bit of both x and y is 0, or the jth bit of x and y is
0. For this reason, there is an i ∈ [2k] such that x ◦ x and y ◦ y are both 0 at
position i.

If x = y, then for any i ∈ [2k] it is always the case that either the ith bit of
x ◦ x is 1 or the ith bit of y ◦ y (which is the negation of x ◦ x in this case) is
1.

Remarks:

• With these insights we get back to the problem of computing the diameter
of a graph and relate this problem to EQ.

Definition 11.17. Using the parameter q defined before, we define a bijective
map between all pairs x, y of q2-bit strings and the graphs in G: each pair of
strings x, y is mapped to graph Gx,y ∈ G that is derived from skeleton G′ by
adding

• edge (li, l
′
j) to Part L if and only if the (j + q · (i− 1))th bit of x is 1.

• edge (ri, r
′
j) to Part R if and only if the (j + q · (i− 1))th bit of y is 1.

Remarks:

• Clearly, Part L of Gx,y depends on x only and Part R depends on y
only.

Lemma 11.18. Let x and y be q2

2 -bit strings given to Alice and Bob1. Then
graph G := Gx◦x,y◦y ∈ G has diameter 2 if and only if x = y.

Proof. By Lemma 11.16 and the construction of G, there is neither edge (li, l
′
j)

nor edge (ri, r
′
j) in E(G) for some (i, j) if and only if x 6= y. Applying Lemma

11.4 yields: G has diameter 2 if and only if x = y.

Theorem 11.19. Any distributed algorithm A that decides whether a graph G

has diameter 2 needs Ω
(

n
logn +D

)
time.

Proof. Computing D for sure needs time Ω(D). It remains to prove Ω
(

n
logn

)
.

Assume there is a distributed algorithm A that decides whether the diameter of

a graph is 2 in time o(n/ log n). When Alice and Bob are given q2

2 -bit inputs x
and y, they can simulate A to decide whether x = y as follows: Alice constructs
Part L of Gx◦x,y◦y and Bob constructs Part R. As we remarked, both parts
are independent of each other such that Part L can be constructed by Alice
without knowing y and Part R can be constructed by Bob without knowing x.
Furthermore, Gx◦x,y◦y has diameter 2 if and only if x = y (Lemma 11.18.)

Now Alice and Bob simulate the distributed algorithm A round by round:
In the first round, they determine which messages the nodes in their part of

1Thats why we need that n− 2 can be divided by 8.

124 CHAPTER 11. HARD PROBLEMS

G would send. Then they use their communication channel to exchange all
2(2q + 1) ∈ Θ(n) messages that would be sent over edges between Part L and
Part R in this round while executing A on G. Based on this Alice and Bob
determine which messages would be sent in round two and so on. For each
round simulated by Alice and Bob, they need to communicate Θ(n log n) bits:
possibly Θ(log n) bits for each of Θ(n) messages. Since A makes a decision after
o(n/ log n) rounds, this yields a total communication of o(n2) bits. On the other
hand, Lemma 11.14 states that to decide whether x equals y, Alice and Bob

need to communicate at least Ω
(
q2

2

)
= Ω(n2) bits. A contradiction.

Remarks:

• Until now we only considered deterministic algorithms. Can one do better
using randomness?

Algorithm 47 Randomized evaluation of EQ.

1: Alice and Bob use public randomness. That is they both have access to the
same random bit string z ∈ {0, 1}k

2: Alice sends bit a :=
∑
i∈[k] xi · zi mod 2 to Bob

3: Bob sends bit b :=
∑
i∈[k] yi · zi mod 2 to Alice

4: if a 6= b then
5: we know x 6= y
6: end if

Lemma 11.20. If x 6= y, Algorithm 47 discovers x 6= y with probability at least
1/2.

Proof. Note that if x = y we have a = b for sure.
If x 6= y, Algorithm 47 may not reveal inequality. For instance, for k = 2,

if x = 01, y = 10 and z = 11 we get a = b = 1. In general, let I be the set of
indices where xi 6= yi, i.e. I := {i ∈ [k] | xi 6= yi}. Since x 6= y, we know that
|I| > 0. We have

|a− b| ≡
∑
i∈I

zi (mod 2),

and since all zi with i ∈ I are random, we get that a 6= b with probability at
least 1/2.

Remarks:

• By excluding the vector z = 0k we can even get a discovery probability
strictly larger than 1/2.

• Repeating the Algorithm 47 with different random strings z, the error
probability can be reduced arbitrarily.

• Does this imply that there is a fast randomized algorithm to determine
the diameter? Unfortunately not!

11.4. DISTRIBUTED COMPLEXITY THEORY 125

• Sometimes public randomness is not available, but private randomness is.
Here Alice has her own random string and Bob has his own random string.
A modified version of Algorithm 47 also works with private randomness
at the cost of the runtime.

• One can prove an Ω(n/ log n) lower bound for any randomized distributed
algorithm that computes the diameter. To do so one considers the dis-
jointness function DISJ instead of equality. Here, Alice is given a subset
X ⊆ [k] and and Bob is given a subset Y ⊆ [k] and they need to determine
whether Y ∩X = ∅. (X and Y can be represented by k-bit strings x, y.)
The reduction is similar as the one presented above but uses graph Gx,y
instead of Gx◦x,y◦y. However, the lower bound for the randomized com-
munication complexity of DISJ is more involved than the lower bound for
CC(EQ).

• Since one can compute the diameter given a solution for APSP, an Ω(n/ log n)
lower bound for APSP is implied. As such, our simple Algorithm 46 is
almost optimal!

• Many prominent functions allow for a low communication complexity. For
instance, CC(PARITY) = 2. What is the Hamming distance (number of
different entries) of two strings? It is known that CC(HAM ≥ d) = Ω(d).
Also, CC(decide whether “HAM ≥ k/2+

√
k” or “HAM ≤ k/2−

√
k”) =

Ω(k), even when using randomness. This problem is known as the Gap-
Hamming-Distance.

• Lower bounds in communication complexity have many applications. Apart
from getting lower bounds in distributed computing, one can also get lower
bounds regarding circuit depth or query times for static data structures.

• In the distributed setting with limited bandwidth we showed that com-
puting the diameter has about the same complexity as computing all pairs
shortest paths. In contrast, in sequential computing, it is a major open
problem whether the diameter can be computed faster than all pairs short-
est paths. No nontrivial lower bounds are known, only that Ω(n2) steps
are needed – partly due to the fact that there can be n2 edges/distances in
a graph. On the other hand the currently best algorithm uses fast matrix
multiplication and terminates after O(n2.3727) steps.

11.4 Distributed Complexity Theory

We conclude this chapter with a short overview on the main complexity classes
of distributed message passing algorithms. Given a network with n nodes and
diameter D, we managed to establish a rich selection of upper and lower bounds
regarding how much time it takes to solve or approximate a problem. Currently
we know five main distributed complexity classes:

• Strictly local problems can be solved in constantO(1) time, e.g. a constant
approximation of a dominating set in a planar graph.

126 CHAPTER 11. HARD PROBLEMS

• Just a little bit slower are problems that can be solved in log-star O(log∗ n)
time, e.g. many combinatorial optimization problems in special graph
classes such as growth bounded graphs. 3-coloring a ring takes O(log∗ n).

• A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem to be strictly local but are not, as they need O(polylog n)
time, e.g. the maximal independent set problem.

• There are problems which are global and need O(D) time, e.g. to count
the number of nodes in the network.

• Finally there are problems which need polynomial O(poly n) time, even if
the diameter D is a constant, e.g. computing the diameter of the network.

Chapter Notes

The linear time algorithm for computing the diameter was discovered inde-
pendently by [HW12, PRT12]. The presented matching lower bound is by
Frischknecht et al. [FHW12], extending techniques by [DHK+11].

Due to its importance in network design, shortest path-problems in general
and the APSP problem in particular were among the earliest studied problems
in distributed computing. Developed algorithms were immediately used e.g.
as early as in 1969 in the ARPANET (see [Lyn96], p.506). Routing messages
via shortest paths were extensively discussed to be beneficial in [Taj77, MS79,
MRR80, SS80, CM82] and in many other papers. It is not surprising that there
is plenty of literature dealing with algorithms for distributed APSP, but most
of them focused on secondary targets such as trading time for message com-
plexity. E.g. papers [AR78, Tou80, Che82] obtain a communication complexity
of roughly O(n ·m) bits/messages and still require superlinear runtime. Also a
lot of effort was spent to obtain fast sequential algorithms for various versions
of computing APSP or related problems such as the diameter problem, e.g.
[CW90, AGM91, AMGN92, Sei95, SZ99, BVW08]. These algorithms are based
on fast matrix multiplication such that currently the best runtime is O(n2.3727)
due to [Wil12].

The problem sets in which one needs to distinguish diameter 2 from 4 are
inspired by a combinatorial (×, 3/2)-approximation in a sequential setting by
Aingworth et. al. [ACIM99]. The main idea behind this approximation is to
distinguish diameter 2 from 4. This part was transferred to the distributed
setting in [HW12].

Two-party communication complexity was introduced by Andy Yao in [Yao79].
Later, Yao received the Turing Award. A nice introduction to communication
complexity covering techniques such as fooling-sets is the book by Nisan and
Kushilevitz [KN97].

This chapter was written in collaboration with Stephan Holzer.

Bibliography

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast Estima-
tion of Diameter and Shortest Paths (Without Matrix Multiplica-

BIBLIOGRAPHY 127

tion). SIAM Journal on Computing (SICOMP), 28(4):1167–1181,
1999.

[AGM91] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs
shortest path problem. In Proceedings of the 32nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
569–575, 1991.

[AMGN92] N. Alon, O. Margalit, Z. Galilt, and M. Naor. Witnesses for Boolean
Matrix Multiplication and for Shortest Paths. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 417–426. IEEE Computer Society, 1992.

[AR78] J.M. Abram and IB Rhodes. A decentralized shortest path algo-
rithm. In Proceedings of the 16th Allerton Conference on Commu-
nication, Control and Computing (Allerton), pages 271–277, 1978.

[BVW08] G.E. Blelloch, V. Vassilevska, and R. Williams. A New Combina-
torial Approach for Sparse Graph Problems. In Proceedings of the
35th international colloquium on Automata, Languages and Pro-
gramming, Part I (ICALP), pages 108–120. Springer-Verlag, 2008.

[Che82] C.C. Chen. A distributed algorithm for shortest paths. IEEE Trans-
actions on Computers (TC), 100(9):898–899, 1982.

[CM82] K.M. Chandy and J. Misra. Distributed computation on graphs:
Shortest path algorithms. Communications of the ACM (CACM),
25(11):833–837, 1982.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of symbolic computation (JSC),
9(3):251–280, 1990.

[DHK+11] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pan-
durangan, D. Peleg, and R. Wattenhofer. Distributed Verification
and Hardness of Distributed Approximation. Proceedings of the 43rd
annual ACM Symposium on Theory of Computing (STOC), 2011.

[FHW12] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Can-
not Compute Their Diameter in Sublinear Time. In Proceedings
of the 23rd annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1150–1162, January 2012.

[HW12] Stephan Holzer and Roger Wattenhofer. Optimal Distributed All
Pairs Shortest Paths and Applications. In PODC, page to appear,
2012.

[KN97] E. Kushilevitz and N. Nisan. Communication complexity. Cam-
bridge University Press, 1997.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

128 CHAPTER 11. HARD PROBLEMS

[MRR80] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm
for the ARPANET. IEEE Transactions on Communications (TC),
28(5):711–719, 1980.

[MS79] P. Merlin and A. Segall. A failsafe distributed routing proto-
col. IEEE Transactions on Communications (TC), 27(9):1280–
1287, 1979.

[PRT12] David Peleg, Liam Roditty, and Elad Tal. Distributed Algorithms
for Network Diameter and Girth. In ICALP, page to appear, 2012.

[Sei95] R. Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of Computer and System Sciences
(JCSS), 51(3):400–403, 1995.

[SS80] M. Schwartz and T. Stern. Routing techniques used in computer
communication networks. IEEE Transactions on Communications
(TC), 28(4):539–552, 1980.

[SZ99] A. Shoshan and U. Zwick. All pairs shortest paths in undirected
graphs with integer weights. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pages 605–614. IEEE, 1999.

[Taj77] W.D. Tajibnapis. A correctness proof of a topology information
maintenance protocol for a distributed computer network. Commu-
nications of the ACM (CACM), 20(7):477–485, 1977.

[Tou80] S. Toueg. An all-pairs shortest-paths distributed algorithm. Tech.
Rep. RC 8327, IBM TJ Watson Research Center, Yorktown
Heights, NY 10598, USA, 1980.

[Wil12] V.V. Williams. Multiplying Matrices Faster Than Coppersmith-
Winograd. Proceedings of the 44th annual ACM Symposium on
Theory of Computing (STOC), 2012.

[Yao79] A.C.C. Yao. Some complexity questions related to distributive com-
puting. In Proceedings of the 11th annual ACM symposium on The-
ory of computing (STOC), pages 209–213. ACM, 1979.

Chapter 12

Stabilization

A large branch of research in distributed computing deals with fault-tolerance.
Being able to tolerate a considerable fraction of failing or even maliciously be-
having (“Byzantine”) nodes while trying to reach consensus (on e.g. the output
of a function) among the nodes that work properly is crucial for building reli-
able systems. However, consensus protocols require that a majority of the nodes
remains non-faulty all the time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself ?

12.1 Self-Stabilization

Definition 12.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

• What kind of transient failures can we tolerate? An adversary can crash
nodes, or make nodes behave Byzantine. Indeed, temporarily an adversary
can do harm in even worse ways, e.g. by corrupting the volatile memory
of a node (without the node noticing – not unlike the movie Memento),
or by corrupting messages on the fly (without anybody noticing). How-
ever, as all failures are transient, eventually all nodes must work correctly
again, that is, crashed nodes get resurrected, Byzantine nodes stop being
malicious, messages are being delivered reliably, and the memory of the
nodes is secure.

• Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables in
the volatile random access memory (RAM).

129

130 CHAPTER 12. STABILIZATION

Definition 12.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

Remarks:

• Self-stabilization enables a distributed system to recover from a transient
fault regardless of its nature. A self-stabilizing system does not have to
be initialized as it eventually (after convergence) will behave correctly.

• One of the first self-stabilizing algorithms was Dijkstra’s token ring net-
work. A token ring is an early form of a local area network where nodes
are arranged in a ring, communicating by a token. The system is correct
if there is exactly one token in the ring. Let’s have a look at a simple
solution. Given an oriented ring, we simply call the clockwise neighbor
parent (p), and the counterclockwise neighbor child (c). Also, there is a
leader node v0. Every node v is in a state S(v) ∈ {0, 1, . . . , n}, perpetually
informing its child about its state. The token is implicitly passed on by
nodes switching state. Upon noticing a change of the parent state S(p),
node v executes the following code:

Algorithm 48 Self-stabilizing Token Ring

1: if v = v0 then
2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if
5: else
6: S(v) := S(p)
7: end if

Theorem 12.3. Algorithm 48 stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after all faults already have happened
(at time t0, however starting in an arbitrary state).

Every node apart from leader v0 will always attain the state of its parent.
It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time t0. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time t0.

The leader will increase its state possibly multiple times without reaching
stability, however, at some point the leader will reach state s, a state that no
other node had at time t0. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s+ 1 (mod n) until every node (including its parent) has s.

After stabilization, there will always be only one node changing its state,
i.e., the system remains in a legitimate state.

12.1. SELF-STABILIZATION 131

Remarks:

• Although one might think the time complexity of the algorithm is quite
bad, it is asymptotically optimal.

• It can be a lot of fun designing self-stabilizing algorithms. Let us try
to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 7):

Algorithm 49 Self-stabilizing MIS

Require: Node IDs
Every node v executes the following code:

1: do atomically
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do

Remarks:

• Note that the main idea of Algorithm 49 is from Algorithm 34, Chapter 7.

• As long as some nodes are faulty, anything can happen: Faulty nodes may
for instance decide to join the MIS, but report to their neighbors that
they did not join the MIS. Similarly messages may be corrupted during
transport. As soon as the system (nodes, messages) is correct, however,
the system will converge to a MIS. (The arguments are the same as in
Chapter 7).

• Self-stabilizing algorithms always run in an infinite loop, because transient
failures can hit the system at any time. Without the infinite loop, an ad-
versary can always corrupt the solution “after” the algorithm terminated.

• The problem of Algorithm 49 is its time complexity, which may be linear
in the number of nodes. This is not very exciting. We need something
better! Since Algorithm 49 was just the self-stabilizing variant of the slow
MIS Algorithm 34, maybe we can hope to “self-stabilize” some of our fast
algorithms from Chapter 7?

• Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy. We
present the general transformation below.

Theorem 12.4 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k
time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.

132 CHAPTER 12. STABILIZATION

Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k phases. In phase i, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node u sends its messages of phase i to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Liu. (In the very first phase, node
u initializes its local variables with L1

u.) The message sent from node u to node
v in phase i is denoted by mi

u,v. Since the algorithm A is deterministic, node u

can compute its local variables Liu and messages mi
u,∗ of phase i from its state

of earlier phases, by simply applying functions fL and fm. In particular,

Liu = fL(u, Li−1
u ,mi−1

∗,u), for i > 1, and (12.1)

mi
u,v = fm(u, v, Liu), for i ≥ 1. (12.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L1

u, . . . , L
k
u as well

as all messages received m1
∗,u, . . . ,m

k
∗,u in two tables in RAM. For simplicity,

each node u also stores all the sent messages m1
u,∗, . . . ,m

k
u,∗ in a third table. If

a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value ⊥ (“unknown”). Initially, all entries
in the table are ⊥.

Clearly, in the self-stabilizing model, an adversary can choose to change
table values at all times, and even reset these values to ⊥. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each
node u runs these two procedures constantly:

• For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithmA, that is, send the vector (m1

u,v, . . . ,m
k
u,v) to

neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (m1

v,u, . . . ,m
k
v,u).

• Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
Functions (12.1) and (12.2) respectively.

The proof is by induction. Let N i(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has not
corrupted any node in Nk(u) since time t0. At time t0 all nodes in Nk(u) will
check and correct their initialization. Following Equation (12.2), at time t0 all
nodes in Nk(u) will send the correct message entry for the first round (m1

∗,∗) to
all neighbors. Asynchronous messages take at most 1 time unit to be received
at a destination. Hence, using the induction with Equations (12.1) and (12.2)
it follows that at time t0 + i, all nodes in Nk−i(u) have received the correct
messages m1

∗,∗, . . . ,m
i
∗,∗. Consequently, at time t0 + k node u has received all

messages of local algorithm A correctly, and will compute the same result value
as in A. 2

12.1. SELF-STABILIZATION 133

Remarks:

• Using our transformation (also known as “local checking”), designing self-
stabilizing algorithms just turned from art to craft.

• As we have seen, many local algorithms are randomized. This brings two
additional problems. Firstly, one may not exactly know how long the
algorithm will take. This is not really a problem since we can simply
send around all the messages needed, until the algorithm is finished. The
transformation of Theorem 12.4 works also if nodes just send all messages
that are not ⊥. Secondly, we must be careful about the adversary. In
particular we need to restrict the adversary such that a node can produce
a reproducible sufficiently long string of random bits. This can be achieved
by storing the sufficiently long string along with the program code in the
read only memory (ROM). Alternatively, the algorithm might not store
the random bit string in its ROM, but only the seed for a random bit
generator. We need this in order to keep the adversary from reshuffling
random bits until the bits become “bad”, and the expected (or with high
probability) efficacy or efficiency guarantees of the original local algorithm
A cannot be guaranteed anymore.

• Since most local algorithms have only a few communication rounds, and
only exchange small messages, the memory overhead of the transformation
is usually bearable. In addition, information can often be compressed in a
suitable way so that for many algorithms message size will remain polylog-
arithmic. For example, the information of the fast MIS algorithm (Algo-
rithm 36) consists of a series of random values (one for each round), plus
two boolean values per round. These boolean values represent whether the
node joins the MIS, or whether a neighbor of the node joins the MIS. The
order of the values tells in which round a decision is made. Indeed, the
series of random bits can even be compressed just into the random seed
value, and the neighbors can compute the random values of each round
themselves.

• There is hope that our transformation as well gives good algorithms for
mobile networks, that is for networks where the topology of the network
may change. Indeed, for deterministic local approximation algorithms,
this is true: If the adversary does not change the topology of a node’s
k-neighborhood in time k, the solution will locally be stable again.

• For randomized local approximation algorithms however, this is not that
simple. Assume for example, that we have a randomized local algorithm
for the dominating set problem. An adversary can constantly switch the
topology of the network, until it finds a topology for which the random
bits (which are not really random because these random bits are in ROM)
give a solution with a bad approximation ratio. By defining a weaker
adversarial model, we can fix this problem. Essentially, the adversary
needs to be oblivious, in the sense that it cannot see the solution. Then it
will not be possible for the adversary to restart the random computation
if the solution is “too good”.

134 CHAPTER 12. STABILIZATION

• Self-stabilization is the original approach, and self-organization may be the
general theme, but new buzzwords pop up every now and then, e.g. self-
configuration, self-management, self-regulation, self-repairing, self-heal-
ing, self-optimization, self-adaptivity, or self-protection. Generally all
these are summarized as “self-*”. One computing giant coined the term
“autonomic computing” to reflect the trend of self-managing distributed
systems.

12.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.1 In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.2 Is this process going to “stabilize” (in one way or
another)?

Remarks:

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

Theorem 12.5 (Dems & Reps). Eventually every citizen is rooting for the
same party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship between citizens as a pair of (directed) edges, one
in each direction. Let us say an edge is currently “bad” if the party of the
advising friend differs from the next-day’s party of the advised friend. In other
words, the edge is bad if the advised friend did not follow the advisor’s opinion
(which means that the advisor was in the minority). An edge that is not bad,
is “good”.

Consider the out-edges of citizen c on day t, during which (say) c roots for
the Democrats. Assume that during day t, g out-edges of c are good, and b
out-edges are bad. Note that g + b is the degree of c. Since g out-edges were
good, g friends of c root for the Democrats on day t+ 1. Likewise, b friends of c
root for the Republicans on day t+1. In other words, on the evening of day t+1
citizen c will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.

2Assume for the sake of simplicity that everybody has an odd number of friends.

12.2. ADVANCED STABILIZATION 135

• g > b: In this case, citizen c will still (or again) root for the Democrats on
day t+ 2. Note that in this case, on day t+ 1, exactly g in-edges of c are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t+ 1.

• g < b: In this case, citizen c will root for the Republicans on day t + 2.
Note that in this case, on day t+ 1, exactly b in-edges of c are good, and
exactly g in-edges are bad. In other words, the number of bad out-edges
on day t was exactly the number of good in-edges on day t+ 1 (and vice
versa). Since citizen c is rooting for the Republicans, the number of bad
out-edges on day t was strictly larger than the number of bad in-edges on
day t+ 1.

We account for every edge as out-edge on day t, and as in-edge on day t + 1.
Since in both of the above cases the number of bad edges does not increase, the
total number of bad edges B cannot increase. In fact, if any node switches its
party from day t to t+ 2, we know that the total number of bad edges strictly
decreases. But B cannot decrease forever. Once B hits its minimum, the system
stabilizes in the sense that every citizen will either stick with his or her party
forever or flip-flop every day – the system “stabilizes”. 2

Remarks:

• The model can be generalized considerably by, for example, adding weights
to vertices (meaning some citizens’ opinions are more important than oth-
ers), adding weights to edges (meaning the influence between some citizens
is stronger than between others), allowing loops (citizens who consider
their own current opinions as well), allowing tie-breaking mechanisms,
and even allowing different thresholds for party changes.

• How long does it take until the system stabilizes?

• Some of you may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors. In each
round, the following transitions occur: Any live cell with fewer than two
live neighbors dies, as if caused by lonelyness. Any live cell with more
than three live neighbors dies, as if by overcrowding. Any live cell with
two or three live neighbors lives on to the next generation. Any dead cell
with exactly three live neighbors is “born” and becomes a live cell. The
initial pattern constitutes the “seed” of the system. The first generation
is created by applying the above rules simultaneously to every cell in the
seed, births and deaths happen simultaneously, and the discrete moment
at which this happens is sometimes called a tick. (In other words, each
generation is a pure function of the one before.) The rules continue to
be applied repeatedly to create further generations. John Conway figured
that these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such Life
in some sense answers an old question by John von Neumann, whether
there can be a simple machine that can build copies of itself. In fact Life
is Turing complete, that is, as powerful as any computer.

136 CHAPTER 12. STABILIZATION

Figure 12.1: A “glider gun”. . .

Figure 12.2: . . . in action.

Chapter Notes

Self-stabilization was first introduced in a paper by Edsger W. Dijkstra in 1974
[Dij74], in the context of a token ring network. It was shown that the ring
stabilizes in time Θ(n). For his work Dijkstra received the 2002 ACM PODC
Influential Paper Award. Shortly after receiving the award he passed away.
With Dijkstra being such an eminent person in distributed computing (e.g.
concurrency, semaphores,mutual exclusion, deadlock, finding shortest paths in
graphs, fault-tolerance, self-stabilization), the award was renamed Edsger W.
Dijkstra Prize in Distributed Computing. In 1991 Awerbuch et al. showed that
any algorithm can be modified into a self-stabilizing algorithm that stabilizes in
the same time that is needed to compute the solution from scratch [APSV91].

