

Dr. Jens Maßberg

Übungsblatt 1

1) Wir wollen ein Chip entwerfen, der zwei Ampeln (A_1, A_2) an einer Baustelle auf einer Straße kontrolliert. Die Ampel i zeigt rot, wenn $A_i = 0$ und grün wenn $A_i = 1$ (i = 1, 2). Zu jedem Zeitpunkt darf höchstens eine Ampel grün zeigen. Vor jeder Ampel befindet sich eine Induktionsschleife (E_1, E_2) , die mitteilt, ob ein Auto

Außerdem gibt es 4 Zustände, repräsentiert durch zwei Bits Z_1, Z_2 . Das folgende Flussdiagramm zeigt wie sich die Zustände und A_1, A_2 ändern entsprechend des jeweils voherigen Zustandes (Z_1, Z_2) und E_1, E_2 .

Schreiben Sie A_1, A_2, Z_1, Z_2 als Boolsche Funktion mit Variablen Z_1, Z_2, E_1 und E_2 . Konstruieren Sie eine Netzliste, welche diese logische Beschreibung realisiert. Benutze dafür eine Library die Inverter, ANDs, und ORs enthält. Zeichnen Sie diese Netzliste.

- ${\bf 2)}$ Ersetzten Sie die gefundene Netzliste aus Aufgabe 1 durch eine logisch äquivalente Netzliste die nur NANDs enthält.
- 3) Beweisen Sie, dass jede Netzliste mit Technologie Zuweisung logisch äquivalent zu einer Netzliste ist, die nur NANDs enthält.

Abgabetermin: Dieses Übungsblatt wird direkt in der Übung bearbeitet.