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Abstract

In the 1960s, Erdős and Pósa proved that there is a packing-covering dual-
ity for cycles in graphs. As part of the graph minor project, Robertson and
Seymour greatly extended this: there is such a duality for H-expansions
in graphs if and only if H is a planar graph (this includes the previous
result for H = K3). We consider vertex labelled graphs and minors and
provide such a characterisation for 2-connected labelled graphs H.

1 Introduction

The most satisfactory optimisation results are arguably the ones that also pro-
vide a certificate that the optimum is attained. An example is Menger’s theorem
stating that the maximum number of disjoint paths between two vertex sets is
achieved if there is a separator of the same size. More generally this is cap-
tured by the min-flow/max-cut theorem or by the duality principle of linear
programming.

Not always, however, concise certificates for optimality are known or do even
exist. In such a case, an approximate certificate may be available. There are a
few classic examples for this. One is the triangle removal lemma due to Ruzsa
and Szemerédi [14] (for every ε ∈ (0, 1), there is a δ > 0 such that every graph
on n vertices contains either δn3 triangles or εn2 edges whose deleting makes
the graph triangle-free) and its generalisations. The importance of removal lem-
mas is for example demonstrated by its various applications in number theory,
discrete geometry, graph theory and computer science [2].

Another example is a theorem due to Erdős and Pósa [4], which also (includ-
ing its generalisations) has several applications in graph theory and computer
science: every graph G that does not contain k disjoint cycles, admits a vertex
set of size O(k log k) that meets every cycle. More generally, we say that a family
of graphs H has the Erdős-Pósa property if there exists a function f : N→ R+

such that for every graph G and every integer k, there exist k disjoint subgraphs
in G that are isomorphic to graphs in H, or G contains a vertex set X of size
|X| ≤ f(k) such that every subgraph of G isomorphic to a graph in H meets X.
Thus, the class of cycles has the Erdős-Pósa property.

The Erdős-Pósa property has been investigated for numerous graph classes
(see [10] for a recent survey). One of the most striking results is the following due
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to Robertson and Seymour that is a by-product of their graph minor project.
It provides another characterisation of planar graphs, which in fact does not
involve any topological arguments. (Essentially, a graph is an H-expansion if it
can be turned into H by a series of edge contractions; see the next section for
a formal definition.)

Theorem 1 (Robertson and Seymour [11]). Let H be a graph. The family of
H-expansions has the Erdős-Pósa property if and only if H is planar.

Observe that this includes the class of cycles (set H = K3).
There are further extensions of the theorem of Erdős and Pósa. Suppose

we specify a set of labelled vertices S in a graph G and now we ask for cy-
cles that contain at least one vertex from S (such cycles are also known as
S-cycles). Kakimura, Kawarabayashi and Marx [6] proved that S-cycles also
have the Erdős-Pósa property (see [1, 9] for further extensions). Clearly, this
is a generalisation because we may that S = V (G). In [5], Huynh, Joos and
Wollan extended this to cycles with two labels.

We characterise all labelled 2-connected graphs H such that the class of la-
belled H-expansions has the Erdős-Pósa property. For simplicity, let us assume
for now that every vertex has at most one label and we define a (sub)graph to
be simply-labelled if all vertices with a label have the same one.

Theorem 2. Let H be a labelled 2-connected graph such that each vertex carries
at most one label. Then the labelled H-expansions have the Erdős-Pósa property
if and only if there is an embedding of H in the plane such that the boundary C
of the outer face contains all labelled vertices, and there are two simply-labelled
subpaths P,Q ⊆ C that cover all of V (C).

We have actually not yet specified what a labelled H-expansion is. There are
several ways to define labelled expansions. We choose a definition such that the
resulting labelled minor relation is transitive and we also generalise the results
about labelled cycles. As the precise definition is a bit technical, we defer it to
Section 2. We note that, with a slightly stronger notion of labelled subdivisions,
Liu [7] proved a half-integral Erdős-Pósa type result for labelled subdivisions.