The Republicans vs. Democrats problem was popularized by Peter Winkler,
in his column “Puzzled” [Win08]. Goles et al. already proved in [GO80] that
any configuration of any such system with symmetric edge weights will end up
in a situation where each citizen votes for the same party every second day.
Winkler additionally proved that the time such a system takes to stabilize is
bounded by O(n2). Frischknecht et al. constructed a worst case graph which
takes Ω(n2/ log2 n) rounds to stabilize [FKW13]. Keller et al. generalized this
results in [KPW14], showing that a graph with symmetric edge weights stabi-
lizes in O(W (G)), where W (G) is the sum of edge weights in graph G. They
also constructed a weighted graph with exponential stabilization time. Closely
related to this puzzle is the well known Game of Life which was described by
the mathematician John Conway and made popular by Martin Gardner [Gar70].
In the Game of Life cells can be either dead or alive and change their states
according to the number of alive neighbors.

BIBLIOGRAPHY 137

Bibliography

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
Stabilization By Local Checking and Correction. In In Proceedings
of IEEE Symposium on Foundations of Computer Science (FOCS),
1991.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):943–644, November
1974.

[FKW13] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Conver-
gence in (Social) Influence Networks. In 27th International Sympo-
sium on Distributed Computing (DISC), Jerusalem, Israel, October
2013.

[Gar70] M. Gardner. Mathematical Games: The fantastic combinations
of John Conway’s new solitaire game Life. Scientific American,
223:120–123, October 1970.

[GO80] E. Goles and J. Olivos. Periodic behavior of generalized threshold
functions. Discrete Mathematics, 30:187–189, 1980.

[KPW14] Barbara Keller, David Peleg, and Roger Wattenhofer. How even Tiny
Influence can have a Big Impact! In 7th International Conference
on Fun with Algorithms (FUN), Lipari Island, Italy, July 2014.

[Win08] P. Winkler. Puzzled. Communications of the ACM, 51(9):103–103,
August 2008.

138 CHAPTER 12. STABILIZATION

Chapter 13

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in the same
time slot will cause interference. Transmitting nodes are never aware if there is
interference because they cannot simultaneously transmit and receive.

13.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem (Chapter 2),
with the node transmitting alone being the leader.

139

140 CHAPTER 13. WIRELESS PROTOCOLS

Clearly, we can use node IDs to solve leader election, e.g., a node with ID i
transmits in time slot i. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 50 Slotted Aloha

1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 13.1. Using Algorithm 50 allows one node to transmit alone (become
a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n · 1

n
·
(

1− 1

n

)n−1

≈ 1

e
,

where the last approximation is a result from Theorem 13.23 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

Remarks:

• The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.

• How does the leader know that it is the leader? One simple solution is
a “distributed acknowledgment”. The nodes just continue Algorithm 50,
including the ID of the the leader in their transmission. So the leader
learns that it is the leader.

• One more problem?! Indeed, node v which managed to transmit the ac-
knowledgment (alone) is the only remaining node which does not know
that the leader knows that it is the leader. We can fix this by having the
leader acknowledge v’s successful acknowledgment.

• One can also imagine an unslotted time model. In this model two mes-
sages which overlap partially will interfere and no message is received. As
everything in this chapter, Algorithm 50 also works in an unslotted time
model, with a factor 2 penalty, i.e., the probability for a successful trans-
mission will drop from 1

e to 1
2e . Essentially, each slot is divided into t small

time slots with t→∞ and the nodes start a new t-slot long transmission
with probability 1

2nt .

13.2. INITIALIZATION 141

13.2 Initialization

Sometimes we want the n nodes to have the IDs {1, 2, . . . , n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.

13.2.1 Non-Uniform Initialization

Theorem 13.2. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 50. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e · n.

Remarks:

• But this algorithm requires that the nodes know n in order to give them
IDs from 1, . . . , n! For a more realistic scenario we need a uniform algo-
rithm, i.e, the nodes do not know n.

13.2.2 Uniform Initialization with CD

Definition 13.3 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
ceiver can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

Let us first present a high-level idea. The set of nodes is recursively par-
titioned into two non-empty sets, similarly to a binary tree. This is repeated
recursively until a set contains only one node which gets the next free ID. Af-
terwards, the algorithm continues with the next set.

Algorithm 51 Initialization with Collision Detection

1: Every node v executes the following code:
2: global variable m := 0 {number of already identified nodes}
3: local variable bv := ‘’ {current bitstring of node v, initially empty}
4: RandomizedSplit(‘’)

142 CHAPTER 13. WIRELESS PROTOCOLS

Algorithm 52 RandomizedSplit(b)

1: Every node v executes the following code:
2: repeat
3: if bv = b then
4: choose r uniformly at random from {0, 1}
5: in the next two time slots:
6: transmit in slot r, and listen in other slot
7: end if
8: until there was at least 1 transmission in both slots
9: if bv = b then

10: bv := bv + r {append bit r to bitstring bv}
11: end if
12: if some node u transmitted alone in slot r ∈ {0, 1} then
13: node u gets ID m {and becomes passive}
14: m := m+ 1
15: else
16: RandomizedSplit(b+ 0)
17: RandomizedSplit(b+ 1)
18: end if

Remarks:

• In line 12 a transmitting node needs to know whether it was the only one
transmitting. This is achievable in several ways, for instance by adding
an acknowledgement round.

Theorem 13.4. Algorithm 51 correctly initializes the set of nodes in O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n− 1 successful splits because we have
a binary tree with n leaves and n − 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k ≥ 2 as

Pr[1 ≤ X ≤ k − 1] = 1− Pr[X = 0]− Pr[X = k] = 1− 1

2k
− 1

2k
≥ 1

2
.

Thus, in expectation we need O(n) splits.

Remarks:

• What if we do not have collision detection?

13.2.3 Uniform Initialization without CD

Let us assume that we have a special node ` (leader) and let S denote the set of
nodes which want to transmit. We now split every time slot from Algorithm 52
into two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S ∪ {`} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 13.1).

13.3. LEADER ELECTION 143

nodes in S transmit nodes in S ∪ {`} transmit
|S| = 0 7 4

|S| = 1, S = {`} 4 4

|S| = 1, S 6= {`} 4 7

|S| ≥ 2 7 7

Table 13.1: Using a leader to distinguish between noise and silence: 7 represents
noise/silence, 4 represents a successful transmission.

Remarks:

• As such, Algorithm 51 works also without CD, with only a factor 2 over-
head.

• More generally, a leader immediately brings CD to any protocol.

• This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

• But how do we determine such a leader? And how long does it take until
we are “sure” that we have one? Let us repeat the notion of with high
probability.

13.3 Leader Election

13.3.1 With High Probability

Definition 13.5 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p ≥ 1 −
1/nc, where c is a constant. The constant c may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Theorem 13.6. Algorithm 50 elects a leader w.h.p. in O(log n) time slots.

Proof. The probability for not electing a leader after c · log n time slots, i.e.,
c log n slots without a successful transmission is(

1− 1

e

)c lnn

=

(
1− 1

e

)e·c′ lnn
≤ 1

elnn·c′ =
1

nc′
.

Remarks:

• What about uniform algorithms, i.e. the number of nodes n is not known?

13.3.2 Uniform Leader Election

Theorem 13.7. By using Algorithm 53 it is possible to elect a leader w.h.p. in
O(log2 n) time slots if n is not known.

144 CHAPTER 13. WIRELESS PROTOCOLS

Algorithm 53 Uniform leader election

1: Every node v executes the following code:
2: for k = 1, 2, 3, . . . do
3: for i = 1 to ck do
4: transmit with probability p := 1/2k

5: if node v was the only node which transmitted then
6: v becomes the leader
7: break
8: end if
9: end for

10: end for

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 2−k for ck time slots for k = 1, 2, At first p will be too high
and hence there will be a lot of interference. But after log n phases, we have
k ≈ log n and thus the nodes transmit with probability ≈ 1

n . For simplicity’s
sake, let us assume that n is a power of 2. Using the approach outlined above,
we know that after log n iterations, we have p = 1

n . Theorem 13.6 yields that we
can elect a leader w.h.p. in O(log n) slots. Since we have to try log n estimates
until k ≈ n, the total runtime is O(log2 n).

Remarks:

• Note that our proposed algorithm has not used collision detection. Can we
solve leader election faster in a uniform setting with collision detection?

13.3.3 Fast Leader Election with CD

Algorithm 54 Uniform leader election with CD

1: Every node v executes the following code:
2: repeat
3: transmit with probability 1

2
4: if at least one node transmitted then
5: all nodes that did not transmit quit the protocol
6: end if
7: until one node transmits alone

Theorem 13.8. With collision detection we can elect a leader using Algorithm
54 w.h.p. in O(log n) time slots.

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k ≥ 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as

Pr

[
1 ≤ X ≤

⌈
k

2

⌉]
= P

[
X ≤

⌈
k

2

⌉]
− Pr[X = 0] ≥ 1

2
− 1

2k
≥ 1

4
.

13.3. LEADER ELECTION 145

Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable which counts the number of successful time slots after 8 · c · log n time
slots. The expected value is E[Y] ≥ 8 · c · log n · 1

4 ≥ 2 · c · log n. Since all those
time slots are independent from each other, we can apply a Chernoff bound (see
Theorem 13.22) with δ = 1

2 which states

Pr[Y < (1− δ)E[Y]] ≤ e− δ
2

2 E[Y] ≤ e− 1
8 ·2c logn ≤ n−α

for any constant α.

Remarks:

• Can we be even faster?

13.3.4 Even Faster Leader Election with CD

Let us first briefly describe an algorithm for this. In the first phase the nodes
transmit with probability 1/220

, 1/221

, 1/222

, . . . until no node transmits. This
yields a first approximation on the number of nodes. Afterwards, a binary search
is performed to determine an even better approximation of n. Finally, the third
phase finds a constant approximation of n using a biased random walk. The
algorithm stops in any case as soon as only one node is transmitting, which will
become the leader.

Lemma 13.9. If j > log n+ log log n, then Pr[X > 1] ≤ 1
logn .

Proof. The nodes transmit with probability 1/2j < 1/2logn+log logn = 1
n logn .

The expected number of nodes transmitting is E[X] = n
n logn . Using Markov’s

inequality (see Theorem 13.21) yields Pr[X > 1] ≤ Pr[X > E[X] · log n] ≤
1

logn .

Lemma 13.10. If j < log n− log log n, then P [X = 0] ≤ 1
n .

Proof. The nodes transmit with probability 1/2j > 1/2logn−log logn = logn
n .

Thus, the probability that a node is silent is at most 1 − logn
n . Hence, the

probability for a silent time slot, i.e., Pr[X = 0], is at most (1 − logn
n)n =

e− logn = 1
n .

Corollary 13.11. If i > 2 log n, then Pr[X > 1] ≤ 1
logn .

Proof. This follows from Lemma 13.9 since the deviation in this corollary is
even larger.

Corollary 13.12. If i < 1
2 log n, then P [X = 0] ≤ 1

n .

Proof. This follows from Lemma 13.10 since the deviation in this corollary is
even larger.

Lemma 13.13. Let v be such that 2v−1 < n ≤ 2v, i.e., v ≈ log n. If k > v+ 2,
then Pr[X > 1] ≤ 1

4 .

146 CHAPTER 13. WIRELESS PROTOCOLS

Algorithm 55 Fast uniform leader election

1: i := 1
2: repeat
3: i := 2 · i
4: transmit with probability 1/2i

5: until no node transmitted
{End of Phase 1}

6: l := 2i−2

7: u := 2i

8: while l + 1 < u do
9: j := d l+u2 e

10: transmit with probability 1/2j

11: if no node transmitted then
12: u := j
13: else
14: l := j
15: end if
16: end while
{End of Phase 2}

17: k := u
18: repeat
19: transmit with probability 1/2k

20: if no node transmitted then
21: k := k − 1
22: else
23: k := k + 1
24: end if
25: until exactly one node transmitted

Proof. Markov’s inequality yields

Pr[X > 1] = Pr

[
X >

2k

n
E[X]

]
< Pr[X >

2k

2v
E[X]] < Pr[X > 4E[X]] <

1

4
.

Lemma 13.14. If k < v − 2, then P [X = 0] ≤ 1
4 .

Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that k ≤ v−2 and thus

Pr[X = 0] =

(
1− 1

2k

)n
< e−

n

2k < e−
2v−1

2k < e−2 <
1

4
.

Lemma 13.15. If v− 2 ≤ k ≤ v+ 2, then the probability that exactly one node
transmits is constant.

Proof. The transmission probability is p = 1
2v±Θ(1) = Θ(1/n), and the lemma

follows with a slightly adapted version of Theorem 13.1.

13.3. LEADER ELECTION 147

Lemma 13.16. With probability 1− 1
logn we find a leader in phase 3 in O(log log n)

time.

Proof. For any k, because of Lemmas 13.13 and 13.14, the random walk of the
third phase is biased towards the good area. One can show that in O(log log n)
steps one gets Ω(log log n) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 13.15 we obtain E[Y] =
Ω(log log n). Now a direct application of a Chernoff bound (see Theorem 13.22)
yields that these transmissions elect a leader with probability 1− 1

logn .

Theorem 13.17. The Algorithm 55 elects a leader with probability of at least
1− log logn

logn in time O(log log n).

Proof. From Corollary 13.11 we know that after O(log log n) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(log n), the second phase also takes at most O(log log n) time slots. For the
third phase we know that O(log log n) slots are sufficient to elect a leader with
probability 1− 1

logn by Lemma 13.16. Thus, the total runtime is O(log log n).
Now we can combine the results. We know that the error probability for

every time slot in the first two phases is at most 1
logn . Using a union bound (see

Theorem 13.20), we can upper bound the probability that no error occurred by
log logn

logn . Thus, we know that after phase 2 our estimate is at most log log n away

from log n with probability of at least 1− log logn
logn . Hence, we can apply Lemma

13.16 and thus successfully elect a leader with probability of at least 1− log logn
logn

(again using a union bound) in time O(log log n).

Remarks:

• Tightening this analysis a bit more, one can elect a leader with probability
1− 1

logn in time log log n+ o(log log n).

• Can we be even faster?

13.3.5 Lower Bound

Theorem 13.18. Any uniform protocol that elects a leader with probability of

at least 1− 1
2

t
must run for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = 2p · (1− p) ≤ 1

2
.

Thus, after t time slots the probability that a leader was elected is at most

1− 1
2

t
.

Remarks:

• Setting t = log log n shows that Algorithm 55 is almost tight.

148 CHAPTER 13. WIRELESS PROTOCOLS

13.3.6 Uniform Asynchronous Wakeup without CD

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect
a leader if we want a uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 13.19. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Ω(n/ log n) time slots until a single node can successfully
transmit.

Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = c
p lnn nodes in each time slot with some con-

stant c. All nodes woken up in the first time slot will transmit with probability
p. We study the event E1 that exactly one of them transmits in that first time
slot. Using the inequality (1 + t/n)n ≤ et from Lemma 13.23 we get

Pr[E1] = w · p · (1− p)w−1

= c lnn (1− p)
1
p (c lnn−p)

≤ c lnn · e−c ln +p

= c lnn · n−cep

= n−c · O (log n)

<
1

nc−1
=

1

nc′
.

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let Eα be the event that all n/w time slots will not be
successful. Using the inequality 1− p ≤ (1− p/k)k from Lemma 13.24 we get

Pr[Eα] = (1− Pr(E1))n/w >

(
1− 1

nc′

)Θ(n/ logn)

> 1− 1

nc′′
.

In other words, w.h.p. it takes more than n/w time slots until some node can
transmit alone.

13.4 Useful Formulas

In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 13.20. Boole’s inequality or union bound: For a countable set of
events E1, E2, E3, . . ., we have

Pr[
⋃
i

Ei] ≤
∑
i

Pr[Ei].

BIBLIOGRAPHY 149

Theorem 13.21. Markov’s inequality: If X is any random variable and a > 0,
then

Pr[|X| ≥ a] ≤ E[X]

a
.

Theorem 13.22. Chernoff bound: Let Y1, . . . , Yn be a independent Bernoulli
random variables let Y :=

∑
i Yi. For any 0 ≤ δ ≤ 1 it holds

Pr[Y < (1− δ)E[Y]] ≤ e− δ
2

2 E[Y]

and for δ > 0

Pr[Y ≥ (1 + δ) · E[Y]] ≤ e−
min{δ,δ2}

3 ·E[Y]

Theorem 13.23. We have

et
(

1− t2

n

)
≤
(

1 +
t

n

)n
≤ et

for all n ∈ N, |t| ≤ n. Note that

lim
n→∞

(
1 +

t

n

)n
= et.

Theorem 13.24. For all p, k such that 0 < p < 1 and k ≥ 1 we have

1− p ≤ (1− p/k)k.

Chapter Notes

The Aloha protocol is presented and analyzed in [Abr70, BAK+75, Abr85]; the
basic technique that unslotted protocols are twice as bad a slotted protocols is
from [Rob75]. The idea to broadcast in a packet radio network by building a
tree was first presented in [TM78, Cap79]. This idea is also used in [HNO99]
to initialize the nodes. Willard [Wil86] was the first that managed to elect
a leader in O(log log n) time in expectation. Looking more carefully at the
success rate, it was shown that one can elect a leader with probability 1− 1

logn

in time log log n + o(log log n) [NO98]. Finally, approximating the number of
nodes in the network is analyzed in [JKZ02, CGK05]. The lower bound for
probabilistic wake-up is published in [JS02]. In addition to single-hop networks,
multi-hop networks have been analyzed, e.g. broadcast [BYGI92, KM98, CR06],
or deployment [MvRW06].

This chapter was written in collaboration with Philipp Brandes.

Bibliography

[Abr70] Norman Abramson. THE ALOHA SYSTEM: another alternative
for computer communications. In Proceedings of the November 17-
19, 1970, fall joint computer conference, pages 281–285, 1970.

[Abr85] Norman M. Abramson. Development of the ALOHANET. IEEE
Transactions on Information Theory, 31(2):119–123, 1985.

150 CHAPTER 13. WIRELESS PROTOCOLS

[BAK+75] R. Binder, Norman M. Abramson, Franklin Kuo, A. Okinaka, and
D. Wax. ALOHA packet broadcasting: a retrospect. In American
Federation of Information Processing Societies National Computer
Conference (AFIPS NCC), 1975.

[BYGI92] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the Time-
Complexity of Broadcast in Multi-hop Radio Networks: An Expo-
nential Gap Between Determinism and Randomization. J. Comput.
Syst. Sci., 45(1):104–126, 1992.

[Cap79] J. Capetanakis. Tree algorithms for packet broadcast channels.
IEEE Trans. Inform. Theory, 25(5):505–515, 1979.

[CGK05] Ioannis Caragiannis, Clemente Galdi, and Christos Kaklamanis. Ba-
sic Computations in Wireless Networks. In International Symposium
on Algorithms and Computation (ISAAC), 2005.

[CR06] Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in
radio networks with unknown topology. J. Algorithms, 60(2):115–
143, 2006.

[HNO99] Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Randomized
Initialization Protocols for Packet Radio Networks. In 13th Interna-
tional Parallel Processing Symposium & 10th Symposium on Parallel
and Distributed Processing (IPPS/SPDP), 1999.

[JKZ02] Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski.
Energy-Efficient Size Approximation of Radio Networks with No
Collision Detection. In Computing and Combinatorics (COCOON),
2002.

[JS02] Tomasz Jurdzinski and Grzegorz Stachowiak. Probabilistic Al-
gorithms for the Wakeup Problem in Single-Hop Radio Net-
works. In International Symposium on Algorithms and Computation
(ISAAC), 2002.

[KM98] Eyal Kushilevitz and Yishay Mansour. An Omega(D log (N/D))
Lower Bound for Broadcast in Radio Networks. SIAM J. Comput.,
27(3):702–712, 1998.

[MvRW06] Thomas Moscibroda, Pascal von Rickenbach, and Roger Watten-
hofer. Analyzing the Energy-Latency Trade-off during the Deploy-
ment of Sensor Networks. In 25th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
Barcelona, Spain, April 2006.

[NO98] Koji Nakano and Stephan Olariu. Randomized O (log log n)-Round
Leader Election Protocols in Packet Radio Networks. In Interna-
tional Symposium on Algorithms and Computation (ISAAC), 1998.

[Rob75] Lawrence G. Roberts. ALOHA packet system with and without
slots and capture. SIGCOMM Comput. Commun. Rev., 5(2):28–42,
April 1975.

BIBLIOGRAPHY 151

[TM78] B. S. Tsybakov and V. A. Mikhailov. Slotted multiaccess packet
broadcasting feedback channel. Problemy Peredachi Informatsii,
14:32–59, October - December 1978.

[Wil86] Dan E. Willard. Log-Logarithmic Selection Resolution Protocols in
a Multiple Access Channel. SIAM J. Comput., 15(2):468–477, 1986.

152 CHAPTER 13. WIRELESS PROTOCOLS

Chapter 14

Peer-to-Peer Computing

“Indeed, I believe that virtually every important aspect of
programming arises somewhere in the context of [sorting and] searching!”

– Donald E. Knuth, The Art of Computer Programming

14.1 Introduction

Unfortunately, the term peer-to-peer (P2P) is ambiguous, used in a variety of
different contexts, such as:

• In popular media coverage, P2P is often synonymous to software or proto-
cols that allow users to “share” files, often of dubious origin. In the early
days, P2P users mostly shared music, pictures, and software; nowadays
books, movies or tv shows have caught on. P2P file sharing is immensely
popular, currently at least half of the total Internet traffic is due to P2P!

• In academia, the term P2P is used mostly in two ways. A narrow view
essentially defines P2P as the “theory behind file sharing protocols”. In
other words, how do Internet hosts need to be organized in order to deliver
a search engine to find (file sharing) content efficiently? A popular term
is “distributed hash table” (DHT), a distributed data structure that im-
plements such a content search engine. A DHT should support at least a
search (for a key) and an insert (key, object) operation. A DHT has many
applications beyond file sharing, e.g., the Internet domain name system
(DNS).

• A broader view generalizes P2P beyond file sharing: Indeed, there is a
growing number of applications operating outside the juridical gray area,
e.g., P2P Internet telephony à la Skype, P2P mass player games on video
consoles connected to the Internet, P2P live video streaming as in Zattoo
or StreamForge, or P2P social storage such as Wuala. So, again, what is
P2P?! Still not an easy question... Trying to account for the new applica-
tions beyond file sharing, one might define P2P as a large-scale distributed
system that operates without a central server bottleneck. However, with

153

154 CHAPTER 14. PEER-TO-PEER COMPUTING

this definition almost everything we learn in this course is P2P! More-
over, according to this definition early-day file sharing applications such
as Napster (1999) that essentially made the term P2P popular would not
be P2P! On the other hand, the plain old telephone system or the world
wide web do fit the P2P definition...

• From a different viewpoint, the term P2P may also be synonymous for
privacy protection, as various P2P systems such as Freenet allow publish-
ers of information to remain anonymous and uncensored. (Studies show
that these freedom-of-speech P2P networks do not feature a lot of content
against oppressive governments; indeed the majority of text documents
seem to be about illicit drugs, not to speak about the type of content in
audio or video files.)

In other words, we cannot hope for a single well-fitting definition of P2P, as
some of them even contradict. In the following we mostly employ the academic
viewpoints (second and third definition above). In this context, it is generally
believed that P2P will have an influence on the future of the Internet. The P2P
paradigm promises to give better scalability, availability, reliability, fairness,
incentives, privacy, and security, just about everything researchers expect from
a future Internet architecture. As such it is not surprising that new “clean slate”
Internet architecture proposals often revolve around P2P concepts.

One might naively assume that for instance scalability is not an issue in
today’s Internet, as even most popular web pages are generally highly available.
However, this is not really because of our well-designed Internet architecture,
but rather due to the help of so-called overlay networks: The Google website for
instance manages to respond so reliably and quickly because Google maintains a
large distributed infrastructure, essentially a P2P system. Similarly companies
like Akamai sell “P2P functionality” to their customers to make today’s user
experience possible in the first place. Quite possibly today’s P2P applications
are just testbeds for tomorrow’s Internet architecture.

14.2 Architecture Variants

Several P2P architectures are known:

• Client/Server goes P2P: Even though Napster is known to the be first P2P
system (1999), by today’s standards its architecture would not deserve the
label P2P anymore. Napster clients accessed a central server that managed
all the information of the shared files, i.e., which file was to be found on
which client. Only the downloading process itself was between clients
(“peers”) directly, hence peer-to-peer. In the early days of Napster the
load of the server was relatively small, so the simple Napster architecture
made a lot of sense. Later on, it became clear that the server would
eventually be a bottleneck, and more so an attractive target for an attack.
Indeed, eventually a judge ruled the server to be shut down, in other
words, he conducted a juridical denial of service attack.