Theorem 2 has a number of applications. It implies the result of Kakimura,
Kawarabayashi and Marx that S-cycles have the Erdős-Pósa property as well
as the result due to Huynh, Joos and Wollan that the same is true for cycles
with two labels. Moreover, more complicated variants of cycles with labelled
vertices are covered. For instance, the theorem shows that, given a set S, the
family of cycles that each contain, say, at least 42 vertices from S has the Erdős-
Pósa property. Instead of S-cycles, we could also consider S-K4-subdivisions,
that is, subdivisions of K4 that each contain at least one vertex from S. As a
consequence of our theorem, the set of these has the Erdős-Pósa property, too.
Similar statements involving two labels are also covered.

Our main theorem requires the graphH to be 2-connected. This is necessary:
if H is not 2-connected then the conclusion of the theorem becomes false; in
particular, there are simply-labelled graphs H such that all labelled vertices
belong to the boundary of a single face but H-expansions do not have the
Erdős-Pósa property. We investigate the Erdős-Pósa property for unconnected
and merely 1-connected graphs H in a follow-up paper in which we heavily rely
on the results of this paper.
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2 Labelled graphs and minors

In this section we introduce several definitions concerning labelled graphs, mi-
nors, expansions, walls, and tangles. All definitions not involving labels are
standard and commonly used in the literature. Most of our notation is stan-
dard and in accordance with Diestel [3].

We start with expansions and minors without labels. For a graph H, a pair
(X,π) of a graph X and a mapping π : V (H) ∪ E(H) → V (X) ∪ E(X) is an
H-expansion if

(i) {π(u)}u∈V (H) is a partition of V (X) into vertex-disjoint induced sub-
graphs of X such that π(u) is a tree for all u ∈ V (H); and

(ii) for every two distinct u, v ∈ V (H) if u and v are adjacent in H there is
exactly one π(u)–π(v) edge in X, the edge π(uv), and if u and v are not
adjacent there is no such edge.

Often we omit π and simply say that X is an H-expansion. If a graph G contains
an H-expansion X as a subgraph, we say that H is a minor of G. Note that
for every vertex u of H the induced subgraph X[π(u)] together with all edges
π(uv) for v ∈ NH(u) forms a tree, which we denote by Tπu . We refer to π(u) as
the branch set of u.

2.1 Labelled graphs

Let us now formally introduce labelled graphs and labelled expansions. We
call a graph G a labelled graph if some of its vertices are marked with one or
more labels from some alphabet Σ. Formally, G is endowed with a function
` : V (G)→ P(Σ), and we say that a vertex v is labelled with α ∈ Σ if α ∈ `(v).
Note that a vertex may have several labels or none at all. We also write that a
graph G is Σ-labelled.

�r
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�
M

Figure 1: Labelled graphs with two different minor relations. Labelled vertices
in grey. Left: an S-cycle as a rooted minor. Right: transitivity fails for naive
labelled minor relation

What should it mean that some (labelled) graph has some other graph H as
a labelled minor, or equivalently, contains a labelled H-expansion? A natural la-
belled minor relation has been explored before: Wollan [15] and Marx, Seymour
and Wollan [8] treat rooted minors, minors with a single label. In this setting,
a vertex in a minor is labelled as soon as its branch set contains a labelled
vertex (a root). While this definition bears its own merit, it does not capture
all structures we want to express. In particular, it does not capture S-cycles:
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if a graph contains an S-cycle as a rooted minor, then it does not necessarily
contain an S-cycle as a subgraph; see Figure 1. Our notion of a labelled minor
will be designed to capture S-cycles, as well as long S-cycles, S-cycles of length
at least a fixed length `. These are known to have the Erdős-Pósa property [1].

The problem with rooted minors, at least in view of S-cycles, is that a branch
set may send out an appendix to pick up a labelled vertex, where this appendix
is unnecessary for the (unlabelled) minor relation. At first sight, the following
variant of the definition fixes this issue: say a vertex v in a minor is labelled
as soon as its branch set contains a labelled vertex and that labelled vertex lies
on a path between two edges in the expansion that connect that branch set to
the branch sets of other vertices. This definition, however, leads to a labelled
minor relation that is not transitive, which is clearly problematic (see Fig. 1)
also because labelled H-expansions do not necessarily contain a labelled H ′-
expansion for all subgraphs H ′ of H. Our notion of a labelled minor is slightly
different but transitive and hence also closed under taking subgraphs.

Tπv

π(u)

v

u
π(uv)

�`

Figure 2: A labelled expansion (labelled vertices in grey)

Fix some alphabet Σ and let H be a Σ-labelled graph. A pair (X,π) of a
labelled graph X and a mapping π : V (H)∪E(H)→ V (X)∪E(X) is a labelled
H-expansion if

(i) (X,π) is an H-expansion; and

(ii) if v ∈ V (H) is labelled with α then every non-trivial, if Tπv is not an
isolated vertex, leaf-to-leaf path in Tπv contains a vertex contained in π(u)
that is labelled with α.

Observe that Tπv may only be an isolated vertex if v is an isolated vertex.
Intuitively, the definition says that if u and v are neighbors of some vertex w
in H, the direct path from π(u) to π(v) through π(w) contains vertices of every
label in `(v).

Again, if the mapping π is clear from the context, we may simply call X itself
a labelled H-expansion. If a labelled graph G contains a labelled H-expansion
as a subgraph, H is a labelled minor of G. We write H �` G for short.

Let us first convince ourselves that this definition yields a transitive minor
relation. To this end, we say that a labelled H-expansion (X,π) is minimal if
for all u ∈ V (H) the following holds:

• If dH(u) ≥ 2, then every leaf of π(v) is contained in some π(uv) for some
v ∈ NH(u); and
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• if dH(u) ≤ 1, then π(u) is a path and if dH(u) = 1, then an endvertex of
this path is contained in π(uv) where v is the unique neighbour of u.

It is easy to see that every labelled H-expansion (X,π) contains a minimal H-
expansion (X ′, π′) such that π′(uv) = π(uv) for all uv ∈ E(H) and π′(u) is a
subtree of π(u) for all u ∈ V (H).

Lemma 3. Let A,B,C be labelled graphs such that A �` B and B �` C. Then
also A �` C.

Proof. Observe first that whenever a graph G contains a labelled H-expansion
of a graph H, then G also contains a labelled H ′-expansion for any subgraph
H ′ of H.

Hence we may assume that (B, β) is a minimal labelled A-expansion, and
that (C, γ) is a minimal labelled B-expansion. Define

π(a) =
⋃

b∈V (β(a))

γ(b) ∪
⋃

bb′∈E(β(a))

γ(bb′)

for every a ∈ V (A), and set π(aa′) = γ(β(aa′)) for all aa′ ∈ E(A). Forgetting
the labels, it is a standard task to check that (C, π) is an A-expansion. Thus,
it remains to verify condition (ii) in the definition of labelled expansions.

For this, let a ∈ V (A) be labelled with α, and let P = u . . . v be a leaf-to-leaf
path in Tπa . Since B and C are minimal, u (resp. v) either does not belong to
π(a) or dA(a) ≤ 1. Observe that Tπa =

⋃
b∈β(a) T

γ
b . Then P defines a leaf-to-leaf

path P ′ in T βa (if dA(a) ≤ 1, then P ′ = T βa ). The path P ′ contains a vertex
b∗ ∈ β(a) that is labelled with α as (B, β) is a labelled A-expansion. The path
Q = P ∩ T γb∗ is, in T γb∗ , a leaf-to-leaf path as well. Since b∗ is labelled with α it
follows that Q contains a vertex c∗ in γ(b∗) that is labelled with α as well. Since
c∗ ∈ V (γ(b∗)) ⊆ V (π(a)) we have found a vertex in π(a) on P that is labelled
with α, as desired.

The definition of a labelled graph or expansion allows for vertices to receive
two or more labels, and this is necessary for the labelled minor relation to make
sense. However, our main result, Theorem 2, requires the vertices in the graph H
to have at most one label. This is mostly because we favour main theorems with
simple statements. Allowing doubly-labelled vertices in H complicates matters
somewhat. While we can (and will) handle these complications, the resulting
statement becomes more complex, and less attractive (see Theorem 13).