• Unstructured P2P: The Gnutella protocol is the anti-thesis of Napster,
as it is a fully decentralized system, with no single entity having a global
picture. Instead each peer would connect to a random sample of other

14.3. HYPERCUBIC NETWORKS 155

peers, constantly changing the neighbors of this virtual overlay network
by exchanging neighbors with neighbors of neighbors. (In such a system
it is part of the challenge to find a decentralized way to even discover a
first neighbor; this is known as the bootstrap problem. To solve it, usu-
ally some random peers of a list of well-known peers are contacted first.)
When searching for a file, the request was being flooded in the network
(Algorithm 11 in Chapter 3). Indeed, since users often turn off their client
once they downloaded their content there usually is a lot of churn (peers
joining and leaving at high rates) in a P2P system, so selecting the right
“random” neighbors is an interesting research problem by itself. However,
unstructured P2P architectures such as Gnutella have a major disadvan-
tage, namely that each search will cost m messages, m being the number
of virtual edges in the architecture. In other words, such an unstructured
P2P architecture will not scale.

• Hybrid P2P: The synthesis of client/server architectures such as Napster
and unstructured architectures such as Gnutella are hybrid architectures.
Some powerful peers are promoted to so-called superpeers (or, similarly,
trackers). The set of superpeers may change over time, and taking down
a fraction of superpeers will not harm the system. Search requests are
handled on the superpeer level, resulting in much less messages than in
flat/homogeneous unstructured systems. Essentially the superpeers to-
gether provide a more fault-tolerant version of the Napster server, all
regular peers connect to a superpeer. As of today, almost all popular
P2P systems have such a hybrid architecture, carefully trading off relia-
bility and efficiency, but essentially not using any fancy algorithms and
techniques.

• Structured P2P: Inspired by the early success of Napster, the academic
world started to look into the question of efficient file sharing. The pro-
posal of hypercubic architectures lead to many so-called structured P2P
architecture proposals, such as Chord, CAN, Pastry, Tapestry, Viceroy,
Kademlia, Koorde, SkipGraph, SkipNet, etc. In practice structured P2P
architectures are not yet popular, apart from the Kad (from Kademlia)
architecture which comes for free with the eMule client.

14.3 Hypercubic Networks

In this section we will introduce some popular families of network topologies.
These topologies are used in countless application domains, e.g., in classic paral-
lel computers or telecommunication networks, or more recently (as said above)
in P2P computing. Similarly to Chapter 4 we employ an All-to-All communi-
cation model, i.e., each node can set up direct communication links to arbitrary
other nodes. Such a virtual network is called an overlay network, or in this
context, P2P architecture. In this section we present a few overlay topologies
of general interest.

The most basic network topologies used in practice are trees, rings, grids or
tori. Many other suggested networks are simply combinations or derivatives of
these. The advantage of trees is that the routing is very easy: for every source-
destination pair there is only one possible simple path. However, since the root

156 CHAPTER 14. PEER-TO-PEER COMPUTING

of a tree is usually a severe bottleneck, so-called fat trees have been used. These
trees have the property that every edge connecting a node v to its parent u has
a capacity that is equal to all leaves of the subtree routed at v. See Figure 14.1
for an example.

2

1

4

Figure 14.1: The structure of a fat tree.

Remarks:

• Fat trees belong to a family of networks that require edges of non-uniform
capacity to be efficient. Easier to build are networks with edges of uniform
capacity. This is usually the case for grids and tori. Unless explicitly
mentioned, we will treat all edges in the following to be of capacity 1. In
the following, [x] means the set {0, . . . , x− 1}.

Definition 14.1 (Torus, Mesh). Let m, d ∈ N. The (m, d)-mesh M(m, d) is a
graph with node set V = [m]d and edge set

E =

{
{(a1, . . . , ad), (b1, . . . , bd)} | ai, bi ∈ [m],

d∑
i=1

|ai − bi| = 1

}
.

The (m, d)-torus T (m, d) is a graph that consists of an (m, d)-mesh and addi-
tionally wrap-around edges from nodes (a1, . . . , ai−1,m, ai+1, . . . , ad) to nodes
(a1, . . . , ai−1, 1, ai+1, . . . , ad) for all i ∈ {1, . . . , d} and all aj ∈ [m] with j 6= i.
In other words, we take the expression ai−bi in the sum modulo m prior to com-
puting the absolute value. M(m, 1) is also called a line, T (m, 1) a cycle, and
M(2, d) = T (2, d) a d-dimensional hypercube. Figure 14.2 presents a linear
array, a torus, and a hypercube.

Remarks:

• Routing on mesh, torus, and hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring d one only
needs to fix each “wrong” bit, one at a time; in other words, if the source
and the target differ by k bits, there are k! routes with k hops.

14.3. HYPERCUBIC NETWORKS 157

011010

110

100

000 001

101

111

M(2,3)

0 1 2

M(,1)m

−1m

01

02

00 10

11

12

03

20

21

22

13

30

31

32

23 33

(4,2)T

Figure 14.2: The structure of M(m, 1), T (4, 2), and M(2, 3).

• The hypercube can directly be used for a structured P2P architecture. It
is trivial to construct a distributed hash table (DHT): We have n nodes,
n for simplicity being a power of 2, i.e., n = 2d. As in the hypercube, each
node gets a unique d-bit ID, and each node connects to d other nodes,
i.e., the nodes that have IDs differing in exactly one bit. Now we use a
globally known hash function f , mapping file names to long bit strings;
SHA-1 is popular in practice, providing 160 bits. Let fd denote the first d
bits (prefix) of the bitstring produced by f . If a node is searching for file
name X, it routes a request message f(X) to node fd(X). Clearly, node
fd(X) can only answer this request if all files with hash prefix fd(X) have
been previously registered at node fd(X).

• There are a few issues which need to be addressed before our DHT works,
in particular churn (nodes joining and leaving without notice). To deal
with churn the system needs some level of replication, i.e., a number of
nodes which are responsible for each prefix such that failure of some nodes
will not compromise the system. We give some more details in Section
14.4. In addition there are other issues (e.g., security, efficiency) which
can be addressed to improve the system. These issues are beyond the
scope of this lecture.

• The hypercube has many derivatives, the so-called hypercubic networks.
Among these are the butterfly, cube-connected-cycles, shuffle-exchange,
and de Bruijn graph. We start with the butterfly, which is basically a
“rolled out” hypercube (hence directly providing replication!).

Definition 14.2 (Butterfly). Let d ∈ N. The d-dimensional butterfly BF (d)
is a graph with node set V = [d+ 1]× [2]d and an edge set E = E1 ∪ E2 with

E1 = {{(i, α), (i+ 1, α)} | i ∈ [d], α ∈ [2]d}

and

E2 = {{(i, α), (i+ 1, β)} | i ∈ [d], α, β ∈ [2]d, α and β differ

only at the ith position} .

A node set {(i, α) | α ∈ [2]d} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF (d)
and identifying level d with level 0.

158 CHAPTER 14. PEER-TO-PEER COMPUTING

Remarks:

• Figure 14.3 shows the 3-dimensional butterfly BF (3). The BF (d) has
(d+ 1)2d nodes, 2d · 2d edges and degree 4. It is not difficult to check that
combining the node sets {(i, α) | i ∈ [d]} into a single node results in the
hypercube.

• Butterflies have the advantage of a constant node degree over hypercubes,
whereas hypercubes feature more fault-tolerant routing.

• The structure of a butterfly might remind you of sorting networks from
Chapter 4. Although butterflies are used in the P2P context (e.g.
Viceroy), they have been used decades earlier for communication switches.
The well-known Benes network is nothing but two back-to-back butter-
flies. And indeed, butterflies (and other hypercubic networks) are even
older than that; students familiar with fast fourier transform (FFT) will
recognize the structure without doubt. Every year there is a new applica-
tion for which a hypercubic network is the perfect solution!

• Indeed, hypercubic networks are related. Since all structured P2P archi-
tectures are based on hypercubic networks, they in turn are all related.

• Next we define the cube-connected-cycles network. It only has a degree
of 3 and it results from the hypercube by replacing the corners by cycles.

000 100010 110001 101011 111

1

2

0

3

Figure 14.3: The structure of BF(3).

Definition 14.3 (Cube-Connected-Cycles). Let d ∈ N. The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a, p) | a ∈ [2]d, p ∈ [d]}
and edge set

E =
{
{(a, p), (a, (p+ 1) mod d)} | a ∈ [2]d, p ∈ [d]

}
∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except for ap

}
.

14.3. HYPERCUBIC NETWORKS 159

000 001 010 011 100 101 110 111

2

1

0

(110,1)

(011,2)

(101,1)

(001,2)

(001,1)

(001,0)(000,0)

(100,0)

(100,1)

(100,2)

(000,2)

(000,1)

(010,1)

(010,0)

(010,2)

(110,2)

(110,0) (111,0)

(111,1)

(111,2)

(011,1)

(011,0)

(101,2)

(101,0)

Figure 14.4: The structure of CCC(3).

Remarks:

• Two possible representations of a CCC can be found in Figure 14.4.

• The shuffle-exchange is yet another way of transforming the hypercubic
interconnection structure into a constant degree network.

Definition 14.4 (Shuffle-Exchange). Let d ∈ N. The d-dimensional shuffle-
exchange SE(d) is defined as an undirected graph with node set V = [2]d and
an edge set E = E1 ∪ E2 with

E1 = {{(a1, . . . , ad), (a1, . . . , ād)} | (a1, . . . , ad) ∈ [2]d, ād = 1− ad}

and
E2 = {{(a1, . . . , ad), (ad, a1, . . . , ad−1)} | (a1, . . . , ad) ∈ [2]d} .

Figure 14.5 shows the 3- and 4-dimensional shuffle-exchange graph.

000 001

100

010

101

011

110 111 0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

SE(3) SE(4)

E

E

1

2

Figure 14.5: The structure of SE(3) and SE(4).

Definition 14.5 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b, d) is an undirected graph G = (V,E) with node set V = {v ∈ [b]d}
and edge set E that contains all edges {v, w} with the property that w ∈
{(x, v1, . . . , vd−1) : x ∈ [b]}, where v = (v1, . . . , vd).

160 CHAPTER 14. PEER-TO-PEER COMPUTING

010

100

001

110

1111100

01

000
101

011

10

Figure 14.6: The structure of DB(2, 2) and DB(2, 3).

Remarks:

• Two examples of a DeBruijn graph can be found in Figure 14.6. The
DeBruijn graph is the basis of the Koorde P2P architecture.

• There are some data structures which also qualify as hypercubic networks.
An obvious example is the Chord P2P architecture, which uses a slightly
different hypercubic topology. A less obvious (and therefore good) exam-
ple is the skip list, the balanced binary search tree for the lazy programmer:

Definition 14.6 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

• Search, insert, and delete can be implemented in O(log n) expected time
in a skip list, simply by jumping from higher levels to lower ones when
overshooting the searched position. Also, the amortized memory cost of
each object is constant, as on average an object only has two forward
pointers.

• The randomization can easily be discarded, by deterministically promoting
a constant fraction of objects of level i to level i + 1, for all i. When
inserting or deleting, object o simply checks whether its left and right
level i neighbors are being promoted to level i + 1. If none of them is,
promote object o itself. Essentially we establish a MIS on each level, hence
at least every third and at most every second object is promoted.

• There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always promote
all the nodes, similarly to a balanced binary tree: All nodes are part of
the root level of the binary tree. Half the nodes are promoted left, and
half the nodes are promoted right, on each level. Hence on level i we have
have 2i lists (or, more symmetrically: rings) of about n/2i objects. This
is pretty much what we need for a nice hypercubic P2P architecture.

• One important goal in choosing a topology for a network is that it has a
small diameter. The following theorem presents a lower bound for this.

14.4. DHT & CHURN 161

Theorem 14.7. Every graph of maximum degree d > 2 and size n must have
a diameter of at least d(log n)/(log(d− 1))e − 2.

Proof. Suppose we have a graph G = (V,E) of maximum degree d and size
n. Start from any node v ∈ V . In a first step at most d other nodes can be
reached. In two steps at most d · (d−1) additional nodes can be reached. Thus,
in general, in at most k steps at most

1 +

k−1∑
i=0

d · (d− 1)i = 1 + d · (d− 1)k − 1

(d− 1)− 1
≤ d · (d− 1)k

d− 2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V within k steps. Hence,

(d− 1)k ≥ (d− 2) · n
d

⇔ k ≥ logd−1((d− 2) · n/d) .

Since logd−1((d − 2)/d) > −2 for all d > 2, this is true only if k ≥
d(log n)/(log(d− 1))e − 2.

Remarks:

• In other words, constant-degree hypercubic networks feature an asymp-
totically optimal diameter.

• There are a few other interesting graph classes, e.g., expander graphs (an
expander graph is a sparse graph which has high connectivity properties,
that is, from every not too large subset of nodes you are connected to
a larger set of nodes), or small-world graphs (popular representations of
social networks). At first sight hypercubic networks seem to be related to
expanders and small-world graphs, but they are not.

14.4 DHT & Churn

As written earlier, a DHT essentially is a hypercubic structure with nodes having
identifiers such that they span the ID space of the objects to be stored. We
described the straightforward way how the ID space is mapped onto the peers
for the hypercube. Other hypercubic structures may be more complicated: The
butterfly network, for instance, may directly use the d+ 1 layers for replication,
i.e., all the d + 1 nodes with the same ID are responsible for the same hash
prefix. For other hypercubic networks, e.g., the pancake graph (see exercises),
assigning the object space to peer nodes may be more difficult.

In general a DHT has to withstand churn. Usually, peers are under control of
individual users who turn their machines on or off at any time. Such peers join
and leave the P2P system at high rates (“churn”), a problem that is not existent
in orthodox distributed systems, hence P2P systems fundamentally differ from
old-school distributed systems where it is assumed that the nodes in the system
are relatively stable. In traditional distributed systems a single unavailable
node is a minor disaster: all the other nodes have to get a consistent view of the
system again, essentially they have to reach consensus which nodes are available.

162 CHAPTER 14. PEER-TO-PEER COMPUTING

In a P2P system there is usually so much churn that it is impossible to have a
consistent view at any time.

Most P2P systems in the literature are analyzed against an adversary that
can crash a fraction of random peers. After crashing a few peers the system
is given sufficient time to recover again. However, this seems unrealistic. The
scheme sketched in this section significantly differs from this in two major as-
pects. First, we assume that joins and leaves occur in a worst-case manner. We
think of an adversary that can remove and add a bounded number of peers; it
can choose which peers to crash and how peers join. We assume that a joining
peer knows a peer which already belongs to the system. Second, the adversary
does not have to wait until the system is recovered before it crashes the next
batch of peers. Instead, the adversary can constantly crash peers, while the sys-
tem is trying to stay alive. Indeed, the system is never fully repaired but always
fully functional. In particular, the system is resilient against an adversary that
continuously attacks the “weakest part” of the system. The adversary could for
example insert a crawler into the P2P system, learn the topology of the system,
and then repeatedly crash selected peers, in an attempt to partition the P2P
network. The system counters such an adversary by continuously moving the
remaining or newly joining peers towards the sparse areas.

Clearly, we cannot allow the adversary to have unbounded capabilities. In
particular, in any constant time interval, the adversary can at most add and/or
remove O(log n) peers, n being the total number of peers currently in the sys-
tem. This model covers an adversary which repeatedly takes down machines by
a distributed denial of service attack, however only a logarithmic number of ma-
chines at each point in time. The algorithm relies on messages being delivered
timely, in at most constant time between any pair of operational peers, i.e., the
synchronous model. Using the trivial synchronizer this is not a problem. We
only need bounded message delays in order to have a notion of time which is
needed for the adversarial model. The duration of a round is then proportional
to the propagation delay of the slowest message.

In the remainder of this section, we give a sketch of the system: For sim-
plicity, the basic structure of the P2P system is a hypercube. Each peer is part
of a distinct hypercube node; each hypercube node consists of Θ(log n) peers.
Peers have connections to other peers of their hypercube node and to peers of
the neighboring hypercube nodes.1 Because of churn, some of the peers have to
change to another hypercube node such that up to constant factors, all hyper-
cube nodes own the same number of peers at all times. If the total number of
peers grows or shrinks above or below a certain threshold, the dimension of the
hypercube is increased or decreased by one, respectively.

The balancing of peers among the hypercube nodes can be seen as a dynamic
token distribution problem on the hypercube. Each node of the hypercube has a
certain number of tokens, the goal is to distribute the tokens along the edges of
the graph such that all nodes end up with the same or almost the same number
of tokens. While tokens are moved around, an adversary constantly inserts and
deletes tokens. See also Figure 14.7.

In summary, the P2P system builds on two basic components: i) an algo-
rithm which performs the described dynamic token distribution and ii) an in-

1Having a logarithmic number of hypercube neighbor nodes, each with a logarithmic num-
ber of peers, means that each peers has Θ(log2 n) neighbor peers. However, with some addi-
tional bells and whistles one can achieve Θ(logn) neighbor peers.

14.5. STORAGE AND MULTICAST 163

Figure 14.7: A simulated 2-dimensional hypercube with four nodes, each con-
sisting of several peers. Also, all the peers are either in the core or in the
periphery of a node. All peers within the same node are completely connected
to each other, and additionally, all peers of a node are connected to the core
peers of the neighboring nodes. Only the core peers store data items, while the
peripheral peers move between the nodes to balance biased adversarial changes.

formation aggregation algorithm which is used to estimate the number of peers
in the system and to adapt the dimension of the hypercube accordingly:

Theorem 14.8 (DHT with Churn). We have a fully scalable, efficient P2P
system which tolerates O(log n) worst-case joins and/or crashes per constant
time interval. As in other P2P systems, peers have O(log n) neighbors, and the
usual operations (e.g., search, insert) take time O(log n).

Remarks:

• Indeed, handling churn is only a minimal requirement to make a P2P
system work. Later studies proposed more elaborate architectures which
can also handle other security issues, e.g., privacy or Byzantine attacks.

• It is surprising that unstructured (in fact, hybrid) P2P systems dominate
structured P2P systems in the real world. One would think that structured
P2P systems have advantages, in particular their efficient logarithmic data
lookup. On the other hand, unstructured P2P networks are simpler, in
particular in light of non-exact queries.

14.5 Storage and Multicast

As seen in the previous section, practical implementations often incorporate
some non-rigid (flexible) part. In a system called Pastry, prefix-based overlay
structures similar to hypercubes are used to implement a DHT. Peers main-
tain connections to other peers in the overlay according to the lengths of the
shared prefixes of their respective identifiers, where each peer carries a d-bit
peer identifier. Let β denote the number of bits that can be fixed at a peer
to route any message to an arbitrary destination. For i = {0, β, 2β, 3β, . . .}, a
peer chooses, if possible, 2β − 1 neighbors whose identifiers are equal in the i

164 CHAPTER 14. PEER-TO-PEER COMPUTING

most significant bits and differ in the subsequent β bits by one of 2β − 1 pos-
sibilities. If peer identifiers are chosen uniformly at random, the length of the
longest shared prefix is bounded by O(log n) in an overlay containing n peers;
thus, only O(log n(2β − 1)/β) connections need to be maintained. Moreover,
every peer reaches every other peer in O(logn

β) hops by repetitively selecting
the next hop to fix β more bits toward the destination peer identifier, yielding
a logarithmic overlay diameter.

The advantage of prefix-based over more rigid DHT structures is that there
is a large choice of neighbors for most prefixes. Peers are no longer bound to
connect to peers exactly matching a given identifier. Instead peers are enabled to
connect to any peer matching a desired prefix, regardless of subsequent identifier
bits. In particular, among half of all peers can be chosen for a shared prefix of
length 0. The flexibility of such a neighbor policy allows the optimization of
secondary criteria. Peers may favor peers with a low-latency and select multiple
neighbors for the same prefix to gain resilience against churn. Regardless of
the choice of neighbors, the overlay always remains connected with a bounded
degree and diameter.

Such overlay structures are not limited to distributed storage. Instead, they
are equally well suited for the distribution of content, such as multicasting of
radio stations or television channels. In a basic multicasting scheme, a source
with identifier 00...0 may forward new data blocks to two peers having identi-
fiers starting with 0 and 1. They in turn forward the content to peers having
identifiers starting with 00, 01, 10, and 11. The recursion finishes once all peers
are reached. This basic scheme has the subtle shortcoming that data blocks
may pass by multiple times at a single peer because a predecessor can match a
prefix further down in its distribution branch.

The subsequent multicasting scheme M avoids this problem by modifying
the topology and using a different routing scheme. For simplicity, the neighbor
selection policy is presented for the case β = 1. In order to use M, the peers
must store links to a different set of neighbors. A peer v with the identifier
bv0 . . . b

v
d−1 stores links to peers whose identifiers start with bv0b

v
1 . . . b

v
i−1b

v
i b
v
i+1

and bv0b
v
1 . . . b

v
i−1b

v
i b
v
i+1 for all i ∈ {0, . . . , d− 2}. For example, the peer with the

identifier 0000 has to maintain connections to peers whose identifiers start with
the prefixes 10, 11, 010, 011, 0010, and 0011. Pseudo-code for the algorithm is
given in Algorithm 56.

The parameters are the length π of the prefix that is not to be modified and
at most one critical predecessor vc. If β = 1, any node v tries to forward the
data block to two peers v1 and v2. The procedure is called at the source v0 with
arguments π := 0 and vc := ∅, resulting in the two messages forward(1, v0) to
v1 and forward(1, ∅) to v2. The peer v1 is chosen locally such that the prefix its
identifier shares with the identifier of v is the shortest among all those whose
shared prefix length is at least π + 1. This value `(v1, v) and v itself are the
parameters included in the forward message to peer v1, if such a peer exists.
The second peer is chosen similarly, but with respect to vc and not v itself. If no
suitable peer is found in the routing table, the peer vc is queried for a candidate
using the subroutine getNext which is described in Algorithm 57. This step is
required because node v cannot deduce from its routing table whether a peer
v2 with the property `(v2, vc) ≥ π + 1 exists. In the special case when vc = ∅,
v2 is chosen locally, if possible, such that `(v2, v) = π. In Figure 14.8, a sample

14.5. STORAGE AND MULTICAST 165

Algorithm 56 M: forward(π, vc) at peer v.

1: S := {v′ ∈ Nv | `(v′, v) ≥ π + 1}
2: choose v1 ∈ S: `(v1, v) ≤ `(ṽ, v) ∀ṽ ∈ S
3: if v1 6= ∅ then
4: forward(`(v1, v), v) to v1

5: end if
6: if vc 6= ∅ then
7: choose v2 ∈ Nv: `(v2, vc) = π + 1
8: if v2 = ∅ then
9: v2 := getNext(v) from vc

10: end if
11: if v2 6= ∅ then
12: forward(`(v2, vc), vc) to v2

13: end if
14: else
15: choose v2 ∈ Nv: `(v2, v) = π
16: if v2 6= ∅ then
17: forward(π + 1, vc) to v2

18: end if
19: end if

spanning tree resulting from the execution of M is depicted.

Algorithm 57 getNext(vs) at peer v

1: S := {v′ ∈ Nv | `(v′, v) > `(vs, v)}
2: choose vr ∈ S: `(vr, v) ≤ `(ṽ, v) ∀ṽ ∈ S
3: send vr to vs

The presented multicasting scheme M has the property that, at least in a
static setting, wherein peers neither join nor leave the overlay, all peers can be
reached and each peer receives a data block exactly once as summarized by the
following theorem:

Theorem 14.9. In a static overlay, algorithm M has the following properties:

(a) It does not induce any duplicate messages (loop-free), and

(b) all peers are reached (complete).

Remarks:

• The multicast scheme M benefits from the same overlay properties as
DHTs; there is a bounded diameter and peer degree. Peers can maintain
backup neighbors and favor low-latency, high-bandwidth peers as neigh-
bors. Most importantly, intermediate peers have the possibility to choose
among multiple (backup) neighbors to forward incoming data blocks.
This, in turn, allows peers to quickly adapt to changing network conditions
such as churn and congestion. It is not necessary to rebuild the overlay
structure after failures. In doing so, a system can gain both robustness
and effiency.

166 CHAPTER 14. PEER-TO-PEER COMPUTING

v0

v1 v2

v3 v4 v6 v7

(1,v)0 (1,0)

(2,v)0 (2,v)2(2,v)1 (2,0)

0000

0101 1010

100 110110010 0 1 01

Figure 14.8: The spanning tree induced by a forward message initiated at peer
v0 is shown. The fixed prefix is underlined at each peer, whereas prefixes in
bold print indicate that the parent peer has been constrained to forward the
packet to peers with these prefixes.

• In contrast, for more rigid data structures, such as trees, data blocks are
forced to travel along fixed data paths, rendering them susceptible to any
kind of failure.

• Conversely, unstructured and more random overlay networks lack the
structure to immediately forward incoming data blocks. Instead, such
systems have to rely on the exchange of periodic notifications about avail-
able data blocks and requests and responses for the download of missing
blocks, significantly increasing distribution delays. Furthermore, the lack
of structure makes it hard to maintain connectivity among all peers. If the
neighbor selection is not truly random, but based on other criertia such
as latency and bandwidth, clusters may form that disconnect themselves
from the remaining overlay.

There is a varierty of further flavors and optimizations for prefix-based overlay
structures. For example, peers have a logarithmic number of neighbors in the
presented structure. For 100, 000 and more peers, peers have at least 20 neigh-
bors. Selecting a backup neighbor doubles the number of neighbors to 40. Using
M further doubles their number to 80. A large number of neighbors accrues
substantial maintenance costs. The subsequent variation limits the number of
neighbors with a slight adjustment of the overlay structure. It organizes peers
into disjoint groups G0,G1, . . . ,Gm of about equal size. The introduction of
groups is motivated by the fact that they will enable peers to have neighboring
connections for a subset of all shared prefixes while maintaining the favorable
overlay properties. The source, feeding blocks into the overlay, joins group G0.
The other peers randomly join groups. Let g(v) denote the function that assigns
each peer v to a group, i.e., v ∈ Gg(v).

Peers select neighboring peers based not solely on shared prefixes but also on
group membership. A peer v with the identifier bv0 . . . b

v
d−1 stores links to neigh-

boring peers whose identifiers start with bv0b
v
1 . . . b

v
i−1b

v
i and belong to group

g(v) + 1 mod m for all i ∈ {g(v), g(v) +m, g(v) + 2m, g(v) + 3m, . . .}. Further-
more, let f denote the first index i where no such peer exists. As fallback, peer
v stores further links to peers from arbitrary groups whose identifiers start with
bv0b

v
1 . . . b

v
k−1b

v
k for all k ≥ f −m + 1. The fallback connections allow a peer to

revert to the regular overlay structure for the longest shared prefixes where only
few peers exist.

BIBLIOGRAPHY 167

As an example, a scenario with m = 4 groups is considered. A peer with
identifier 00 . . . 0 belonging to group G2 has to maintain connections to peers
from group G3 that share the prefixes 001, 0000001, 00000000001, etc. In an
overlay with 100 peers, the peer is unlikely to find a neighbor for a prefix length
larger than log(100), such as prefix 00000000001. Instead, he further maintains
fallback connections to peers from arbitrary groups having identifiers starting
with the prefixes 00000001, 000000001, 000000001, etc. (if such peers exist).

Remarks:

• By applying the presented grouping mechanism, the total number of neigh-
bors is reduced to 2 logn

m +c with constant c for fallback connections. (Note
that peers have both outgoing neighbors to the next group and incoming
neighbors from the previous group, doubling the number of neighbors.)

• Setting the number of groups m = log n gives a constant number of neigh-
bors regardless of the overlay size.

Chapter Notes

The paper of Plaxton, Rajaraman, and Richa [PRR97] laid out a blueprint for
many so-called structured P2P architecture proposals, such as Chord [SMK+01],
CAN [RFH+01], Pastry [RD01], Viceroy [MNR02], Kademlia [MM02], Koorde
[KK03], SkipGraph [AS03], SkipNet [HJS+03], or Tapestry [ZHS+04]. Also the
paper of Plaxton et. al. was standing on the shoulders of giants. Some of
its eminent precursors are: linear and consistent hashing [KLL+97], locating
shared objects [AP90, AP91], compact routing [SK85, PU88], and even earlier:
hypercubic networks, e.g. [AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMD04].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSW06, SENB07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSW07].
There are several recommendable introductory books on P2P computing, e.g.
[SW05, SG05, MS07, KW08, BYL08].

Some of the figures in this chapter have been provided by Christian Schei-
deler.

Bibliography

[AJ75] George A. Anderson and E. Douglas Jensen. Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples. ACM
Comput. Surv., 7(4):197–213, December 1975.

[AMD04] Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch
(1 + epsilon) locality-aware networks for DHTs. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 550–559, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

168 CHAPTER 14. PEER-TO-PEER COMPUTING

[AP90] Baruch Awerbuch and David Peleg. Sparse Partitions (Extended
Abstract). In FOCS, pages 503–513, 1990.

[AP91] Baruch Awerbuch and David Peleg. Concurrent Online Tracking of
Mobile Users. In SIGCOMM, pages 221–233, 1991.

[AS03] James Aspnes and Gauri Shah. Skip graphs. In SODA, pages 384–
393, 2003.

[AS09] Baruch Awerbuch and Christian Scheideler. Towards a Scalable and
Robust DHT. Theory Comput. Syst., 45(2):234–260, 2009.

[BA84] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hy-
perbus Structures for a Computer Network. IEEE Trans. Comput.,
33(4):323–333, April 1984.

[BSS09] Matthias Baumgart, Christian Scheideler, and Stefan Schmid. A
DoS-resilient information system for dynamic data management. In
Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 300–309, New York,
NY, USA, 2009. ACM.

[BYL08] John Buford, Heather Yu, and Eng Keong Lua. P2P Networking
and Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

[GS81] J.R. Goodman and C.H. Sequin. Hypertree: A Multiprocessor
Interconnection Topology. Computers, IEEE Transactions on, C-
30(12):923–933, dec. 1981.

[HJS+03] Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: a scalable overlay network
with practical locality properties. In Proceedings of the 4th con-
ference on USENIX Symposium on Internet Technologies and Sys-
tems - Volume 4, USITS’03, pages 9–9, Berkeley, CA, USA, 2003.
USENIX Association.

[KK03] M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
Optimal Distributed Hash Table. In IPTPS, pages 98–107, 2003.

[KLL+97] David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In STOC, pages 654–663, 1997.

[KSW05] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-
Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. In 4th International Workshop on Peer-To-Peer Systems
(IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640, February 2005.

[KW08] Javed I. Khan and Adam Wierzbicki. Introduction: Guest edi-
tors’ introduction: Foundation of peer-to-peer computing. Comput.
Commun., 31(2):187–189, February 2008.

BIBLIOGRAPHY 169

[Lar07] Erik Larkin. Storm Worm’s virulence may change tac-
tics. http://www.networkworld.com/news/2007/080207-black-hat-
storm-worms-virulence.html, Agust 2007. Last accessed on June 11,
2012.

[LMSW06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[LMSW07] Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In 21st Inter-
national Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
IPTPS ’01, pages 53–65, London, UK, UK, 2002. Springer-Verlag.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of the
twenty-first annual symposium on Principles of distributed comput-
ing, PODC ’02, pages 183–192, New York, NY, USA, 2002. ACM.

[MS07] Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Net-
works. Springer, 2007.

[PRR97] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. In SPAA, pages 311–320, 1997.

[PU88] David Peleg and Eli Upfal. A tradeoff between space and efficiency
for routing tables. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 43–52, New
York, NY, USA, 1988. ACM.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329–350, November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161–172, August 2001.

[SENB07] Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploit-
ing KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rev., 37(5):65–70, October 2007.

[SG05] Ramesh Subramanian and Brian D. Goodman. Peer to Peer Com-
puting: The Evolution of a Disruptive Technology. IGI Publishing,
Hershey, PA, USA, 2005.

170 CHAPTER 14. PEER-TO-PEER COMPUTING

[SK85] Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing
in Networks. Comput. J., 28(1):5–8, 1985.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149–160, August 2001.

[SW05] Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science.
Springer, 2005.

[Wit81] L. D. Wittie. Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput., 30(4):264–273, April 1981.

[ZHS+04] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications, 22(1):41–53, 2004.

Chapter 15

Dynamic Networks

Many large-scale distributed systems and networks are dynamic. In some net-
works, e.g., peer-to-peer, nodes participate only for a short period of time, and
the topology can change at a high rate. In wireless ad-hoc networks, nodes are
mobile and move around. In this chapter, we will study how to solve some basic
tasks if the network is dynamic. Under what conditions is it possible to compute
an accurate estimate of the size or some other property of the system? How
efficiently can information be disseminated reliably in the network? To what
extent does stability in the communication graph help solve these problems?

There are various reasons why networks can change over time and as a con-
sequence, there also is a wide range of possible models for dynamic networks.
Nodes might join or leave a distributed system. Some components or commu-
nication links may fail in different ways. Especially if the network devices are
mobile, the connectivity between them can change. Dynamic changes can occur
constantly or they might be infrequent enough so that the system can adapt to
each change individually.

We will look at a synchronous dynamic network model in which the graph
can change from round to round in a worst-case manner. To simplify things
(and to make the problems we study well-defined), we assume that the set of
nodes in the network is fixed and does not change. However, we will make
almost no assumptions how the set of edges changes over time. We require
some guarantees about the connectivity, apart from this, in each round, the
communication graph is chosen in a worst-case manner by an adversary.

15.1 Synchronous Edge-Dynamic Networks

We model a synchronous dynamic network by a dynamic graph G = (V,E),
where V is a static set of nodes, and E : N0 →

(
V
2

)
is a function mapping a round

number r ∈ N0 to a set of undirected edges E(r). Here
(
V
2

)
:= {{u, v} | u, v ∈ V }

is the set of all possible undirected edges over V .

Definition 15.1 (T -Interval Connectivity). A dynamic graph G = (V,E) is
said to be T -interval connected for T ∈ N if for all r ∈ N, the static graph

Gr,T :=
(
V,
⋂r+T−1
i=r E(i)

)
is connected. If G is 1-interval connected we say

that G is always connected.

171

172 CHAPTER 15. DYNAMIC NETWORKS

For simplicity, we restrict to deterministic algorithms. Nodes communicate
with each other using anonymous broadcast. At the beginning of round r, each
node u decides what message to broadcast based on its internal state; at the
same time (and independently), the adversary chooses a set E(r) of edges for
the round. As in standard synchronous message passing, all nodes v for which
{u, v} ∈ E(r) receive the message broadcast by node u in round r and each node
can perform arbitrary local computations upon receiving the messages from its
neighbors. We assume that all nodes in the network have a unique identifier
(ID). In most cases, we will assume that messages are restricted to O(log n) bits.
In these cases, we assume that node IDs can be represented using O(log n) bits,
so that a constant number of node IDs and some additional information can be
transmitted in a single message. We refer to the special case where all nodes are
woken up at once as synchronous start and to the general case as asynchronous
start.

We assume that each node in the network starts an execution of the protocol
in an initial state which contains its own ID and its input. Additionally, nodes
know nothing about the network, and initially cannot distinguish it from any
other network.

15.2 Problem Definitions

In the context of this chapter, we study the following problems.

Counting. An algorithm is said to solve the counting problem if whenever it is
executed in a dynamic graph comprising n nodes, all nodes eventually terminate
and output n.

k-verification. Closely related to counting, the k-verification problem re-
quires nodes to determine whether or not n ≤ k. All nodes begin with k as
their input, and must eventually terminate and output “yes” or “no”. Nodes
must output “yes” if and only if there are at most k nodes in the network.

k-token dissemination. An instance of k-token dissemination is a pair (V, I),
where I : V → P (T) assigns a set of tokens from some domain T to each node,
and |

⋃
u∈V I(v)| = k. An algorithm solves k-token dissemination if for all

instances (V, I), when the algorithm is executed in any dynamic graph G =
(V,E), all nodes eventually terminate and output

⋃
u∈V I(u). We assume that

each token in the nodes’ input is represented using O(log n) bits. Nodes may or
may not know k, depending on the context. Of particular interest is all-to-all
token dissemination, a special case where k = n and each node initially knows
exactly one token, i.e., |I(u)| = 1 for all nodes u.

k-committee election. As an useful step towards solving counting and to-
ken dissemination, we consider a problem called k-committee election. In this
problem, nodes must partition themselves into sets, called committees, such that

a) the size of each committee is at most k and

b) if k ≥ n, then there is just one committee containing all nodes.

15.3. BASIC INFORMATION DISSEMINATION 173

Each committee has a unique committee ID, and the goal is for all nodes to
eventually terminate and output a committee ID such that the two conditions
are satisfied.

15.3 Basic Information Dissemination

To start, let us study how a single piece of information is propagated through
a dynamic network. We assume that we have a dynamic network graph G with
n nodes such that G is always connected (G is 1-interval connected as defined
in Definition 15.1). Further assume that there is a single piece of information
(token), which is initially known by a single node.

Theorem 15.2. Assume that there is a single token in the network. Further
assume that at time 0 at least one node knows the token and that once they know
the token, all nodes broadcast it in every round. In a 1-interval connected graph
G = (V,E) with n nodes, after r ≤ n− 1 rounds, at least r + 1 nodes know the
token. Hence, in particular after n− 1 rounds, all nodes know the token.

Proof. We can proof the theorem by induction on r. Let T (r) be the set of
nodes that know the token after r rounds. We need to show that for all r ≥ 0,
|T (r)| ≥ min {r + 1, n}. Because we assume that at time 0 at least one node
knows the token, clearly, |T (0)| ≥ 1. For the induction step, assume that after
r rounds, |T (r)| ≥ min {r + 1, n}. If T (r) = V , we have |T (r+ 1)| ≥ |T (r)| = n
and we are done. Otherwise, we have V \T (r) 6= ∅. Therefore, by the 1-interval
connectivity assumption, there must be two nodes u ∈ T (r) and v ∈ V \ T (r)
such that {u, v} ∈ E(r + 1). Hence, in round r + 1, node v gets the token an
therefore |T (r + 1)| ≥ |T (r)|+ 1 ≥ min {r + 2, n}.

Remarks:

• Note that Theorem 15.2 only shows that after n−1 rounds all nodes know
the token. If the nodes do not know n or an upper bound on n, they do
not know if all nodes know the token.

• We can apply the above techniques also if there is more than one token
in the network, provided that tokens form a totally-ordered set and nodes
forward the smallest (or biggest) token they know. It is then guaranteed
that the smallest (resp. biggest) token in the network will be known by all
nodes after at most n− 1 rounds. Note, however, that in this case nodes
do not know when they know the smallest or biggest token.

The next theorem shows that essentially, for the general asynchronous start
case, 1-interval connectivity does not suffice to obtain anything better than what
is stated by the above theorem. If nodes do not know n or an upper bound on
n initially, they cannot find n.

Theorem 15.3. Counting is impossible in 1-interval connected graphs with
asynchronous start.

Proof. Suppose by way of contradiction that A is a protocol for counting which
requires at most t(n) rounds in 1-interval connected graphs of size n. Let n′ =

174 CHAPTER 15. DYNAMIC NETWORKS

max {t(n) + 1, n+ 1}. We will show that the protocol cannot distinguish a static
line of length n from a dynamically changing line of length n′.

Given a sequence A = a1 ◦ . . . ◦ am, let shift(A, r) denote the cyclic left-shift
of A in which the first r symbols (r ≥ 0) are removed from the beginning of
the sequence and appended to the end. Consider an execution in a dynamic
line of length n′, where the line in round r is composed of two adjacent sections
A ◦ Br, where A = 0 ◦ . . . ◦ (n − 1) remains static throughout the execution,
and B(r) = shift(n ◦ . . . ◦ (n′ − 1), r) is left-shifted by one in every round. The
computation is initiated by node 0 and all other nodes are initially asleep. We
claim that the execution of the protocol in the dynamic graph G = A ◦ B(r)
is indistinguishable in the eyes of nodes 0, . . . , n − 1 from an execution of the
protocol in the static line of length n (that is, the network comprising section
A alone). This is proven by induction on the round number, using the fact that
throughout rounds 0, . . . , t(n)− 1 none of the nodes in section A ever receives a
message from a node in section B: although one node in section B is awakened
in every round, this node is immediately removed and attached at the end of
section B, where it cannot communicate with the nodes in section A. Thus,
the protocol cannot distinguish the dynamic graph A from the dynamic graph
A ◦B(r), and it produces the wrong output in one of the two graphs.

Remark:

• The above impossibility result extends to all problems introduced in Sec-
tion 15.2 as long as we do not assume that the nodes know n or an upper
bound on n.

In light of the impossibility result of Theorem 15.3, let us now first consider
the synchronous start case where all nodes start the protocol at time 0 (with
round 1). We first look at the case where there is no bound on the message
size and describe a simple linear-time protocol for counting (and token dissem-
ination). The protocol is extremely simple, but it demonstrates some of the
ideas used in some of the later algorithms, where we eliminate the large mes-
sages using a stability assumption (T -interval connectivity) which allows nodes
to communicate with at least one of their neighbors for at least T rounds.

In the simple protocol, all nodes maintain a set A containing all the IDs they
have collected so far. In every round, each node broadcasts A and adds any IDs
it receives. Nodes terminate when they first reach a round r in which |A| ≤ r.

A← {self };
for r = 1, 2, . . . do

broadcast A;
receive B1, . . . , Bs from neighbors;
A← A ∪B1 ∪ . . . ∪Bs;
if |A| ≤ r then terminate and output |A|;
;

end

Algorithm 1: Counting in linear time using large messages

Before analyzing Algorithm 1, let us fix some notation that will help to argue
about the algorithms we will study. If x is a variable of an algorithm, let xu(r)
be the value of the variable x at node u after r rounds (immediately before the

15.3. BASIC INFORMATION DISSEMINATION 175

broadcast operation of round r+1). For instance in Algorithm 1, Au(r) denotes
the set of IDs of node u at the end of the rth iteration of the for-loop.

Lemma 15.4. Assume that we are given an 1-interval connected graph G =
(V,E) and that all nodes in V execute Algorithm 1. If all nodes together start
at time 0, we have |Au(r)| ≥ r + 1 for all u ∈ V and r < n.

Proof. We prove the lemma by induction on r. We clearly have |Au(0)| = 1 for
all u because initially each node includes its own ID in A. Hence, the lemma is
true for r = 0.

For the induction step, assume that the claim of the lemma is true for some
given r < n− 1 for all dynamic graphs G. Let A′u(r+ 1) be the set of identifiers
known by node u if all nodes start the protocol at time 1 (instead of 0) and run
it for r rounds. By the induction hypothesis, we have |A′u(r+ 1)| ≥ r+ 1. If the
algorithm is started at time 0 instead of time 1, the set of identifiers in Au(r+1)
is exactly the union of all the identifiers known by the nodes in A′u(r+1) after the
first round (at time 1). This includes all the nodes in A′u(r+ 1) as well as their
neighbors in the first round. If |A′u(r+1)| ≥ r+2, we also have |Au(r+1)| ≥ r+2
and we are done. Otherwise, by 1-interval connectivity, there must at least be
one node v ∈ V \A′u(r+ 1) for which there is an edge to a node in A′u(r+ 1) in
round 1. We therefore have |Au(r + 1)| ≥ |A′u(r + 1)|+ 1 ≥ r + 2.

Theorem 15.5. In an 1-interval connected graph G, Algorithm 1 terminates
at all nodes after n rounds and output n.

Proof. Follows directly from Lemma 15.4. For all nodes u, |Au(r)| ≥ r + 1 > r
for all r < n and |Au(n)| = |Au(n− 1)| = n.

Lemma 15.6. Assume that we are given a 2-interval connected graph G =
(V,E) and that all nodes in V execute Algorithm 1. If node u is waken up and
starts the algorithm at time t, it holds that have |Au(t + 2r)| ≥ r + 1 for all
0 ≤ r < n.

Proof. The proof follows along the same lines as the proof of Lemma 15.4 (see
exercises).

Remarks:

• Because we did not bound the maximal message size and because every
node receives information (an identifier) from each other node, Algorithm
1 can be used to solve all the problems defined in Section 15.2. For the
token dissemination problem, the nodes also need to attach a list of all
known tokens to all messages

• As a consequence of Theorem 15.3, 1-interval connectivity does not suffice
to compute the number of nodes n in a dynamic network if nodes start
asynchronously. It turns out that in this case, we need a slightly stronger
connectivity assumption. If the network is 2-interval connected instead
of 1-interval connected, up to a constant factor in the time complexity,
the above results can also be obtained in the asynchronous start case (see
exercises).

176 CHAPTER 15. DYNAMIC NETWORKS

• For the remainder of the chapter, we will only consider the simpler syn-
chronous start case. For T ≥ 2, all discussed results that hold for T -
interval connected networks with synchronous start also hold for asyn-
chronous start with the same asymptotic bounds.

15.4 Small Messages

We now switch to the more interesting (and more realistic) case where in each
round, each node can only broadcast a message of O(log n) bits. We will first
show how to use k-committee election to solve counting. We first describe how
to obtain a good upper bound on n. We will then see that the same algorithm
can also be used to find n exactly and to solve token dissemination.

15.4.1 k-Verification

The counting algorithm works by successive doubling: at each point the nodes
have a guess k for the size of the network, and attempt to verify whether or not
k ≥ n. If it is discovered that k < n, the nodes double k and repeat; if k ≥ n,
the nodes halt and output the count.

Suppose that nodes start out in a state that represents a solution to k-
committee election: each node has a committee ID, such that no more than k
nodes have the same ID, and if k ≥ n then all nodes have the same committee ID.
The problem of checking whether k ≥ n is then equivalent to checking whether
there is more than one committee: if k ≥ n there must be one committee only,
and if k < n there must be more than one. Nodes can therefore check if k ≥ n
by executing a simple k-round protocol that checks if there is more than one
committee in the graph.

The k-verification protocol Each node has a local variable x , which is
initially set to 1. While xu = 1, node u broadcasts its committee ID. If it hears
from some neighbor a different committee ID from its own, or the special value
⊥, it sets xu ← 0 and broadcasts ⊥ in all subsequent rounds. After k rounds,
all nodes output the value of their x variable.

Lemma 15.7. If the initial state of the execution represents a solution to k-
committee election, at the end of the k-verification protocol each node outputs 1
iff k ≥ n.

Proof. First suppose that k ≥ n. In this case there is only one committee in
the graph; no node ever hears a committee ID different from its own. After k
rounds all nodes still have x = 1, and all output 1.

Next, suppose k < n. We can show that after the ith round of the protocol,
at least i nodes in each committee have x = 0. In any round of the protocol,
consider a cut between the nodes that belong to a particular committee and
still have x = 1, and the rest of the nodes, which either belong to a different
committee or have x = 0. From 1-interval connectivity, there is an edge in
the cut, and some node u in the committee that still has xu = 1 hears either
a different committee ID or ⊥. Node u then sets xu ← 0, and the number of
nodes in the committee that still have x = 1 decreases by at least one. Since

15.4. SMALL MESSAGES 177

each committee initially contains at most k nodes, after k rounds all nodes in
all committees have x = 0, and all output 0.

15.4.2 k-Committee Election

We can solve k-committee in O(k2) rounds as follows. Each node u stores
two local variables, committeeu and leaderu. A node that has not yet joined a
committee is called active, and a node that has joined a committee is inactive.
Once nodes have joined a committee they do not change their choice.

Initially all nodes consider themselves leaders, but throughout the protocol,
any node that hears an ID smaller than its own adopts that ID as its leader.
The protocol proceeds in k cycles, each consisting of two phases, polling and
selection.

1. Polling phase: for k−1 rounds, all nodes propagate the ID of the smallest
active node of which they are aware.

2. Selection phase: in this phase, each node that considers itself a leader
selects the smallest ID it heard in the previous phase and invites that
node to join its committee. An invitation is represented as a pair (x, y),
where x is the ID of the leader that issued the invitation, and y is the ID
of the invited node. All nodes propagate the smallest invitation of which
they are aware for k − 1 (invitations are sorted in lexicographic order, so
the invitations issued by the smallest node in the network will win out
over other invitations. It turns out, though, that this is not necessary for
correctness; it is sufficient for each node to forward an arbitrary invitation
from among those it received).

At the end of the selection phase, a node that receives an invitation to join
its leader’s committee does so and becomes inactive. (Invitations issued
by nodes that are not the current leader can be accepted or ignored; this,
again, does not affect correctness.)

At the end of the k cycles, any node u that has not been invited to join a
committee outputs committeeu = u. The details are given in Algorithm 2.

Lemma 15.8. Algorithm 2 solves the k-committee problem in O(k2) rounds in
1-interval connected networks.

Proof. The time complexity is immediate. To prove correctness, we show that
after the protocol ends, the values of the local committeeu variables constitute
a valid solution to k-committee.

1. In each cycle, each node invites at most one node to join its committee.
After k cycles at most k nodes have joined any committee. Note that the
first node invited by a leader u to join u’s committee is always u itself.
Thus, if after k cycles node u has not been invited to join a committee, it
follows that u did not invite any other node to join its committee; when it
forms its own committee in the last line of the algorithm, the committee’s
size is 1.

2. Suppose that k ≥ n, and let u be the node with the smallest ID in the
network. Following the polling phase of the first cycle, all nodes v have

178 CHAPTER 15. DYNAMIC NETWORKS

leader ← self ;
committee ← ⊥;
for i = 0, . . . , k do

// Polling phase

if committee = ⊥ then
min active ← self ; // The node nominates itself for selection

else
min active ← ⊥;

end
for j = 0, . . . , k − 1 do

broadcast min active;
receive x1, . . . , xs from neighbors;
min active ← min {min active, x1, . . . , xs};

end
// Update leader

leader ← min {leader ,min active};
// Selection phase

if leader = self then
// Leaders invite the smallest ID they heard

invitation ← (self ,min active);

else
// Non-leaders do not invite anybody

invitation ← ⊥
end
for j = 0, . . . , k − 1 do

broadcast invitation;
receive y1, . . . , ys from neighbors;
invitation ← min {invitation, y1, . . . , ys} ; // (in lexicographic

order)

end
// Join the leader’s committee, if invited

if invitation = (leader , self) then
committee = leader ;

end

end
if committee = ⊥ then

committee ← self ;
end

Algorithm 2: k-committee in always-connected graphs

15.5. MORE STABLE GRAPHS 179

leaderv = u for the remainder of the protocol. Thus, throughout the
execution, only node u issues invitations, and all nodes propagate u’s
invitations. Since k ≥ n rounds are sufficient for u to hear the ID of the
minimal active node in the network, in every cycle node u successfully
identifies this node and invites it to join u’s committee. After k cycles, all
nodes will have joined.

Remark:

• The protocol can be modified easily to solve all-to-all token dissemination
if k ≥ n. Let tu be the token node u received in its input (or ⊥ if node u
did not receive a token). Nodes attach their tokens to their IDs, and send
pairs of the form (u, tu) instead of just u. Likewise, invitations now contain
the token of the invited node, and have the structure (leader , (u, tu)). The
min operation disregards the token and applies only to the ID. At the end
of each selection phase, nodes extract the token of the invited node, and
add it to their collection. By the end of the protocol every node has been
invited to join the committee, and thus all nodes have seen all tokens.

15.5 More Stable Graphs

S ← ∅;
for i = 0, . . . , dk/T e − 1 do

for r = 0, . . . , 2T − 1 do
if S 6= A then

t← min (A \ S);
broadcast t;
S ← S ∪ {t}

end
receive t1, . . . , ts from neighbors;
A← A ∪ {t1, . . . , ts}

end
S ← ∅

end
return A

Procedure disseminate(A, T, k)

In this section we show that in T -interval connected graphs the computation
can be sped up by a factor of T . To do this we employ a neat pipelining effect,
using the temporarily stable subgraphs that T -interval connectivity guarantees;
this allows us to disseminate information more quickly. Basically, because we
are guaranteed that some edges and paths persist for T rounds, it suffices to
send a particular ID or token only once in T rounds to guarantee progress.
Other rounds can then be used for different tokens. For convenience we assume
that the graph is 2T -interval connected for some T ≥ 1.

Procedure disseminate gives an algorithm for exchanging at least T pieces
of information in n rounds when the dynamic graph is 2T -interval connected.

180 CHAPTER 15. DYNAMIC NETWORKS

The procedure takes three arguments: a set of tokens A, the parameter T , and
a guess k for the size of the graph. If k ≥ n, each node is guaranteed to learn
the T smallest tokens that appeared in the input to all the nodes.

The execution of procedure disseminate is divided into dk/T e phases, each
consisting of 2T rounds. During each phase, each node maintains the set A of
tokens it has already learned and a set S of tokens it has already broadcast
in the current phase (initially empty). In each round of the phase, the node
broadcasts the smallest token it has not yet broadcast in the current phase,
then adds that token to S.

We refer to each iteration of the inner loop as a phase. Since a phase lasts
2T rounds and the graph is 2T -interval connected, there is some connected
subgraph that exists throughout the phase. Let G′i be a connected subgraph
that exists throughout phase i, for i = 0, . . . , dk/T e − 1. We use disti(u, v) to
denote the distance between nodes u, v ∈ V in G′i.

Let Kt(r) denote the set of nodes that know token t by the beginning of
round r, that is, Kt(r) = {u ∈ V | t ∈ Au(r)}. In addition, let I be the set of
T smallest tokens in

⋃
u∈V Au(0). Our goal is to show that when the protocol

terminates we have Kt(r) = V for all t ∈ I.

For a node u ∈ V , a token t ∈ P , and a phase i, we define tdisti(u, t) to be
the distance of u from the nearest node in G′i that knows t at the beginning of
phase i:

tdist(u, t) := min {disti(u, v) | v ∈ Kt(2T · i)} .

Here and in the sequel, we use the convention that min ∅ :=∞. For convenience,
we use Siu(r) := Su(2T · i + r) to denote the value of Su in round r of phase
i. Similarly we denote Aiu(r) := Au(2T · i + r) and Ki

t(r) := Kt(2T · i + r).
Correctness hinges on the following property.

Lemma 15.9. For any node u ∈ V , token t ∈
⋃
v∈V Av(0), and round r such

that tdisti(u, t) ≤ r ≤ 2T , either t ∈ Siu(r + 1) or Su(r + 1) includes at least
(r − tdisti(u, t)) tokens that are smaller than t.

Proof. By induction on r. For r = 0 the claim is immediate.

Suppose the claim holds for round r − 1 of phase i, and consider round
r ≥ tdisti(u, t). If r = tdisti(u, t), then r − tdisti(u, t) = 0 and the claim
holds trivially. Thus, suppose that r > tdisti(u, t). Hence, r − 1 ≥ tdisti(u, t),
and the induction hypothesis applies: either t ∈ Siu(r) or Siu(r) includes at least
(r − 1− tdisti(u, t)) tokens that are smaller than t. In the first case we are done,
since Siu(r) ⊆ Siu(r+1); thus, assume that t 6∈ Siu(r), and Siu(r) includes at least
(r − 1− tdisti(u, t)) tokens smaller than t. However, if Siu(r) includes at least
(r − tdisti(u, t)) tokens smaller than t, then so does Siu(r+ 1), and the claim is
again satisfied; thus we assume that Siu(r) includes exactly (r − 1− tdisti(u, t))
tokens smaller than t.

It is sufficient to prove that min
(
Aiu(r) \ Siu(r)

)
≤ t: if this holds, then

in round r node u broadcasts min
(
Aiu(r) \ Siu(r)

)
, which is either t or a to-

ken smaller than t; thus, either t ∈ Siu(r + 1) or Siu(r + 1) includes at least
(r − tdisti(u, t)) tokens smaller than t, and the claim holds.

First we handle the case where tdisti(u, t) = 0. In this case, t ∈ Aiu(0) ⊆
Aiu(r). Since we assumed that t 6∈ Siu(r) we have t ∈ Aiu(r) \ Siu(r), which
implies that min

(
Aiu(r) \ Siu(r)

)
≤ t.

15.5. MORE STABLE GRAPHS 181

Next suppose that tdisti(u, t) > 0. Let x ∈ Ki
t(0) be a node such

that disti(u, x) = tdist(u, t) (such a node must exist from the definition of
tdisti(u, t)), and let v be a neighbor of u along the path from u to x in Gi, such
that disti(v, x) = disti(u, x) − 1 < r. From the induction hypothesis, either
t ∈ Siv(r) or Siv(r) includes at least (r − 1− tdisti(v, t)) = (r − tdisti(u, t)) to-
kens that are smaller than t. Since the edge between u and v exists throughout
phase i, node u receives everything v sends in phase i, and hence Siv(r) ⊆ Aiu(r).
Finally, because we assumed that Siu(r) contains exactly (r − 1− tdisti(u, t)) to-
kens smaller than t, and does not include t itself, we have min

(
Aiu(r) \ Siu(r)

)
≤

t, as desired.

Using Lemma 15.9 we can show: correct.

Lemma 15.10. If k ≥ n, at the end of procedure disseminate the set Au of
each node u contains the T smallest tokens.

Proof. Let Nd
i (t) := {u ∈ V | tdisti(u, t) ≤ d} denote the set of nodes at dis-

tance at most d from some node that knows t at the beginning of phase i, and
let t be one of the T smallest tokens.

From Lemma 15.9, for each node u ∈ NT
i (t), either t ∈ Siu(2T + 1) or

Siu(2T + 1) contains at least 2T − T = T tokens that are smaller than t. But t
is one of the T smallest tokens, so the second case is impossible. Therefore all
nodes in NTi (t) know token t at the end of phase i. Because Gi is connected we
have |NT

i (t)| ≥ min {n− |Ki(t)|, T}; that is, in each phase T new nodes learn t,
until all the nodes know t. Since there are no more than k nodes and we have
dk/T e phases, at the end of the last phase all nodes know t.

To solve counting and token dissemination with up to n tokens, we use
Procedure disseminate to speed up the k-committee election protocol from
Algorithm 2. Instead of inviting one node in each cycle, we can use disseminate
to have the leader learn the IDs of the T smallest nodes in the polling phase,
and use procedure disseminate again to extend invitations to all T smallest
nodes in the selection phase. Thus, in O(k+T) rounds we can increase the size
of the committee by T .

Theorem 15.11. It is possible to solve k-committee election in O(k + k2/T)
rounds in T -interval connected graphs. When used in conjunction with the k-
verification protocol, this approach yields O(n+n2/T)-round protocols for count-
ing all-to-all token dissemination.

Remarks:

• The same result can also be achieved for the asynchronous start case, as
long as T ≥ 2.

• The described algorithm is based on the assumptions that all nodes know
T (or that they have a common lower bound on T). At the cost of a
log-factor, it is possible to drop this assumption and adapt to the actual
interval-connectivity T .

• It is not known whether the bound of Theorem 15.11 is tight. It can be
shown that it is tight for a restricted class of protocols (see exercises).

182 CHAPTER 15. DYNAMIC NETWORKS

• If we make additional assumptions about the stable subgraphs that are
guaranteed for intervals of length T , the bound in Theorem 15.11 can be
improved. E.g., if intervals of length T induce a stable k-vertex connected
subgraph, the complexity can be improved to O(n+ n2/(kT)).

Chapter Notes

See [? ?].

Chapter 16

All-to-All Communication

In the previous chapters, we have mostly considered communication on a par-
ticular graph G = (V,E), where any two nodes u and v can only communicate
directly if {u, v} ∈ E. This is however not always the best way to model a net-
work. In the Internet, for example, every machine (node) is able to “directly”
communicate with every other machine via a series of routers. If every node in
a network can communicate directly with all other nodes, many problems can
be solved easily. For example, assume we have n servers, each hosting an ar-
bitrary number of (numeric) elements. If all servers are interested in obtaining
the maximum of all elements, all servers can simultaneously, i.e., in one com-
munication round, send their local maximum element to all other servers. Once
these maxima are received, each server knows the global maximum.

Note that we can again use graph theory to model this all-to-all commu-
nication scenario: The communication graph is simply the complete graph
Kn := (V,

(
V
2

)
). If each node can send its entire local state in a single message,

then all problems could be solved in 1 communication round in this model!
Since allowing unbounded messages is not realistic in most practical scenarios,
we restrict the message size: Assuming that all node identifiers and all other
variables in the system (such as the numeric elements in the example above)
can be described using O(log n) bits, each node can only send a message of size
O(log n) bits to all other nodes (messages to different neighbors can be differ-
ent). In other words, only a constant number of identifiers (and elements) can
be packed into a single message. Thus, in this model, the limiting factor is the
amount of information that can be transmitted in a fixed amount of time. This
is fundamentally different from the model we studied before where nodes are
restricted to local information about the network graph.

In this chapter, we study one particular problem in this model, the com-
putation of a minimum spanning tree (MST), i.e., we will again look at the
construction of a basic network structure. Let us first review the definition of a
minimum spanning tree from Chapter 3. We assume that each edge e is assigned
a weight ωe.

Definition 16.1 (MST). Given a weighted graph G = (V,E, ω). The MST
of G is a spanning tree T minimizing ω(T), where ω(H) =

∑
e∈H ωe for any

subgraph H ⊆ G.

183

184 CHAPTER 16. ALL-TO-ALL COMMUNICATION

Remarks:

• Since we have a complete communication graph, the graph has
(
n
2

)
edges

in the beginning.

• As in Chapter 3, we assume that no two edges of the graph have the same
weight. Recall that this assumption ensures that the MST is unique.
Recall also that this simplification is not essential as one can always break
ties by using the IDs of adjacent vertices.

For simplicity, we assume that we have a synchronous model (as we are
only interested in the time complexity, our algorithm can be made asynchro-
nous using synchronizer α at no additional cost (cf. Chapter 10). As usual, in
every round, every node can send a (potentially different) message to each of
its neighbors. In particular, note that the message delay is 1 for every edge e
independent of the weight ωe. As mentioned before, every message can contain
a constant number of node IDs and edge weights (and O(log n) additional bits).

Remarks:

• Note that for graphs of arbitrary diameter D, if there are no bounds on the
number of messages sent, on the message size, and on the amount of local
computations, there is a straightforward generic algorithm to compute an
MST in time D: In every round, every node sends its complete state to all
its neighbors. After D rounds, every node knows the whole graph and can
compute any graph structure locally without any further communication.

• In general, the diameter D is also an obvious lower bound for the time
needed to compute an MST. In a weighted ring, e.g., it takes time D to
find the heaviest edge. In fact, on the ring, time D is required to compute
any spanning tree.

In this chapter, we are not concerned with lower bounds, we want to give an
algorithm that computes the MST as quickly as possible instead! We again use
the following lemma that is proven in Chapter 3.

Lemma 16.2. For a given graph G let T be an MST, and let T ′ ⊆ T be a
subgraph (also known as a fragment) of the MST. Edge e = (u, v) is an outgoing
edge of T ′ if u ∈ T ′ and v 6∈ T ′ (or vice versa). Let the minimum weight outgoing
edge of the fragment T ′ be the so-called blue edge b(T ′). Then T ′ ∪ b(T ′) ⊆ T .

Lemma 16.2 leads to a straightforward distributed MST algorithm. We start
with an empty graph, i.e., every node is a fragment of the MST. The algorithm
consists of phases. In every phase, we add the blue edge b(T ′) of every existing
fragment T ′ to the MST. Algorithm 58 shows how the described simple MST
construction can be carried out in a network of diameter 1.

Theorem 16.3. On a complete graph, Algorithm 58 computes an MST in time
O(log n).

Proof. The algorithm is correct because of Lemma 16.2. Every node only needs
to send a single message to all its neighbors in every phase (line 4). All other
computations can be done locally without sending other messages. In particular,
the blue edge of a given fragment is the lightest edge sent by any node of that

185

Algorithm 58 Simple MST Construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: while v has neighbor u in different fragment do
3: find lowest-weight edge e between v and a node u in a different fragment
4: send e to all nodes
5: determine blue edges of all fragments
6: add blue edges of all fragments to MST, update fragments
7: end while

fragment. Because every node always knows the current MST (and all current
fragments), lines 5 and 6 can be performed locally.

In every phase, every fragment connects to at least one other fragment. The
minimum fragment size therefore at least doubles in every phase. Thus, the
number of phases is at most log2 n.

Remarks:

• Algorithm 58 does essentially the same thing as the GHS algorithm (Algo-
rithm 15) discussed in Chapter 3. Because we now have a complete graph
and thus every node can communicate with every other node, things get
simpler (and also much faster).

• Algorithm 58 does not make use of the fact that a node can send different
messages to different nodes. Making use of this possibility will allow us to
significantly reduce the running time of the algorithm.

Our goal is now to improve Algorithm 58. We assume that every node has
a unique identifier. By sending its own identifier to all other nodes, every node
knows the identifiers of all other nodes after one round. Let `(F) be the node
with the smallest identifier in fragment F . We call `(F) the leader of fragment
F . In order to improve the running time of Algorithm 58, we need to be able
to connect every fragment to more than one other fragment in a single phase.
Algorithm 59 shows how the nodes can learn about the k = |F | lightest outgoing
edges of each fragment F (in constant time!).

Given this set E′ of edges, each node can locally decide which edges can
safely be added to the constructed tree by calling the subroutine AddEdges
(Algorithm 60). Note that the set of received edges E′ in line 14 is the same for
all nodes. Since all nodes know all current fragments, all nodes add the same
set of edges!

Algorithm 60 uses the lightest outgoing edge that connects two fragments (to
a larger super-fragment) as long as it is safe to add this edge, i.e., as long as it is
clear that this edge is a blue edge. A (super-)fragment that has outgoing edges
in E′ that are surely blue edges is called safe. As we will see, a super-fragment
F is safe if all the original fragments that make up F are still incident to at least
one edge in E′ that has not yet been considered. In order to determine whether
all lightest outgoing edges in E′ that are incident to a certain fragment F have
been processed, a counter c(F) is maintained (see line 2). If an edge incident
to two (distinct) fragments Fi and Fj is processed, both c(Fi) and c(Fj) are
decremented by 1 (see Line 8).

186 CHAPTER 16. ALL-TO-ALL COMMUNICATION

Algorithm 59 Fast MST construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: repeat
3: F := fragment of v;
4: ∀F ′ 6= F , compute min-weight edge eF ′ connecting v to F ′

5: ∀F ′ 6= F , send eF ′ to `(F ′)
6: if v = `(F) then
7: ∀F ′ 6= F , determine min-weight edge eF,F ′ between F and F ′

8: k := |F |
9: E(F) := k lightest edges among eF,F ′ for F ′ 6= F

10: send send each edge in E(F) to a different node in F
// for simplicity assume that v also sends an edge to itself

11: end if
12: send edge received from `(F) to all nodes
13: // the following operations are performed locally by each node
14: E′ := edges received by other nodes
15: AddEdges(E′)
16: until all nodes are in the same fragment

An edge connecting two distinct super-fragments F ′ and F ′′ is added if at
least one of the two super-fragments is safe. In this case, the two super-fragments
are merged into one (new) super-fragment. The new super-fragment is safe if
and only if both original super-fragements are safe and the processed edge e is
not the last edge in E′ incident to any of the two fragments Fi and Fj that are
incident to e, i.e., both counters c(Fi) and c(Fj) are still positive (see line 12).

The considered edge e may not be added for one of two reasons. It is possible
that both F ′ and F ′′ are not safe. Since a super-fragment cannot become safe
again, nothing has to be done in this case. The second reason is that F ′ = F ′′.
In this case, this single fragment may become unsafe if e reduced either c(Fi)
or c(Fj) to zero (see line 18).

Lemma 16.4. The algorithm only adds MST edges.

Proof. We have to prove that at the time we add an edge e in line 9 of Al-
gorithm 60, e is the blue edge of some (super-)fragment. By definition, e is
the lightest edge that has not been considered and that connects two distinct
super-fragments F ′ and F ′′. Since e is added, we know that either safe(F ′)
or safe(F ′′) is true. Without loss of generality, assume that F ′ is safe. Ac-
cording to the definition of safe, this means that from each fragment F in the
super-fragment F ′ we know at least the lightest outgoing edge, which implies
that we also know the lightest outgoing edge, i.e., the blue edge, of F ′. Since e
is the lightest edge that connects any two super-fragments, it must hold that e
is exactly the blue edge of F ′. Thus, whenever an edge is added, it is an MST
edge.

Theorem 16.5. Algorithm 59 computes an MST in time O(log log n).

Proof. Let βk denote the size of the smallest fragment after phase k of Algo-
rithm 59. We first show that every fragment merges with at least βk other
fragments in each phase. Since the size of each fragment after phase k is at

187

Algorithm 60 AddEdges(E′): Given the set of edges E′, determine which
edges are added to the MST

1: Let F1, . . . , Fr be the initial fragments
2: ∀Fi ∈ {F1, . . . , Fr}, c(Fi) := # incident edges in E′

3: Let F1 := F1, . . . ,Fr := Fr be the initial super-fragments
4: ∀Fi ∈ {F1, . . . ,Fr}, safe(Fi) := true
5: while E′ 6= ∅ do
6: e := lightest edge in E′ between the original fragments Fi and Fj
7: E′ := E′ \ {e}
8: c(Fi) := c(Fi)− 1, c(Fj) := c(Fj)− 1
9: if e connects super-fragments F ′ 6= F ′′ and (safe(F ′) or safe(F ′′)) then

10: add e to MST
11: merge F ′ and F ′′ into one super-fragment Fnew
12: if safe(F ′) and safe(F ′′) and c(Fi) > 0 and c(Fj) > 0 then
13: safe(Fnew) := true
14: else
15: safe(Fnew) := false
16: end if
17: else if F ′ = F ′′ and (c(Fi) = 0 or c(Fj) = 0) then
18: safe(F ′) := false
19: end if
20: end while

least βk by definition, we get that the size of each fragment after phase k+ 1 is
at least βk(βk + 1). Assume that a fragment F , consisting of at least βk nodes,
does not merge with βk other fragments in phase k + 1 for any k ≥ 0. Note
that F cannot be safe because being safe implies that there is at least one edge
in E′ that has not been considered yet and that is the blue edge of F . Hence,
the phase cannot be completed in this case. On the other hand, if F is not
safe, then at least one of its sub-fragments has used up all its βk edges to other
fragments. However, such an edge is either used to merge two fragments or it
must have been dropped because the two fragments already belong to the same
fragment because another edge connected them (in the same phase). In either
case, we get that any fragment, and in particular F , must merge with at least
βk other fragments.

Given that the minimum fragment size grows (quickly) in each phase and
that only edges belonging to the MST are added according to Lemma 16.4, we
conclude that the algorithm correctly computes the MST. The fact that

βk+1 ≥ βk(βk + 1)

implies that βk ≥ 22k−1

for any k ≥ 1. Therefore after 1+log2 log2 n phases, the
minimum fragment size is n and thus all nodes are in the same fragment.

Chapter Notes

There is a considerable amount of work on distributed MST construction. Table
16.1 lists the most important results for various network diameters D. In the
above text we focus only on D = 1.

188 CHAPTER 16. ALL-TO-ALL COMMUNICATION

Upper Bounds

Graph Class Time Complexity Authors
General Graphs O(D +

√
n · log∗ n) Kutten, Peleg [?]

Diameter 2 O(log n) Lotker, Patt-Shamir,
Peleg [?]

Diameter 1 O(log log n) Lotker, Patt-Shamir,
Pavlov, Peleg [?]

Lower Bounds

Graph Class Time Complexity Authors
Diameter Ω(log n) Ω(D +

√
n/ log n) Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [?]

Diameter 4 Ω
(

(n/ log n)
1/3
)

Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [?]

Diameter 3 Ω
(

(n/ log n)
1/4
)

Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [?]

Table 16.1: Time complexity of distributed MST construction

We want to remark that the above lower bounds remain true for random-
ized algorithms. We can even not hope for a better randomized approximation
algorithm for the MST as long as the approximation factor is bounded polyno-
mially in n. On the other hand it is not known whether the O(log log n) time
complexity of Algorithm 59 is optimal. In fact, no lower bounds are known for
the MST construction on graphs of diameter 1 and 2. Algorithm 59 makes use
of the fact that it is possible to send different messages to different nodes. If
we assume that every node always has to send the same message to all other
nodes, Algorithm 58 is the best that is known. Also for this simpler case, no
lower bound is known.

Chapter 17

Consensus

This chapter is the first to deal with fault tolerance, one of the most fundamental
aspects of distributed computing. Indeed, in contrast to a system with a single
processor, having a distributed system may permit getting away with failures
and malfunctions of parts of the system. This line of research was motivated
by the basic question whether, e.g., putting two (or three?) computers into
the cockpit of a plane will make the plane more reliable. Clearly fault-tolerance
often comes at a price, as having more than one decision-maker often complicates
decision-making.

17.1 Impossibility of Consensus

Imagine two cautious generals who want to attack a common enemy.1 Their
only means of communication are messengers. Unfortunately, the route of these
messengers leads through hostile enemy territory, so there is a chance that a
messenger does not make it. Only if both generals attack at the very same time
the enemy can be defeated. Can we devise a protocol such that the two generals
can agree on an attack time? Clearly general A can send a message to general
B asking to e.g. “attack at 6am”. However, general A cannot be sure that
this message will make it, so she asks for a confirmation. The problem is that
general B getting the message cannot be sure that her confirmation will reach
general A. If the confirmation message indeed is destroyed, general A cannot
distinguish this case from the case where general B did not even get the attack
information. So, to be safe, general B herself will ask for a confirmation of her
confirmation. Taking again the position of general A we can similarly derive
that she cannot be sure unless she also gets a confirmation of the confirmation
of the confirmation. . .

To make things worse, also different approaches do not seem to work. In
fact it can be shown that this two generals problem cannot be solved, in other
words, there is no finite protocol which lets the two generals find consensus! To
show this, we need to be a bit more formal:

1If you don’t fancy the martial tone of this classic example, feel free to think about some-
thing else, for instance two friends trying to make plans for dinner over instant messaging
software, or two lecturers sharing the teaching load of a course trying to figure out who is in
charge of the next lecture.

189

190 CHAPTER 17. CONSENSUS

Definition 17.1 (Consensus). Consider a distributed system with n nodes.
Each node i has an input xi. A solution of the consensus problem must guar-
antee the following:

• Termination: Every non-faulty node eventually decides.

• Agreement: All non-faulty nodes decide on the same value.

• Validity: The decided value must be the input of at least one node.

Remarks:

• The validity condition infers that if all nodes have the same input x, then
the nodes need to decide on x. Please note that consensus is not demo-
cratic, it may well be that the nodes decide on an input value promoted
by a small minority.

• Whether consensus is possible depends on many parameters of the dis-
tributed system, in particular whether the system is synchronous or asyn-
chronous, or what “faulty” means. In the following we study some simple
variants to get a feeling for the problem.

• Consensus is a powerful primitive. With established consensus almost
everything can be computed in a distributed system, e.g. a leader.

Given a distributed asynchronous message passing system with n ≥ 2 nodes.
All nodes can communicate directly with all other nodes, simply by sending a
message. In other words, the communication graph is the complete graph. Can
the consensus problem be solved? Yes!

Algorithm 61 Trivial Consensus

1: Each node has an input
2: We have a leader, e.g. the node with the highest ID
3: if node v is the leader then
4: the leader shall simply decide on its own input
5: else
6: send message to the leader asking for its input
7: wait for answer message by leader, and decide on that
8: end if

Remarks:

• This algorithm is quite simple, and at first sight seems to work perfectly,
as all three consensus conditions of Definition 17.1 are fulfilled.

• However, the algorithm is not fault-tolerant at all. If the leader crashes
before being able to answer all requests, there are nodes which will never
terminate, and hence violate the termination condition. Is there a deter-
ministic protocol that can achieve consensus in an asynchronous system,
even in the presence of failures? Let’s first try something slightly different.

17.1. IMPOSSIBILITY OF CONSENSUS 191

Definition 17.2 (Reliable Broadcast). Consider an asynchronous distributed
system with n nodes that may crash. Any two nodes can exchange messages,
i.e., the communication graph is complete. We want node v to send a reliable
broadcast to the n − 1 other nodes. Reliable means that either nobody receives
the message, or everybody receives the message.

Remarks:

• This seems to be quite similar to consensus, right?

• The main problem is that the sender may crash while sending the message
to the n− 1 other nodes such that some of them get the message, and the
others not. We need a technique that deals with this case:

Algorithm 62 Reliable Broadcast

1: if node v is the source of message m then
2: send message m to each of the n− 1 other nodes
3: upon receiving m from any other node: broadcast succeeded!
4: else
5: upon receiving message m for the first time:
6: send message m to each of the n− 1 other nodes
7: end if

Theorem 17.3. Algorithm 62 solves reliable broadcast as in Definition 17.2.

Proof. First we should note that we do not care about nodes that crash during
the execution: whether or not they receive the message is irrelevant since they
crashed anyway. If a single non-faulty node u received the message (no matter
how, it may be that it received it through a path of crashed nodes) all non-
faulty nodes will receive the message through u. If no non-faulty node receives
the message, we are fine as well!

Remarks:

• While it is clear that we could also solve reliable broadcast by means of a
consensus protocol (first send message, then agree on having received it),
the opposite seems more tricky!

• No wonder, it cannot be done!! For the presentation of this impossibility
result we use the read/write shared memory model introduced in Chapter
5. Not only was the proof originally conceived in the shared memory
model, it is also cleaner.

Definition 17.4 (Univalent, Bivalent). A distributed system is called x-valent
if the outcome of a computation will be x. An x-valent system is also called
univalent. If, depending on the execution, still more than one possible outcome
is feasible, the system is called multivalent. If exactly two outcomes are still
possible, the system is called bivalent.

Theorem 17.5. In an asynchronous shared memory system with n > 1 nodes,
and node crash failures (but no memory failures!) consensus as in Definition
17.1 cannot be achieved by a deterministic algorithm.

192 CHAPTER 17. CONSENSUS

Proof. Let us simplify the proof by setting n = 2. We have processes u and v,
with input values xu and xv. Further let the input values be binary, either 0 or
1.

First we have to make sure that there are input values such that initially the
system is bivalent. If xu = 0 and xv = 0 the system is 0-valent, because
of the validity condition (Definition 17.1). Even in the case where process
v immediately crashes the system remains 0-valent. Similarly if both input
values are 1 and process u immediately crashes the system is 1-valent. If xu =
0 and xv = 1 and v immediately crashes, process u cannot distinguish from
both having input 0, equivalently if u immediately crashes, process v cannot
distinguish from both having 1, hence the system is bivalent!

In order to solve consensus an algorithm needs to terminate. All non-faulty
processes need to decide on the same value x (agreement condition of Definition
17.1), in other words, at some instant this value x must be known to the system
as a whole, meaning that no matter what the execution is, the system will be
x-valent. In other words, the system needs to change from bivalent to univalent.
We may ask ourselves what can cause this change in a deterministic asynchro-
nous shared memory algorithm? We need an element of non-determinism; if
everything happens deterministically the system would have been x-valent even
after initialization which we proved to be impossible already.

The only nondeterministic elements in our model are the asynchrony of ac-
cessing the memory and crashing processes. Initially and after every memory
access, each process decides what to do next: Read or write a memory cell or
terminate with a decision. We take control of the scheduling, either choosing
which request is served next or making a process crash. Now we hope for a crit-
ical bivalent state with more than one memory request, and depending which
memory request is served next the system is going to switch from bivalent to
univalent. More concretely, if process u is being served next the system is going
x-valent, if process v (with v 6= u) is served next the system is going y-valent
(with y 6= x). We have several cases:

• If the operations of processes u and v target different memory cells, pro-
cesses cannot distinguish which memory request was executed first. Hence
the local states of the processes are identical after serving both operations
and the state cannot be critical.

• The same argument holds if both processes want to read the same register.
Nobody can distinguish which read was first, and the state cannot be
critical.

• If process u reads memory cell c, and process v writes memory cell c,
the scheduler first executes u’s read. Now process v cannot distinguish
whether that read of u did or did not happen before its write. If it did
happen, v should decide on x, if it did not happen, v should decide y. But
since v does not know which one is true, it needs to be informed about
it by u. We prevent this by making u crash. Thus the state can only be
univalent if v never decides, violating the termination condition!

• Also if both processes write the same memory cell we have the same issue,
since the second writer will immediately overwrite the first writer, and
hence the second writer cannot know whether the first write happened at
all. Again, the state cannot be critical.

17.1. IMPOSSIBILITY OF CONSENSUS 193

Hence, if we are unlucky (and in a worst case, we are!) there is no critical
state. In other words, the system will remain bivalent forever, and consensus is
impossible.

Remarks:

• The proof presented is a variant of a proof by Michael Fischer, Nancy
Lynch and Michael Paterson, a classic result in distributed computing.
The proof was motivated by the problem of committing transactions in
distributed database systems, but is sufficiently general that it directly
implies the impossibility of a number of related problems, including con-
sensus. The proof also is pretty robust with regard to different communi-
cation models.

• The FLP (Fischer, Lynch, Paterson) paper won the 2001 PODC Influential
Paper Award, which later was renamed Dijkstra Prize.

• One might argue that FLP destroys all the fun in distributed computing,
as it makes so many things impossible! For instance, it seems impossible to
have a distributed database where the nodes can reach consensus whether
to commit a transaction or not.

• So are two-phase-commit (2PC), three-phase-commit (3PC) et al. wrong?!
No, not really, but sometimes they just do not commit!

• What about turning some other knobs of the model? Can we have con-
sensus in a message passing system? No. Can we have consensus in
synchronous systems? Yes, even if all but one node fails!

• Can we have consensus in synchronous systems even if some nodes are
mischievous, and behave much worse than simply crashing, and send for
example contradicting information to different nodes? This is known as
Byzantine behavior. Yes, this is also possible, as long as the Byzantine
nodes are strictly less than a third of all the nodes. This was shown
by Marshall Pease, Robert Shostak, and Leslie Lamport in 1980. Their
work won the 2005 Dijkstra Prize, and is one of the cornerstones not only
in distributed computing but also information security. Indeed this work
was motivated by the “fault-tolerance in planes” example. Pease, Shostak,
and Lamport noticed that the computers they were given to implement a
fault-tolerant fighter plane at times behaved strangely. Before crashing,
these computers would start behaving quite randomly, sending out weird
messages. At some point Pease et al. decided that a malicious behavior
model would be the most appropriate to be on the safe side. Being able to
allow strictly less than a third Byzantine nodes is quite counterintuitive;
even today many systems are built with three copies. In light of the result
of Pease et al. this is a serious mistake! If you want to be tolerant against
a single Byzantine machine, you need four copies, not three!

• Finally, FLP only prohibits deterministic algorithms! So can we solve
consensus if we use randomization? The answer again is yes! We will
study this in the remainder of this chapter.

194 CHAPTER 17. CONSENSUS

17.2 Randomized Consensus

Can we solve consensus if we allow randomization? Yes. The following algorithm
solves Consensus even in face of Byzantine errors, i.e., malicious behavior of
some of the nodes. To simplify arguments we assume that at most f nodes will
fail (crash) with n > 9f , and that we only solve binary consensus, that is, the
input values are 0 and 1. The general idea is that nodes try to push their input
value; if other nodes do not follow they will try to push one of the suggested
values randomly. The full algorithm is in Algorithm 63.

Algorithm 63 Randomized Consensus

1: node u starts with input bit xu ∈ {0, 1}, round:=1.
2: broadcast BID(xu, round)
3: repeat
4: wait for n− f BID messages of current round
5: if at least n− f messages have value x then
6: xu := x; decide on x
7: else if at least n− 2f messages have value x then
8: xu := x
9: else

10: choose xu randomly, with Pr[xu = 0] = Pr[xu = 1] = 1/2
11: end if
12: round := round + 1
13: broadcast BID(xu, round)
14: until decided

Theorem 17.6. Algorithm 63 solves consensus as in Definition 17.1 even if up
to f < n/9 nodes exhibit Byzantine failures.

Proof. First note that it is not a problem to wait for n − f BID messages in
line 4 since at most f nodes are corrupt. If all nodes have the same input value
x, then all (except the f Byzantine nodes) will bid for the same value x. Thus,
every node receives at least n − 2f BID messages containing x, deciding on x
in the first round already. We have consensus!

If the nodes have different (binary) input values the validity condition be-
comes trivial as any result is fine. What about agreement? Let u be one of
the first nodes to decide on value x (in line 6). It may happen that due to
asynchronicity another node v received messages from a different subset of the
nodes, however, at most f senders may be different. Taking into account that
Byzantine nodes may lie, i.e., send different BIDs to different nodes, f addi-
tional BID messages received by v may differ from those received by u. Since
node u had at least n − 2f BID messages with value x, node v has at least
n − 4f BID messages with x. Hence every correct node will bid for x in the
next round, and then decide on x.

So we only need to worry about termination! We already have seen that
as soon as one correct node terminates (in line 6) everybody terminates in the
next round. So what are the chances that some node u terminates in line 6?
Well, if push comes to shove we can still hope that all correct nodes randomly
propose the same value (in line 10). Maybe there are some nodes not choosing

17.2. RANDOMIZED CONSENSUS 195

at random (i.e., entering line 8), but they unanimously propose either 0 or 1:
For the sake of contradiction, assume that both 0 and 1 are proposed in line
8. This means that both 0 and 1 had been proposed by at least n− 5f correct
nodes. In other words, we have a total of 2(n − 5f) + f = n + (n − 9f) > n
nodes. Contradiction!

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f). If so, all will send the same BID, and
the algorithm terminates. So the expected running time is smaller than 2n.

Remarks:

• The presentation of Algorithm 63 is a simplification of the typical presen-
tation in text books.

• What about an algorithm that allows for crashes only, but can manage
more failures? Good news! Slightly changing the presented algorithm will
do that for f < n/4! See exercises.

• Unfortunately Algorithm 63 is still impractical as termination is awfully
slow. In expectation about the same number of nodes choose 1 or 0 in line
10. Termination would be much more efficient if all nodes chose the same
random value in line 10! So why not simply replacing line 10 with “choose
xu := 1”?!? The problem is that a majority of nodes may see a majority
of 0 bids, hence proposing 0 in the next round. Without randomization it
is impossible to get out of this equilibrium. (Moreover, this approach is
deterministic, contradicting Theorem 17.5.)

• The idea is to replace line 10 with a subroutine where all nodes compute
a so-called shared (or common, or global) coin. A shared coin is a random
variable that is 0 with constant probability and 1 with constant probabil-
ity. Sounds like magic, but it isn’t! We assume at most f < n/3 nodes
may crash:

Algorithm 64 Shared Coin (code for node u)

1: set local coin xu := 0 with probability 1/n, else xu := 1
2: use reliable broadcast to tell everybody about your local coin xu
3: memorize all coins you get from others in the set cu
4: wait for exactly n− f coins
5: copy these coins into your local set su (but keep learning coins)
6: use reliable broadcast to tell everybody about your set su
7: wait for exactly n− f sets sv (which satisfy sv ⊆ cu)
8: if seen at least a single coin 0 then
9: return 0

10: else
11: return 1
12: end if

Theorem 17.7. If f < n/3 nodes crash, Algorithm 64 implements a shared
coin.

196 CHAPTER 17. CONSENSUS

Proof. Since only f nodes may crash, each node sees at least n − f coins and
sets in lines 4 and 7, respectively. Thanks to the reliable broadcast protocol
each node eventually sees all the coins in the other sets. In other words, the
algorithm terminates in O(1) time.

The general idea is that a third of the coins are being seen by everybody. If
there is a 0 among these coins, everybody will see that 0. If not, chances are
high that there is no 0 at all! Here are the details:

Let u be the first node to terminate (satisfy line 7). For u we draw a matrix
of all the seen sets sv (columns) and all coins cu seen by node u (rows). Here is
an example with n = 7, f = 2, n− f = 5:

s1 s3 s5 s6 s7

c1 X X X X X
c2 X X X
c3 X X X X X
c5 X X X X
c6 X X X X
c7 X X X X

Note that there are exactly (n − f)2 X’s in this matrix as node u has seen
exactly n − f sets (line 7) each having exactly n − f coins (lines 4 to 6). We
need two little helper lemmas:

Lemma 17.8. There are at least f + 1 rows that have at least f + 1 X’s

Proof. Assume (for the sake of contradiction) that this is not the case. Then
at most f rows have all n − f X’s, and all other rows (at most n − f) have at
most f X’s. In other words, the number of total X’s is bounded by

|X| ≤ f · (n− f) + (n− f) · f = 2f(n− f).

Using n > 3f we get n− f > 2f , and hence |X| ≤ 2f(n− f) < (n− f)2. This
is a contradiction to having exactly (n− f)2 X’s!

Lemma 17.9. Let W be the set of local coins for which the corresponding matrix
row has more than f X’s. All local coins in the set W are seen by all nodes that
terminate.

Proof. Let w ∈ W be such a local coin. By definition of W we know that w is
in at least f + 1 seen sets. Since each node must see at least n − f seen sets
before terminating, each node has seen at least one of these sets, and hence w
is seen by everybody terminating.

Continuing the proof of Theorem 17.7: With probability (1−1/n)n ≈ 1/e ≈ .37
all nodes chose their local coin equal to 1, and 1 is decided. With probability
1− (1− 1/n)|W | there is at least one 0 in W . With Lemma 17.8 we know that
|W | ≈ n/3, hence the probability is about 1− (1−1/n)n/3 ≈ 1− (1/e)1/3 ≈ .28.
With Lemma 17.9 this 0 is seen by all, and hence everybody will decide 0. So
indeed we have a shared coin.

Theorem 17.10. Plugging Algorithm 64 into Algorithm 63 we get a randomized
consensus algorithm which finishes in a constant expected number of rounds.

17.2. RANDOMIZED CONSENSUS 197

Remarks:

• If some nodes go into line 8 of Algorithm 63 the others still have a constant
probability to guess the same shared coin.

• For crash failures there exists an improved constant expected time algo-
rithm which tolerates f failures with 2f < n.

• For Byzantine failures there exists a constant expected time algorithm
which tolerates f failures with 3f < n.

• Similar algorithms have been proposed for the shared memory model.

Chapter Notes

See [? ? ? ?].

198 CHAPTER 17. CONSENSUS

Chapter 18

Multi-Core Computing

This chapter is based on the article“Distributed Computing and the Multicore
Revolution” by Maurice Herlihy and Victor Luchangco. Thanks!

18.1 Introduction

In the near future, nearly all computers, ranging from supercomputers to cell
phones, will be multiprocessors. It is harder and harder to increase processor
clock speed (the chips overheat), but easier and easier to cram more processor
cores onto a chip (thanks to Moore’s Law). As a result, uniprocessors are giving
way to dual-cores, dual-cores to quad-cores, and so on.

However, there is a problem: Except for “embarrassingly parallel” applica-
tions, no one really knows how to exploit lots of cores.

18.1.1 The Current State of Concurrent Programming

In today’s programming practice, programmers typically rely on combinations
of locks and conditions, such as monitors, to prevent concurrent access by differ-
ent threads to the same shared data. While this approach allows programmers
to treat sections of code as “atomic”, and thus simplifies reasoning about inter-
actions, it suffers from a number of severe shortcomings.

• Programmers must decide between coarse-grained locking, in which a large
data structure is protected by a single lock (usually implemented using
operations such as test-and-set or compare and swap(CAS)), and fine-
grained locking, in which a lock is associated with each component of
the data structure. Coarse-grained locking is simple, but permits little or
no concurrency, thereby preventing the program from exploiting multiple
processing cores. By contrast, fine-grained locking is substantially more
complicated because of the need to ensure that threads acquire all nec-
essary locks (and only those, for good performance), and because of the
need to avoid deadlocks, when acquiring multiple locks. The decision is
further complicated by the fact that the best engineering solution may be

199

200 CHAPTER 18. MULTI-CORE COMPUTING

Algorithm Move(Element e, Table from, Table to)

1: if from.find(e) then
2: to.insert(e)
3: from.delete(e)
4: end if

platform-dependent, varying with different machine sizes, workloads, and
so on, making it difficult to write code that is both scalable and portable.

• Conventional locking provides poor support for code composition and
reuse. For example, consider a lock-based hash table that provides atomic
insert and delete methods. Ideally, it should be easy to move an ele-
ment atomically from one table to another, but this kind of composition
simply does not work. If the table methods synchronize internally, then
there is no way to acquire and hold both locks simultaneously. If the ta-
bles export their locks, then modularity and safety are compromised. For
a concrete example, assume we have two hash tables T1 and T2 storing
integers and using internal locks only. Every number is only inserted into
a table, if it is not already present, i.e., multiple occurrences are not per-
mitted. We want to atomically move elements using two threads between
the tables using Algorithm Move. If we have external locks, we must pay
attention to avoid deadlocks etc.

Table T1 is contains 1 and T2 is empty
Time Thread 1 Thread 2

Move(1,T1,T2) Move(1,T2,T1)
1 T1.find(1) delayed
2 T2.insert(1)
3 delayed T2.find(1)
4 T1.insert(1)
5 T1.delete(1) T2.delete(1)

both T1 and T2 are empty

• Such basic issues as the mapping from locks to data, that is, which locks
protect which data, and the order in which locks must be acquired and
released, are all based on convention, and violations are notoriously diffi-
cult to detect and debug. For these and other reasons, today’s software
practices make lock-based concurrent programs (too) difficult to develop,
debug, understand, and maintain.

The research community has addressed this issue for more than fifteen
years by developing nonblocking algorithms for stacks, queues and other
data structures. These algorithms are subtle and difficult. For example,
the pseudo code of a delete operation for a (non-blocking) linked list,
recently presented at a conference, contains more than 30 lines of code,
whereas a delete procedure for a (non-concurrent, used only by one thread)
linked list can be written with 5 lines of code.

18.2. TRANSACTIONAL MEMORY 201

18.2 Transactional Memory

Recently the transactional memory programming paradigm has gained mo-
mentum as an alternative to locks in concurrent programming. Rather than
using locks to give the illusion of atomicity by preventing concurrent access
to shared data with transactional memory, programmers designate regions of
code as transactions, and the system guarantees that such code appears to exe-
cute atomically. A transaction that cannot complete is aborted—its effects are
discarded—and may be retried. Transactions have been used to build large,
complex and reliable database systems for over thirty years; with transactional
memory, researchers hope to translate that success to multiprocessor systems.
The underlying system may use locks or nonblocking algorithms to implement
transactions, but the complexity is hidden from the application programmer.
Proposals exist for implementing transactional memory in hardware, in soft-
ware, and in schemes that mix hardware and software. This area is growing at
a fast pace.

More formally, a transaction is defined as follows:

Definition 18.1. A transaction in transactional memory is characterized by
three properties (ACI):

• Atomicity: Either a transaction finishes all its operations or no operation
has an effect on the system.

• Consistency: All objects are in a valid state before and after the transac-
tion.

• Isolation: Other transactions cannot access or see data in an intermediate
(possibly invalid) state of any parallel running transaction.

Remarks:

• For database transactions there exists a fourth property called durability:
If a transaction has completed, its changes are permanent, i.e., even if the
system crashes, the changes can be recovered. In principle, it would be
feasible to demand the same thing for transactional memory, however this
would mean that we had to use slow hard discs instead of fast DRAM
chips...

• Although transactional memory is a promising approach for concurrent
programming, it is not a panacea, and in any case, transactional programs
will need to interact with other (legacy) code, which may use locks or other
means to control concurrency.

• One major challenge for the adoption of transactional memory is that
it has no universally accepted specification. It is not clear yet how to
interact with I/O and system calls should be dealt with. For instance,
imagine you print a news article. The printer job is part of a transaction.
After printing half the page, the transaction gets aborted. Thus the work
(printing) is lost. Clearly, this behavior is not acceptable.

• From a theory perspective we also face a number of open problems. For
example:

202 CHAPTER 18. MULTI-CORE COMPUTING

– System model: An abstract model for a (shared-memory) multipro-
cessor is needed that properly accounts for performance. In the 80s,
the PRAM model became a standard model for parallel computation,
and the research community developed many elegant parallel algo-
rithms for this model. Unfortunately, PRAM assume that processors
are synchronous, and that memory can be accessed only by read and
write operations. Modern computer architectures are asynchronous
and they provide additional operations such as test-and-set. Also,
PRAM did not model the effects of contention nor the performance
implications of multilevel caching, assuming instead a flat memory
with uniform-cost access. More realistic models have been proposed
to account for the costs of interprocess communication, but these
models still assume synchronous processors with only read and write
access to memory.

– How to resolve conflicts? Many transactional memory implemen-
tations “optimistically” execute transactions in parallel. Conflicts
between two transactions intending to modify the same memory at
the same time are resolved by a contention manager. A contention
manager decides whether a transaction continues, waits or is aborted.
The contention management policy of a transactional memory imple-
mentation can have a profound effect on its performance, and even
its progress guarantees.

18.3 Contention Management

After the previous introduction of transactional memory, we look at different
aspects of contention management from a theoretical perspective. We start with
a description of the model.

We are given a set of transactions S := {T1, ..., Tn} sharing up to s resources
(such as memory cells) that are executed on n threads. Each thread runs on a
separate processor/core P1, ..., Pn. For simplicity, each transaction T consists
of a sequence of tT operations. An operation requires one time unit and can
be a write access of a resource R or some arbitrary computation.1 To perform
a write, the written resource must be acquired exclusively (i.e., locked) before
the access. Additionally, a transaction must store the original value of a written
resource. Only one transaction can lock a resource at a time. If a transaction
A attempts to acquire a resource, locked by B, then A and B face a conflict.
If multiple transactions concurrently attempt to acquire an unlocked resource,
an arbitrary transaction A will get the resource and the others face a conflict
with A. A contention manager decides how to resolve a conflict. Contention
managers operate in a distributed fashion, that is to say, a separate instance of a
contention manager is available for every thread and they operate independently.
Contention managers can make a transaction wait (arbitrarily long) or abort.
An aborted transaction undoes all its changes to resources and frees all locks
before restarting. Freeing locks and undoing the changes can be done with one
operation. A successful transaction finishes with a commit and simply frees

1Reads are of course also possible, but are not critical because they do not attempt to
modify data.

18.3. CONTENTION MANAGEMENT 203

all locks. A contention manager is unaware of (potential) future conflicts of a
transaction. The required resources might also change at any time.

The quality of a contention manager is characterized by different properties:

• Throughput: How long does it take until all transactions have committed?
How good is our algorithm compared to an optimal?

Definition 18.2. The makespan of the set S of transactions is the time
interval from the start of the first transaction until all transactions have
committed.

Definition 18.3. The competitive ratio is the ratio of the makespans of
the algorithm to analyze and an optimal algorithm.

• Progress guarantees: Is the system deadlock-free? Does every transaction
commit in finite time?

Definition 18.4. We look at three levels of progress guarantees:

– wait freedom (strongest guarantee): all threads make progress in a
finite number of steps

– lock freedom: one thread makes progress in a finite number of steps

– obstruction freedom (weakest): one thread makes progress in a finite
number of steps in absence of contention (no other threads compete
for the same resources)

Remarks:

• For the analysis we assume an oblivious adversary. It knows the algorithm
to analyze and chooses/modifies the operations of transactions arbitrarily.
However, the adversary does not know the random choices (of a random-
ized algorithm). The optimal algorithm knows all decisions of the adver-
sary, i.e. first the adversary must say how transactions look like and then
the optimal algorithm, having full knowledge of all transaction, computes
an (optimal) schedule.

• Wait freedom implies lock freedom. Lock freedom implies obstruction
freedom.

• Here is an example to illustrate how needed resources change over time:
Consider a dynamic data structure such as a balanced tree. If a transaction
attempts to insert an element, it must modify a (parent) node and maybe
it also has to do some rotations to rebalance the tree. Depending on the
elements of the tree, which change over time, it might modify different
objects. For a concrete example, assume that the root node of a binary
tree has value 4 and the root has a (left) child of value 2. If a transaction
A inserts value 5, it must modify the pointer to the right child of the root
node with value 4. Thus it locks the root node. If A gets aborted by a
transaction B, which deletes the node with value 4 and commits, it will
attempt to lock the new root node with value 2 after its restart.

204 CHAPTER 18. MULTI-CORE COMPUTING

• There are also systems, where resources are not locked exclusively. All
we need is a correct serialization (analogous to transactions in database
systems). Thus a transaction might speculatively use the current value
of a resource, modified by an uncommitted transaction. However, these
systems must track dependencies to ensure the ACI properties of a trans-
action (see Definition 18.1). For instance, assume a transaction T1 incre-
ments variable x from 1 to 2. Then transaction T2 might access x and
assume its correct value is 2. If T1 commits everything is fine and the
ACI properties are ensured, but if T1 aborts, T2 must abort too, since
otherwise the atomicity property was violated.

• In practice, the number of concurrent transactions might be much larger
than the number of processors. However, performance may decrease with
an increasing number of threads since there is time wasted to switch be-
tween threads. Thus, in practice, load adaption schemes have been sug-
gested to limit the number of concurrent transactions close to (or even
below) the number of cores.

• In the analysis, we will assume that the number of operations is fixed for
each transaction. However, the execution time of a transaction (in the
absence of contention) might also change, e.g., if data structures shrink,
less elements have to be considered. Nevertheless, often the changes are
not substantial, i.e., only involve a constant factor. Furthermore, if an
adversary can modify the duration of a transaction arbitrarily during the
execution of a transaction, then any algorithm must make the exact same
choices as an optimal algorithm: Assume two transactions T0 and T1 face
a conflict and an algorithm Alg decides to let T0 wait (or abort). The
adversary could make the opposite decision and let T0 proceed such that
it commits at time t0. Then it sets the execution time T0 to infinity, i.e.,
tT0

=∞ after t0. Thus, the makespan of the schedule for algorithm Alg is
unbounded though there exists a schedule with bounded makespan. Thus
the competitive ratio is unbounded.

Problem complexity

In graph theory, coloring a graph with as few colors as possible is known to be
hard problem. A (vertex) coloring assigns a color to each vertex of a graph such
that no two adjacent vertices share the same color. It was shown that computing
an optimal coloring given complete knowledge of the graph is NP-hard. Even
worse, computing an approximation within a factor of χ(G)logχ(G)/25, where
χ(G) is the minimal number of colors needed to color the graph, is NP-hard as
well.

To keep things simple, we assume for the following theorem that resource
acquisition takes no time, i.e., as long as there are no conflicts, transactions get
all locks they wish for at once. In this case, there is an immediate connection to
graph coloring, showing that even an offline version of contention management,
where all potential conflicts are known and do not change over time, is extremely
hard to solve.

Theorem 18.5. If the optimal schedule has makespan k and resource acquisi-
tion takes zero time, it is NP-hard to compute a schedule of makespan less than

18.3. CONTENTION MANAGEMENT 205

klog k/25, even if all conflicts are known and transactions do not change their
resource requirements.

Proof. We will prove the claim by showing that any algorithm finding a schedule
taking k′ < k(log k)/25 can be utilized to approximate the chromatic number of

any graph better than χ(G)
log χ(G)

25 .

Given the graph G = (V,E), define that V is the set of transactions and
E is the set of resources. Each transaction (node) v ∈ V needs to acquire a
lock on all its resources (edges) {v, w} ∈ E, and then computes something for
exactly one round. Obviously, this “translation” of a graph into our scheduling
problem does not require any computation at all.

Now, if we knew a χ(G)-coloring of G, we could simply use the fact that the
nodes sharing one color form an independent set and execute all transactions
of a single color in parallel and the colors sequentially. Since no two neighbors
are in an independent set and resources are edges, all conflicts are resolved.
Consequently, the makespan k is at most χ(G).

On the other hand, the makespan k must be at least χ(G): Since each trans-
action (i.e., node) locks all required resources (i.e., adjacent edges) for at least
one round, no schedule could do better than serve a (maximum) independent
set in parallel while all other transactions wait. However, by definition of the
chromatic number χ(G), V cannot be split into less than χ(G) independent sets,
meaning that k ≥ χ(G). Therefore k = χ(G).

In other words, if we could compute a schedule using k′ < k(log k)/25 rounds
in polynomial time, we knew that

χ(G) = k ≤ k′ < k(log k)/25 = χ(G)(logχ(G))/25.

Remarks:

• The theorem holds for a central contention manager, knowing all trans-
actions and all potential conflicts. Clearly, the online problem, where
conflicts remain unknown until they occur, is even harder. Furthermore,
the distributed nature of contention managers also makes the problem
even more difficult.

• If resource acquisition does not take zero time, the connection between the
problems is not a direct equivalence. However, the same proof technique
shows that it is NP-hard to compute a polynomial approximation, i.e.,
k′ ≤ kc for some constant c ≥ 1.

Deterministic contention managers

Theorem 18.5 showed that even if all conflicts are known, one cannot produce
schedules which makespan get close to the optimal without a lot of computation.
However, we target to construct contention managers that make their decisions
quickly without knowing conflicts in advance. Let us look at a couple of con-
tention managers and investigate their throughput and progress guarantees.

206 CHAPTER 18. MULTI-CORE COMPUTING

• A first naive contention manger: Be aggressive! Always abort the trans-
action having locked the resource. Analysis: The throughput might be
zero, since a livelock is possible. But the system is still obstruction free.
Consider two transactions consisting of three operations. The first opera-
tion of both is a write to the same resource R. If they start concurrently,
they will abort each other infinitely often.

• A smarter contention manager: Approximate the work done. Assume
before a start (also before a restart after an abort) a transaction gets
a unique timestamp. The older transaction, which is believed to have
already performed more work, should win the conflict.

Analysis: Clearly, the oldest transaction will always run until commit
without interruption. Thus we have lock-freedom, since at least one trans-
action makes progress at any time. In other words, at least one processor
is always busy executing a transaction until its commit. Thus, the bound
says that all transactions are executed sequentially. How about the com-
petitive ratio? We have s resources and n transactions starting at the
same time. For simplicity, assume every transaction Ti needs to lock at
least one resource for a constant fraction c of its execution time tTi . Thus,
at most s transactions can run concurrently from start until commit with-
out (possibly) facing a conflict (if s+ 1 transactions run at the same time,
at least two of them lock the same resource). Thus, the makespan of an

optimal contention manager is at least:
∑n
i=0

c·tTi
s . The makespan of our

timestamping algorithm is at most the duration of a sequential execution,
i.e. the sum of the lengths of all transactions:

∑n
i=0 tTi . The competitive

ratio is: ∑n
i=0 tTi∑n
i=0

c·tTi
s

=
s

c
= O(s).

Remarks:

– Unfortunately, in most relevant cases the number of resources is larger
than the number of cores, i.e., s > n. Thus, our timestamping al-
gorithm only guarantees sequential execution, whereas the optimal
might execute all transactions in parallel.

Are there contention managers that guarantee more than sequential execu-
tion, if a lot of parallelism is possible? If we have a powerful adversary, that can
change the required resources after an abort, the analysis is tight. Though we
restrict to deterministic algorithms here, the theorem also holds for randomized
contention managers.

Theorem 18.6. Suppose n transactions start at the same time and the adver-
sary is allowed to alter the resource requirement of any transaction (only) after
an abort, then the competitive ratio of any deterministic contention manager is
Ω(n).

Proof. Assume we have n resources. Suppose all transactions consist of two
operations, such that conflicts arise, which force the contention manager to

18.3. CONTENTION MANAGEMENT 207

abort one of the two transactions T2i−1, T2i for every i < n/2. More precisely,
transaction T2i−1 writes to resource R2i−1 and to R2i afterwards. Transaction
T2i writes to resource R2i and to R2i−1 afterwards. Clearly, any contention
manager has to abort n/2 transactions. Now the adversary tells each transaction
which did not finish to adjust its resource requirements and write to resource
R0 as their first operation. Thus, for any deterministic contention manager the
n/2 aborted transactions must execute sequentially and the makespan of the
algorithm becomes Ω(n).

The optimal strategy first schedules all transactions that were aborted and in
turn aborts the others. Since the now aborted transactions do not change their
resource requirements, they can be scheduled in parallel. Hence the optimal
makespan is 4, yielding a competitive ratio of Ω(n).

Remarks:

• The prove can be generalized to show that the ratio is Ω(s) if s resources
are present, matching the previous upper bound.

• But what if the adversary is not so powerful, i.e., a transaction has a fixed
set of needed resources?

The analysis of algorithm timestamp is still tight. Consider the dining
philosophers problem: Suppose all transactions have length n and trans-
action i requires its first resource Ri at time 1 and its second Ri+1 (except
Tn, which only needs Rn) at time n− i. Thus, each transaction Ti poten-
tially conflicts with transaction Ti−1 and transaction Ti+1. Let transaction
i have the ith oldest timestamp. At time n− i transaction i+ 1 with i ≥ 1
will get aborted by transaction i and only transaction 1 will commit at
time n. After every abort transaction i restarts 1 time unit before trans-
action i− 1. Since transaction i− 1 acquires its second resource i− 1 time
units before its termination, transaction i − 1 will abort transaction i at
least i− 1 times. After i− 1 aborts transaction i may commit. The total
time until the algorithm is done is bounded by the time transaction n stays
in the system, i.e., at least

∑n
i=1(n − i) = Ω(n2). An optimal schedule

requires only O(n) time: First schedule all transactions with even indices,
then the ones with odd indices.

• Let us try to approximate the work done differently. The transaction,
which has performed more work should win the conflict. A transac-
tion counts the number of accessed resources, starting from 0 after ev-
ery restart. The transaction which has acquired more resources, wins the
conflict. In case both have accessed the same number of resources, the
transaction having locked the resource may proceed and the other has to
wait.

Analysis: Deadlock possible: Transaction A and B start concurrently.
Transaction A writes to R1 as its first operation and to R2 as its second
operation. Transaction B writes to the resources in opposite order.

Randomized contention managers

Though the lower bound of the previous section (Theorem 18.6) is valid for both
deterministic and randomized schemes, let us look at a randomized approach:

208 CHAPTER 18. MULTI-CORE COMPUTING

Each transaction chooses a random priority in [1, n]. In case of a conflict, the
transaction with lower priority gets aborted. (If both conflicting transactions
have the same priority, both abort.)

Additionally, if a transaction A was aborted by transaction B, it waits until
transaction B committed or aborted, then transaction A restarts and draws a
new priority.

Analysis: Assume the adversary cannot change the resource requirements,
otherwise we cannot show more than a competitive ratio of n, see Theorem
18.6. Assume if two transactions A and B (potentially) conflict (i.e., write to
the same resource), then they require the resource for at least a fraction c of their
running time. We assume a transaction T potentially conflicts with dT other
transactions. Therefore, if a transaction has highest priority among these dT
transactions, it will abort all others and commit successfully. The chance that
for a transaction T a conflicting transaction chooses the same random number
is (1 − 1/n)dT > (1 − 1/n)n ≈ 1/e. The chance that a transaction chooses the
largest random number and no other transaction chose this number is thus at
least 1/dT · 1/e. Thus, for any constant c ≥ 1, after choosing e · dT · c · lnn
random numbers the chance that transaction T has commited successfully is

1−
(

1− 1

e · dT

)e·dT ·c·lnn
≈ 1− e−c lnn = 1− 1

nc
.

Assuming that the longest transaction takes time tmax, within that time a
transaction either commits or aborts and chooses a new random number. The
time to choose e · tmax · c · lnn numbers is thus at most e · tmax · dT · c · lnn =
O(tmax · dT · lnn). Therefore, with high probability each transaction makes
progress within a finite amount of time, i.e., our algorithm ensures wait freedom.
Furthermore, the competitive ratio of our randomized contention manger for the
previously considered dining philosophers problem is w.h.p. only O(lnn), since
any transaction only conflicts with two other transactions.

Chapter Notes

See [? ? ? ?].

Chapter 19

Dominating Set

In this chapter we present another randomized algorithm that demonstrates the
power of randomization to break symmetries. We study the problem of finding
a small dominating set of the network graph. As it is the case for the MIS, an
efficient dominating set algorithm can be used as a basic building block to solve
a number of problems in distributed computing. For example, whenever we need
to partition the network into a small number of local clusters, the computation
of a small dominating set usually occurs in some way. A particularly important
application of dominating sets is the construction of an efficient backbone for
routing.

Definition 19.1 (Dominating Set). Given an undirected graph G = (V,E), a
dominating set is a subset S ⊆ V of its nodes such that for all nodes v ∈ V ,
either v ∈ S or a neighbor u of v is in S.

Remarks:

• It is well-known that computing a dominating set of minimal size is NP-
hard. We therefore look for approximation algorithms, that is, algorithms
which produce solutions which are optimal up to a certain factor.

• Note that every MIS (cf. Chapter 7) is a dominating set. In general,
the size of every MIS can however be larger than the size of an optimal
minimum dominating set by a factor of Ω(n). As an example, connect the
centers of two stars by an edge. Every MIS contains all the leaves of at
least one of the two stars whereas there is a dominating set of size 2.

All the dominating set algorithms that we study throughout this chapter
operate in the following way. We start with S = ∅ and add nodes to S until
S is a dominating set. To simplify presentation, we color nodes according to
their state during the execution of an algorithm. We call nodes in S black, nodes
which are covered (neighbors of nodes in S) gray, and all uncovered nodes white.
By W (v), we denote the set of white nodes among the direct neighbors of v,
including v itself. We call w(v) = |W (v)| the span of v.

209

210 CHAPTER 19. DOMINATING SET

19.1 Sequential Greedy Algorithm

Intuitively, to end up with a small dominating set S, nodes in S need to cover
as many neighbors as possible. It is therefore natural to add nodes v with a
large span w(v) to S. This idea leads to a simple greedy algorithm:

Algorithm 65 Greedy Algorithm

1: S := ∅;
2: while ∃ white nodes do
3: v :=

{
v
∣∣ w(v) = maxu{w(u)}

}
;

4: S := S ∪ v;
5: end while

Theorem 19.2. The Greedy Algorithm computes a ln ∆-approximation, that
is, for the computed dominating set S and an optimal dominating set S∗, we
have

|S|
|S∗|

≤ ln ∆.

Proof. Each time, we choose a new node of the dominating set (each greedy
step), we have cost 1. Instead of letting this node pay the whole cost, we
distribute the cost equally among all newly covered nodes. Assume that node
v, chosen in line 3 of the algorithm, is white itself and that its white neighbors
are v1, v2, v3, and v4. In this case each of the 5 nodes v and v1, . . . , v4 get
charged 1/5. If v is chosen as a gray node, only the nodes v1, . . . , v4 get charged
(they all get 1/4).

Now, assume that we know an optimal dominating set S∗. By the definition
of dominating sets, to each node which is not in S∗, we can assign a neighbor
from S∗. By assigning each node to exactly one neighboring node of S∗, the
graph is decomposed into stars, each having a dominator (node in S∗) as center
and non-dominators as leaves. Clearly, the cost of an optimal dominating set
is 1 for each such star. In the following, we show that the amortized cost
(distributed costs) of the greedy algorithm is at most ln ∆ + 2 for each star.
This suffices to prove the theorem.

Consider a single star with center v∗ ∈ S∗ before choosing a new node u
in the greedy algorithm. The number of nodes that become dominated when
adding u to the dominating set is w(u). Thus, if some white node v in the star of
v∗ becomes gray or black, it gets charged 1/w(u). By the greedy condition, u is a
node with maximal span and therefore w(u) ≥ w(v∗). Thus, v is charged at most
1/w(v∗). After becoming gray, nodes do not get charged any more. Therefore
first node that is covered in the star of v∗ gets charged at most 1/(d(v∗) + 1).
Because w(v∗) ≥ d(v∗) when the second node is covered, the second node gets
charged at most 1/d(v∗). In general, the ith node that is covered in the star of
v∗ gets charged at most 1/(d(v∗) + i− 2). Thus, the total amortized cost in the
star of v∗ is at most

1

d(v∗) + 1
+

1

d(v∗)
+ · · ·+ 1

2
+

1

1
= H(d(v∗) + 1) ≤ H(∆ + 1) < ln(∆) + 2

where ∆ is the maximal degree of G and where H(n) =
∑n
i−1 1/i is the nth

number.

19.2. DISTRIBUTED GREEDY ALGORITHM 211

Remarks:

• One can show that unless NP ⊆ DTIME(nO(log logn)), no polynomial-time
algorithm can approximate the minimum dominating set problem better
than (1 − o(1)) · ln ∆. Thus, unless P ≈ NP, the approximation ratio of
the simple greedy algorithm is optimal (up to lower order terms).

19.2 Distributed Greedy Algorithm

For a distributed algorithm, we use the following observation. The span of a
node can only be reduced if any of the nodes at distance at most 2 is included
in the dominating set. Therefore, if the span of node v is greater than the span
of any other node at distance at most 2 from v, the greedy algorithm chooses
v before any of the nodes at distance at most 2. This leads to a very simple
distributed version of the greedy algorithm. Every node v executes the following
algorithm.

Algorithm 66 Distributed Greedy Algorithm (at node v):

1: while v has white neighbors do
2: compute span w(v);
3: send w(v) to nodes at distance at most 2;
4: if w(v) largest within distance 2 (ties are broken by IDs) then
5: join dominating set
6: end if
7: end while

Theorem 19.3. Algorithm 66 computes a dominating set of size at most ln ∆+2
times the size of an optimal dominating set in O(n) rounds.

Proof. The approximation quality follows directly from the above observation
and the analysis of the greedy algorithm. The time complexity is at most linear
because in every iteration of the while loop, at least one node is added to the
dominating set and because one iteration of the while loop can be implemented
in a constant number of rounds.

The approximation ratio of the above distributed algorithm is best possi-
ble (unless P ≈ NP or unless we allow local computations to be exponential).
However, the time complexity is very bad. In fact, there really are graphs on
which in each iteration of the while loop, only one node is added to the dom-
inating set. As an example, consider a graph as in Figure 19.1. An optimal
dominating set consists of all nodes on the center axis. The distributed greedy
algorithm computes an optimal dominating set, however, the nodes are chosen
sequentially from left to right. Hence, the running time of the algorithm on
the graph of Figure 19.1 is Ω(

√
n). Below, we will see that there are graphs on

which Algorithm 66 even needs Ω(n) rounds.
The problem of the graph of Figure 19.1 is that there is a long path of

descending degrees (spans). Every node has to wait for the neighbor to the
left. Therefore, we want to change the algorithm in such a way that there
are no long paths of descending spans. Allowing for an additional factor 2 in

212 CHAPTER 19. DOMINATING SET

Figure 19.1: Distributed greedy algorithm: Bad example

Figure 19.2: Distributed greedy algorithm with rounded spans: Bad example

the approximation ratio, we can round all spans to the next power of 2 and
let the greedy algorithm take a node with a maximal rounded span. In this
case, a path of strictly descending rounded spans has at most length log n. For
the distributed version, this means that nodes whose rounded span is maximal
within distance 2 are added to the dominating set. Ties are again broken by
unique node IDs. If node IDs are chosen at random, the time complexity for
the graph of Figure 19.1 is reduced from Ω(

√
n) to O(log n).

Unfortunately, there still is a problem remaining. To see this, we consider
Figure 19.2. The graph of Figure 19.2 consists of a clique with n/3 nodes
and two leaves per node of the clique. An optimal dominating set consists
of all the n/3 nodes of the clique. Because they all have distance 1 from each
other, the described distributed algorithm only selects one in each while iteration
(the one with the largest ID). Note that as soon as one of the nodes is in the
dominating set, the span of all remaining nodes of the clique is 2. They do not
have common neighbors and therefore there is no reason not to choose all of
them in parallel. However, the time complexity of the simple algorithm is Ω(n).
In order to improve this example, we need an algorithm that can choose many
nodes simultaneously as long as these nodes do not interfere too much, even
if they are neighbors. In Algorithm 67, N(v) denotes the set of neighbors of
v (including v itself) and N2(v) =

⋃
u∈N(V)N(u) are the nodes at distance at

most 2 of v. As before, W (v) =
{
u ∈ N(v) : u is white

}
and w(v) = |W (v)|.

It is clear that if Algorithm 67 terminates, it computes a valid dominating set.
We will now show that the computed dominating set is small and that the
algorithm terminates quickly.

Theorem 19.4. Algorithm 67 computes a dominating set of size at most (6 ·
ln ∆ + 12) · |S∗|, where S∗ is an optimal dominating set.

19.2. DISTRIBUTED GREEDY ALGORITHM 213

Algorithm 67 Fast Distributed Dominating Set Algorithm (at node v):

1: W (v) := N(v); w(v) := |W (v)|;
2: while W (v) 6= ∅ do
3: w̃(v) := 2blog2 w(v)c; // round down to next power of 2
4: ŵ(v) := maxu∈N2(v) w̃(u);
5: if w̃(v) = ŵ(v) then v.active := true else v.active := false end if ;
6: compute support s(v) := |{u ∈ N(v) : u.active = true}|;
7: ŝ(v) := maxu∈W (v) s(u);
8: v.candidate := false;
9: if v.active then

10: v.candidate := true with probability 1/ŝ(v)
11: end if ;
12: compute c(v) := |{u ∈W (v) : u.candidate = true}|;
13: if v.candidate and

∑
u∈W (v) c(u) ≤ 3w(v) then

14: node v joins dominating set
15: end if
16: W (v) := {u ∈ N(v) : u is white}; w(v) := |W (v)|;
17: end while

Proof. The proof is a bit more involved but analogous to the analysis of the
approximation ratio of the greedy algorithm. Every time, we add a new node v
to the dominating set, we distribute the cost among v (if it is still white) and its
white neighbors. Consider an optimal dominating set S∗. As in the analysis of
the greedy algorithm, we partition the graph into stars by assigning every node
u not in S∗ to a neighbor v∗ in S∗. We want to show that the total distributed
cost in the star of every v∗ ∈ S∗ is at most 6H(∆ + 1).

Consider a node v that is added to the dominating set by Algorithm 67. Let
W (v) be the set of white nodes in N(v) when v becomes a dominator. For a
node u ∈ W (v) let c(u) be the number of candidate nodes in N(u). We define
C(v) =

∑
u∈W (v) c(u). Observe that C(v) ≤ 3w(v) because otherwise v would

not join the dominating set in line 15. When adding v to the dominating set,
every newly covered node u ∈W (v) is charged 3/(c(u)w(v)). This compensates
the cost 1 for adding v to the dominating set because

∑
u∈W (v)

3

c(u)w(v)
≥ w(v) · 3

w(v) ·
∑
u∈W (v) c(u)/w(v)

=
3

C(v)/w(v)
≥ 1.

The first inequality follows because it can be shown that for αi > 0,
∑k
i=1 1/αi ≥

k/ᾱ where ᾱ =
∑k
i=1 αi/k.

Now consider a node v∗ ∈ S∗ and assume that a white node u ∈W (v∗) turns
gray or black in iteration t of the while loop. We have seen that u is charged
3/(c(u)w(v)) for every node v ∈ N(u) that joins the dominating set in iteration
t. Since a node can only join the dominating set if its span is largest up to a
factor of two within two hops, we have w(v) ≥ w(v∗)/2 for every node v ∈ N(u)
that joins the dominating set in iteration t. Because there are at most c(u) such
nodes, the charge of u is at most 6/w(v∗). Analogously to the sequential greedy
algorithm, we now get that the total cost in the star of a node v∗ ∈ S∗ is at

214 CHAPTER 19. DOMINATING SET

most

|N(v∗)|∑
i=1

6

i
≤ 6 ·H(|N(v∗)|) ≤ 6 ·H(∆ + 1) = 6 · ln ∆ + 12.

To bound the time complexity of the algorithm, we first need to prove the
following lemma.

Lemma 19.5. Consider an iteration of the while loop. Assume that a node u is
white and that 2s(u) ≥ maxv∈C(u) ŝ(v) where C(u) = {v ∈ N(u) : v.candidate =
true}. Then, the probability that u becomes dominated (turns gray or black) in
the considered while loop iteration is larger than 1/9.

Proof. Let D(u) be the event that u becomes dominated in the considered while
loop iteration, i.e., D(u) is the event that u changes its color from white to gray
or black. Thus, we need to prove that Pr

[
D(u)

]
> 1/9. We can write this

probability as

Pr
[
D(u)

]
= Pr

[
c(u) > 0

]
·Pr
[
D(u)|c(u) > 0

]
+Pr

[
c(u) = 0

]
·Pr
[
D(u)|c(u) = 0

]︸ ︷︷ ︸
=0

.

It is therefore sufficient to lower bound the probabilities Pr
[
c(u) > 0

]
and

Pr
[
D(u)|c(u) > 0

]
. We have 2s(u) ≥ maxv∈C(u) ŝ(v). Therefore, in line 10, each

of the s(u) active nodes v ∈ N(u) becomes a candidate node with probability
1/ŝ(v) ≥ 1/(2s(u)). The probability that at least one of the s(u) active nodes
in N(u) becomes a candidate therefore is

Pr[c(u) > 0] > 1−
(

1− 1

2s(u)

)s(u)

> 1− 1√
e
>

1

3
.

We used that for x ≥ 1, (1−1/x)x < 1/e. We next want to bound the probability
Pr
[
D(u)|c(u) > 0

]
that at least one of the c(u) candidates in N(u) joins the

dominating set. We have

Pr
[
D(u)|c(u) > 0

]
≥ min

v∈N(u)
Pr
[
v joins dominating set|v.candidate = true

]
.

Consider some node v and let C(v) =
∑
v′∈W (v) c(v

′). If v is a candidate, it joins

the dominating set if C(v) ≤ 3w(v). We are thus interested in the probability
Pr
[
C(v) ≤ 3w(v)

∣∣v.candidate = true
]
. Assume that v is a candidate. Let

c′(v′) = c(v′) − 1 be the number of candidates in N(v′) \ {v}. For a node
v′ ∈ W (v), c′(v′) is upper bounded by a binomial random variable Bin

(
s(v′)−

1, 1/s(v′)
)

with expectation (s(v′)− 1)/s(v′). We therefore have

E
[
c(v′)|v.candidate = true

]
= 1 + E

[
c′(v′)

]
= 1 +

s(v′)− 1

s(v′)
< 2.

By linearity of expectation, we hence obtain

E
[
C(v)|v.candidate = true

]
=

∑
v′∈W (v)

E
[
c(v′)|v.candidate = true

]
< 2w(v).

19.2. DISTRIBUTED GREEDY ALGORITHM 215

We can now use Markov’s inequality to bound the probability that C(v) becomes
too large:

Pr
[
C(v) > 3w(v)

∣∣v.candidate = true
]
<

2

3
.

Combining everything, we get

Pr
[
v joins dom. set|v.candidate = true

]
= Pr

[
C(v) ≤ 3w(v)

∣∣v.candidate = true
]
>

1

3

and hence

Pr
[
D(u)

]
= Pr

[
c(u) > 0] · Pr

[
D(u)|c(u) > 0

]
>

1

3
· 1

3
=

1

9
.

Theorem 19.6. In expectation, Algorithm 67 terminates in O(log2∆ · log n)
rounds.

Proof. First observe that every iteration of the while loop can be executed in
a constant number of rounds. Consider the state after t iterations of the while
loop. Let w̃max(t) = maxv∈V w̃(v) be the maximal span rounded down to the
next power of 2 after t iterations. Further, let smax(t) be the maximal support
s(v) of any node v for which there is a node u ∈ N(v) with w(u) ≥ w̃max(t)
after t while loop iterations. Observe that all nodes v with w(v) ≥ w̃max(t) are
active in iteration t+ 1 and that as long as the maximal rounded span w̃max(t)
does not change, smax(t) can only get smaller with increasing t. Consider the
pair (w̃max, smax) and define a relation ≺ such that (w′, s′) ≺ (w, s) iff w′ < w
or w = w′ and s′ ≤ s/2. From the above observations, it follows that

(w̃max(t), smax(t)) ≺ (w̃max(t′), smax(t′)) =⇒ t > t′. (19.1)

For a given time t, let T (t) be the first time for which

(w̃max(T (t)), smax(T (t))) ≺ (w̃max(t), smax(t)).

We first want to show that for all t,

E[T (t)− t] = O(log n). (19.2)

Let us look at the state after t while loop iterations. By Lemma 19.5, every white
node u with support s(u) ≥ smax(t)/2 will be dominated after the following while
loop iteration with probability larger than 1/9. Consider a node u that satisfies
the following three conditions:

(1) u is white

(2) ∃v ∈ N(u) : w(v) ≥ w̃max(t)

(3) s(u) ≥ smax(t)/2.

216 CHAPTER 19. DOMINATING SET

As long as u satisfies all three conditions, the probability that u becomes domi-
nated is larger than 1/9 in every while loop iteration. Hence, after t+τ iterations
(from the beginning), u is dominated or does not satisfy (2) or (3) with prob-
ability larger than (8/9)τ . Choosing τ = log9/8(2n), this probability becomes
1/(2n). There are at most n nodes u satisfying Conditions (1)− (3). Therefore,
applying union bound, we obtain that with probability more than 1/2, there is
no white node u satisfying Conditions (1)− (3) at time t+ log9/8(2n). Equiva-
lently, with probability more than 1/2, T (t) ≤ t + log9/8(2n). Analogously, we

obtain that with probability more than 1/2k, T (t) ≤ t+ k log9/8(2n). We then
have

E[T (t)− t] =

∞∑
τ=1

Pr[T (t)− t = τ] · τ

≤
∞∑
k=1

(
1

2k
− 1

2k+1

)
· k log9/8(2n) = log9/8(2n)

and thus Equation (19.2) holds.
Let t0 = 0 and ti = T (ti−1) for i = 1, . . . , k. where tk = mint w̃max(t) = 0.

Because w̃max(t) = 0 implies that w(v) = 0 for all v ∈ V and that we therefore
have computed a dominating set, by Equations (19.1) and (19.2) (and linearity
of expectation), the expected number of rounds until Algorithm 67 terminates
is O(k · log n). Since w̃max(t) can only have blog ∆c different values and because
for a fixed value of w̃max(t), the number of times smax(t) can be decreased by a
factor of 2 is at most log ∆ times, we have k ≤ log2∆.

Remarks:

• It is not hard to show that Algorithm 67 even terminates in O(log2∆ ·
log n) rounds with probability 1− 1/nc for an arbitrary constant c.

• Using the median of the supports of the neighbors instead of the maximum
in line 8 results in an algorithm with time complexity O(log ∆ · log n).
With another algorithm, this can even be slightly improved to O(log2∆).

• One can show that Ω(log ∆/ log log ∆) rounds are necessary to obtain an
O(log ∆)-approximation.

• It is not known whether there is a fast deterministic approximation al-
gorithm. This is an interesting and important open problem. The best
deterministic algorithm known to achieve an O(log ∆)-approximation has

time complexity 2O(
√

logn).

Chapter Notes

See [? ?].

Chapter 20

Routing

20.1 Array

(Routing is important for any distributed system. This chapter is only an
introduction into routing; we will see other facets of routing in a next chapter.)

Definition 20.1 (Routing). We are given a graph and a set of routing requests,
each defined by a source and a destination node.

Definition 20.2 (One-to-one, Permutation). In a one-to-one routing problem,
each node is the source of at most one packet and each node is the destination of
at most one packet. In a permutation routing problem, each node is the source
of exactly one packet and each node is the destination of exactly one packet.

Remarks:

• Permutation routing is a special case of one-to-one routing.

Definition 20.3 (Store and Forward Routing). The network is synchronous.
In each step, at most two packets (one in each direction) can be sent over each
link.

Remarks:

• If two packets want to follow the same link, then one is queued (stored)
at the sending node. This is known as contention.

Algorithm 68 Greedy on Array

An array is a linked list of n nodes; that is, node i is connected with nodes
i − 1 and i + 1, for i = 2, . . . , n − 1. With the greedy algorithm, each node
injects its packet at time 0. At each step, each packet that still needs to move
rightward or leftward does so.

Theorem 20.4 (Analysis). The greedy algorithm terminates in n− 1 steps.

217

218 CHAPTER 20. ROUTING

Proof. By induction two packets will never contend for the same link. Then
each packet arrives at its destination in d steps, where d is the distance between
source and destination.

Remarks:

• Unfortunately, only the array (or the ring) allows such a simple contention-
free analysis. Already in a tree (with nodes of degree 3 or more) there
might be two packets arriving at the same step at the same node, both
want to leave on the same link, and one needs to be queued. In a
“Mercedes-Benz” graph Ω(n) packets might need to be queued. We will
study this problem in the next section.

• There are many strategies for scheduling packets contending for the same
edge (e.g. “farthest goes first”); these queuing strategies have a substantial
impact on the performance of the algorithm.

20.2 Mesh

Algorithm 69 Greedy on Mesh

A mesh (a.k.a. grid, matrix) is a two-dimensional array with m columns and
m rows (n = m2). Packets are routed to their correct column (on the row in
greedy array style), and then to their correct row. The farthest packet will
be given priority.

Theorem 20.5 (Analysis). In one-to-one routing, the greedy algorithm termi-
nates in 2m− 2 steps.

Proof. First note that packets in the first phase of the algorithm do not interfere
with packets in the second phase of the algorithm. With Theorem 20.4 each
packet arrives at its correct column in m − 1 steps. (Some packets may arrive
at their turning node earlier, and already start the second phase; we will not
need this in the analysis.) We need the following Lemma for the second phase
of the algorithm.

Lemma 20.6 (Many-to-One on Array, Lemma 1.5 in Leighton Section 1.7).
We are given an array with n nodes. Each node is a destination for at most
one packet (but may be the source of many). If edge contention is resolved by
farthest-to-go (FTG), the algorithm terminates in n− 1 steps.

Leighton Section 1.7 Lemma 1.5. Leftward moving packets and rightward mov-
ing packets never interfere; so we can restrict ourselves to rightward moving
packets. We name the packets with their destination node. Since the queu-
ing strategy is FTG, packet i can only be stopped by packets j > i. Note
that a packet i may be contending with the same packet j several times. How-
ever, packet i will either find its destination “among” the higher packets, or
directly after the last of the higher packets. More formally, after k steps, pack-
ets j, j + 1, . . . , n do not need links 1, . . . , l anymore, with k = n− j + l. Proof
by induction: Packet n has the highest priority: After k steps it has escaped

20.3. ROUTING IN THE MESH WITH SMALL QUEUES 219

the first k links. Packet n − 1 can therefore use link l in step l + 1, and so on.
Packet i not needing link i in step k = n means that packet i has arrived at its
destination node i in step n− 1 or earlier.

Lemma 20.6 completes the proof.

Remarks:

• A 2m − 2 time bound is the best we can hope for, since the distance
between the two farthest nodes in the mesh is exactly 2m− 2.

• One thing still bugs us: The greedy algorithm might need queues in the
order of m. And queues are expensive! In the next section, we try to bring
the queue size down!

20.3 Routing in the Mesh with Small Queues

(First we look at a slightly simpler problem.)

Definition 20.7 (Random Destination Routing). In a random destination rout-
ing problem, each node is the source of at most one packet with destination
chosen uniformly at random.

Remarks:

• Random destination routing is not one-to-one routing. In the worst case,
a node can be destination for all n packets, but this case is very unlikely
(with probability 1/nn−1)

• We study algorithm 20.2, but this time in the random destination model.
Studying the random destination model will give us a deeper understand-
ing of routing... and distributed computing in general!

Theorem 20.8 (Random destination analysis of algorithm 20.2). If desti-
nations are chosen at random the maximum queue size is O(log n/ log log n)
with high probability. (With high probability means with probability at least
1−O(1/n).)

Proof. We can restrict ourselves to column edges because there will not be any
contention at row edges. Let us consider the queue for a north-bound column
edge. In each step, there might be three packets arriving (from south, east,
west). Since each arriving south packet will be forwarded north (or consumed
when the node is the destination), the queue size can only grow from east or
west packets – packets that are “turning” at the node. Hence the queue size
of a node is always bounded by the number of packets turning at the node. A
packet only turns at a node u when it is originated at a node in the same row as
u (there are only m nodes in the row). Packets have random destinations, so the
probability to turn for each of these packets is 1/m only. Thus the probability
P that r or more packets turn in some particular node u is at most

P ≤
(
m

r

)(
1

m

)r

220 CHAPTER 20. ROUTING

(The factor (1− 1/m)m−r is not present because the event “exactly r” includes
the event “more than r” already.) Using(

x

y

)
<

(
xe

y

)y
, for 0 < y < x

we directly get

P <
(me
r

)r(1

m

)r
=
(e
r

)r
Hence most queues do not grow larger than O(1). Also, when we choose r :=
e logn

log logn we can show P = o(1/n2). The probability that any of the 4n queues

ever exceeds r is less than 1− (1− P)4n = o(1/n).

Remarks:

• OK. We got a bound on the queue size. Now what about time complex-
ity?!? The same analysis as for one-to-one routing applies. The probability
that a node sees “many” packets in phase 2 is small... it can be shown
that the algorithm terminates in O(m) time with high probability.

• In fact, maximum queue sizes are likely to be a lot less than logarithmic.
The reason is the following: Though Θ(log n/ log log n) packets might turn
at some node, these turning packets are likely to be spread in time. Early
arriving packets might use gaps and do not conflict with late arriving
packets. With a much more elaborate method (using the so-called “wide-
channel” model) one can show that there will never be more than four(!)
packets in any queue (with high probability only, of course).

• Unfortunately, the above analysis only works for random destination prob-
lems. Question: Can we devise an algorithm that uses small queues only
but for any one-to-one routing problem? Answer: Yes, we can! In the
simplest form we can use a clever trick invented by Leslie Valiant: In-
stead of routing the packets directly on their row-column path, we route
each packet to a randomly chosen intermediate node (on the row-column
path), and from there to the destination (again on the row-column path).
Valiant’s trick routes all packets in O(m) time (with high probability)
and only needs queues of size O(log n). Instead of choosing a random
intermediate node one can choose a random node that is more or less in
the direction of the destination, solving any one-to-one routing problem
in 2m + O(log n) time with only constant-size queues. You don’t wanna
know the details...

• What about no queues at all?!?

20.4 Hot-Potato Routing

Definition 20.9 (Hot-Potato Routing). Like the store-and-forward model the
hot-potato model is synchronous and at most two packets (one in each direction)
can be sent over a link. However, contending packets cannot be stored; instead all
but one contending packet must be sent over a “wrong link” (known as deflection)
immediately, since the hot-potato model does not allow queuing.

20.4. HOT-POTATO ROUTING 221

Remarks:

• Don’t burn your fingers with “hot-potato” packets. If you get one you
better forward it directly!

• A node with degree δ receives up to δ packets at the beginning of each step
– since the node has δ links, it can forward all of them, but unfortunately
not all in the right direction.

• Hot-potato routing is easier to implement, especially on light-based net-
works, where you don’t want to convert photons into electrons and then
back again. There are a couple of parallel machines that use the hot-potato
paradigm to simplify and speed up routing.

• How bad does hot-potato routing get (in the random or the one-to-one
model)? How bad can greedy hot-potato routing (greedy: whenever there
is no contention you must send a packet into the right direction) get in a
worst case?

Algorithm 70 Greedy Hot-Potato Routing on a Mesh

Packets move greedy towards their destination (any good link is fine if there
is more than one). If a packet gets deflected, it gets excited with probability
p (we set p = Θ(1/m)). An excited packet has higher priority. When being
excited, a packet tries to reach the destination on the row-column path. If
two excited packets contend, then the one that wants to exit the opposite link
is given priority. If an excited packet fails to take its desired link it becomes
normal again.

Theorem 20.10 (Analysis). A packet will reach its destination in O(m) ex-
pected time.

Sketch, full proof in Busch et al., SODA 2000. An excited packet can only be
deflected at its start node (after becoming excited), and when trying to turn.
In both cases, the probability to fail is only constant since other excited packets
need to be at the same node at exactly the right instant. Thus the probability
that an excited packets finds to its destination is constant, and therefore a packet
needs to “try” (to become excited) only constantly often. Since a packet tries
every p’th time it gets deflected, in only gets deflected O(1/p) = O(m) times
in expectation. Since each time it does not get deflected, it gets closer to its
destination, it will arrive at the destination in O(m) expected time.

Remarks:

• It seems that at least in expectation having no memory at all does not
harm the time bounds much.

• It is conjectured that one-to-one routing can be shown to have time com-
plexity O(m) for this greedy hot-potato routing algorithm. However, the
best known bound needs an additional logarithmic factor.

222 CHAPTER 20. ROUTING

20.5 More Models

Routing comes in many flavors. We mention some of them in this section for
the sake of completeness.

Store-and-forward and hot-potato routing are variants of packet-switching.
In the circuit-switching model, the entire path from source to destination must
be locked such that a stream of packets can be transmitted.

A packet-switching variant where more than one packet needs to be sent
from source to destination in a stream is known as wormhole routing.

Static routing is when all the packets to be routed are injected at time 0.
Instead, in dynamic routing, nodes may inject new packets constantly (at a
certain rate). Not much is known for dynamic routing.

Instead of having a single source and a single destination for each packet
as in one-to-one routing, researchers have studied many-to-one routing, where a
node may be destination for many sources. The problem of many-to-one routing
is that there might be congested areas in the network (areas with nodes that
are destinations of many packets). Packets that can be routed around such a
congested area should do that, or they increase the congestion even more. Such
an algorithm was studied by Busch et al. at STOC 2000.

Also one-to-many routing (multicasting) was considered, where a source
needs to send the same packet to many destinations. In one-to-many routing,
packets can be duplicated whenever needed.

Nobody knows the topology of the Internet (and it is certainly not an array
or a mesh!). The problem is to find short paths without storing huge routing
tables at each node. There are several forms of routing (e.g. compact routing,
interval routing) that study the trade-off between routing table size and quality
of routing.

Also, researchers started studying the effects of mixing various queuing
strategies in one network. This area of research is known as adversarial queuing
theory.

And last not least there are several special networks. A mobile ad-hoc net-
work, for example, consists of mobile nodes equipped with a wireless communi-
cation device. In such a networks nodes can only communicate when they are
within transmission range. Since the network is mobile (dynamic), and since
the nodes are considered to be simple, a variety of new problems arise.

Chapter Notes

See [? ? ? ? ?].

Chapter 21

Routing Strikes Back

21.1 Butterfly

Let’s first assume that all the sources are on level 0, all destinations are on level
d of a d-dimensional butterfly.

Algorithm 71 Greedy Butterfly Routing

The unique path from a source on level 0 to a destination on level d with
d hops is the greedy path. In the greedy butterfly routing algorithm each
packet is constrained to follow its greedy path.

Remarks:

• In the bit-reversal permutation routing problem, the destination of a
packet is the bit-reversed address of the source. With d = 3 you can see
that both source (000, 0) and source (001, 0) route through edge (000, 1..2).
Will the contention grow with higher dimension? Yes! Choose an odd
d, then all the sources (0 . . . 0b(d+1)/2 . . . bd−1, 0) will route through edge
(00..0, (d− 1)/2...(d+ 1)/2). You can choose the bits bi arbitrarily. There
are 2(d+1)/2 bit combinations, which is

√
n/2 for n = 2d sources.

• On the good side, this contention is also a guaranteed time bound, as the
following theorem shows.

Theorem 21.1 (Analysis). The greedy butterfly algorithm terminates in O(
√
n)

steps.

Proof. For simplicity we assume that d is odd. An edge on level l (from a
node on level l to a node on level l + 1) has at most 2l sources, and at most
2d−l−1 destinations. Therefore the number of paths through an edge on level
l is bounded by nl = 2min(l,d−l−1). A packet can therefore be delayed at most
nl − 1 times on level l. Summing up over all levels, a packet is delayed at most

d−1∑
l=0

nl =

(d−1)/2∑
l=0

nl +

d−1∑
l=(d+1)/2

nl =

(d−1)/2∑
l=0

2l +

(d−3)/2∑
l=0

2l < 3 · 2(d−1)/2 = O(
√
n).

steps.

223

224 CHAPTER 21. ROUTING STRIKES BACK

Remarks:

• The bit-reversed routing is therefore asymptotically a worst-case example.

• However, one that requires square-root queues. When being limited to
constant queue sizes the greedy algorithm can be forced to use Θ(n) steps
for some permutations.

• A routing problem where all the sources are on level 0 and all the destina-
tions are on level d is called an end-to-end routing problem. Surprisingly,
solving an arbitrary routing problem on a butterfly (or any hypercubic
network) is often not harder.

• In the next section we show that there is general square-root lower bound
for “greedy” algorithms for any constant-degree graph. (In other words,
our optimal greedy mesh routing algorithm of Chapter 4 was only possible
because the mesh has such a bad diameter...)

21.2 Oblivious Routing

Definition 21.2 (Oblivious). A routing algorithm is oblivious if the path taken
by each packet depends only on source and destination of the packet (and not
on other packets, or the congestion encountered).

Theorem 21.3 (Lower Bound). Let G be a graph with n nodes and (maximum)
degree d. Let A be any oblivious routing algorithm. Then there is a one-to-one
routing problem for which A will need at least

√
n/2d steps.

Proof. Since A is oblivious, the path from node u to node v is Pu,v; A can be
specified by n2 paths. We must find k one-to-one paths that all use the same
edge e. Then we can proof that A takes at least k/2 steps.

Let’s look at the n − 1 paths to destination node v. For any integer k let
Sk(v) be the set of edges in G where k or more of these paths pass through
them. Also, let S∗k(v) be the nodes incident to Sk(v). Since there are two
nodes incident to each edge |S∗k(v)| ≤ 2|Sk(v)|. In the following we assume that
k ≤ (n− 1)/d; then v ∈ S∗k(v), hence |S∗k(v)| > 0.

We have

n− |S∗k(v)| ≤ (k − 1)(d− 1)|S∗k(v)|

because every node u not in S∗k(v) is a start of a path Pu,v that enters S∗k(v)
from outside. In particular, for any node u /∈ S∗k(v) there is an edge (w,w′) in
Pu,v that enters S∗k(v). Since the edge (w,w′) /∈ Sk(v), there are at most (k−1)
starting nodes u for edge (w,w′). Also there are at most (d− 1) edges adjacent
to w′ that are not in Sk(v). We get

n ≤ (k − 1)(d− 1)|S∗k(v)|+ |S∗k(v)| ≤ 2[1 + (k − 1)(d− 1)]|Sk(v)| ≤ 2kd|Sk(v)|

Thus, |Sk(v)| ≥ n
2kd . We set k =

√
n/d, and sum over all n nodes:

∑
v∈V
|Sk(v)| ≥ n2

2kd
=
n3/2

2

21.3. OFFLINE ROUTING 225

Since there are at most nd/2 edges in G, this means that there is an edge e for
at least

n3/2/2

nd/2
=
√
n/d = k

different values of v.
Since edge e is in at least k different paths in each set Sk(v) we can construct

a one-to-one permutation problem where edge e is used
√
n/d times (directed:√

n/2d contention).

Remarks:

• In fact, as many as (
√
n/d)! one-to-one routing problems can be con-

structed with this method.

• The proof can be extended to the case where the one-to-one routing prob-
lem consists of R route requests. The lower bound is then Ω(R

d
√
n

).

• There is a node that needs to route Ω(
√
n/d) packets.

• The lower bound can be extended to randomized oblivious algorithms...
however, if we are allowed to use randomization, the lower bound gets
much weaker. In fact, one can use Valiant’s trick also in the butterfly:
In a first phase, we route each packet on the greedy path to a random
destination on level d, in the second phase on the same row back to level
0, and in a third phase on the greedy path to the destination. This way
we can escape the bad one-to-one problems with high probability. (There
are much more good one-to-one problems than bad one-to-one problems.)
One can show that with this trick one can route any one-to-one end-to-
end routing problem in asymptotically optimal O(log n) time (with high
probability).

• If a randomized algorithm fails (takes too long), simply re-run it. It will
be likely to succeed then. On the other hand, if a deterministic algorithm
fails in some rare instance, re-running it will not help!

21.3 Offline Routing

There are a variety of other aspects in routing. In this section we study one of
them to gain further insights.

Definition 21.4 (Offline Routing). We are given a routing problem (graph
and set of routing requests). An offline routing algorithm is a (not distributed)
algorithm that sees the whole input (the routing problem).

Remarks:

• Offline routing is worth being studied because the same communication
pattern might appear whenever you run your (important!) (parallel) al-
gorithm.

• In offline routing, path selection and scheduling can be studied indepen-
dently.

226 CHAPTER 21. ROUTING STRIKES BACK

Definition 21.5 (Path Selection). We are given a routing problem (a graph and
a set of routing requests). A path selection algorithm selects a path (a route) for
each request.

Remarks:

• Path selection is efficient if the paths are “short” and do not interfere if
they do not need to. Formally, this can be defined by congestion and
dilation (see below).

• For some routing problems, path selection is easy. If the graph is a tree,
for example, the best path between two nodes is the direct path. (Every
route from a source to a destination includes at least all the links of the
shortest path.)

Definition 21.6 (Dilation, Congestion). The dilation of a path selection is the
length of a maximum path. The contention of an edge is the number of paths that
use the edge. The congestion of a path selection is the load of a most contended
edge.

Remarks:

• A path selection should minimize congestion and dilation.

• Networking researchers have defined the “flow number” which is defined as
the minimum max(congestion, dilation) over all possible path selections.

• Alternatively, congestion can be defined with directed edges, or nodes.

Definition 21.7 (Scheduling). We are given a set of source-destination paths.
A scheduling algorithm specifies which messages traverse which link at which
time step (for an appropriate model).

Remarks:

• The most popular model is store-and-forward (with small queues). Other
popular models have no queues at all: e.g. hot-potato routing or direct
routing (where the source might delay the injection of a packet; once a
packet is injected however, it will go to the destination without stop.)

Lemma 21.8 (Lower Bound). Scheduling takes at least Ω(C +D) steps, where
C is the congestion and D is the dilation.

Remarks:

• We aim for algorithms that are competitive with the lower bound. (As
opposed to algorithms that finish in O(f(n)) time; C + D and n are
generally not comparable.)

Theorem 21.9 (Analysis). Algorithm 21.3 terminates in 2C +D steps.

21.3. OFFLINE ROUTING 227

Algorithm 72 Direct Tree Routing

We are given a tree, and a set of routing requests. (Since the graph is a tree
each route request will take the direct path between source and destination;
in other words, path selection is trivial.) Choose an arbitrary root r. Now
sort all packets using the following order (breaking ties arbitrarily): packet
p comes before packet q if the path of p reaches a node closer to r then the
path of q. Now scan all packets in this order, and for each packet greedily
assign its injection time to be the first that does not cause a conflict with any
previous packet.

Proof. A packet p first goes up, then down the tree; thus turning at node u.
Let eu and ed be the “up” resp. “down” edge on the path adjacent to u. The
injection time of packet p is only delayed by packets that traverse eu or ed (if it
contends with a packet q on another edge, and packet q has not a lower order,
then it contends also on eu or eq). Since congestion is C, there are at most
2C − 2 many packets q. Thus the algorithm terminates after 2C +D steps.

Remarks:

• [Leighton, Maggs, Rao 1988] have shown the existence of an O(C + D)
schedule for any routing problem (on any graph!) using the Lovasz Local
Lemma. Later the result was made more accessible by [Leighton, Maggs,
Richa 1996] and others. Still it is too hard for this course...

Chapter Notes

See [? ? ? ?].