3 Tangles

The concept of a tangle plays a key role in this paper. We start with the defi-
nition and explain how a minimal counterexample for the Erdős-Pósa property
of a certain family of graphs naturally yields a tangle. We then introduce walls
and recall how tangles are linked to walls. In Section 3.5, we introduce linkages
and in Section 3.6, we state the key tool for our proof.

3.1 Definition

An ordered pair (A,B) of edge-disjoint subgraphs of G that partition E(G) is
a separation. The order of the separation is |V (A) ∩ V (B)|.
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A tangle of order r in a graph G is a set T of tuples (A,B) so that the
following assertions hold.

(T1) Every tuple (A,B) ∈ T is a separation of order less than r.

(T2) For all separations (A,B) of G of order less than r, exactly one of (A,B)
and (B,A) lies in T .

(T3) V (A) 6= V (G) for all (A,B) ∈ T .

(T4) A1 ∪A2 ∪A3 6= G for all (A1, B1), (A2, B2), (A3, B3) ∈ T .

For any tangle T and (A,B) ∈ T , we refer to A as the T -small side of the
separation (A,B). Suppose T has order r ≥ 3 and let X be a vertex set of size
at most r − 2. Then G −X contains a unique block U such that V (U) ∪X is
not contained in any T -small side of a separation in T . We call the block U the
T -large block of G−X.

3.2 Tangles and the Erdős-Pósa property

The concept of tangles goes very well together with the Erdős-Pósa property.
To see this we first introduce the notion of a minimal counterexample. Suppose
H is a family of graphs, G is a graph, and k ∈ N. We say that G is H-free if no
subgraph of G lies in H. We say the pair (G, k) is a minimal counterexample to
the function f : N → R+ being an Erdős-Pósa function for the family H if the
following statements hold.

(MC1) The graph G does contain neither k disjoint copies of graphs in H nor a
set X ⊆ V (G) of size at most f(k) such that G−X is H-free.

(MC2) For every k′ < k, the graph G contains k′ disjoint copies of graphs in H
or a set X ⊆ V (G) of size at most f(k′) such that G−X is H-free.

We extend this definition to the labelled case in a straightforward way: H is a
labelled family of graphs, G is a labelled graph, and k is minimal such that G
does contain neither k disjoint copies of labelled graphs inH nor a set X ⊆ V (G)
of size at most f(k) such that G−X is H-free.

The following lemma shows that every minimal counterexample has a some-
what canonical tangle which indicates where the copies of the graphs in H lie.
Essentially the same lemma was proven by Wollan in [16]. We include the short
proof for completeness.

Lemma 4. Suppose H is a family of connected labelled graphs. Suppose (G, k)
is a minimal counterexample to the function f : N → R+ being an Erdős-Pósa
function for H. Suppose that t ≤ min{f(k)− 2f(k − 1), f(k)/3}. Let T be the
collection of all separations (A,B) of order less than t such that B contains a
subgraph that lies in H. Then T is a tangle.

Proof. To verify that T is a tangle, we only need to check (T2)–(T4). Let (A,B)
be a separation of G of order less than t. We claim that one of A−B and B−A
contains a graph of H. If not, set X = V (A ∩ B) and observe that G − X is
H-free, which is impossible as |X| < t < f(k).

Next, suppose that both A and B contain a copy of a graph in H. Then,
neither of A − B and B − A can contain k − 1 copies of graphs in H as (G, k)
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is a counterexample. Hence there are a sets XA ⊆ V (A), XB ⊆ V (B), each of
size at most f(k − 1), such that both A− (V (B) ∪XA) and B − (V (A) ∪XB)
are H-free. But then G− (XA ∪XB ∪ (V (A) ∩ V (B)) is H-free (recall that the
graphs in H are connected), which is impossible as

|XA ∪XB ∪ (V (A) ∩ V (B))| ≤ 2f(k − 1) + t ≤ f(k).

Therefore, (T2) holds. For (T3), observe that B−A = ∅ if V (A) = V (G), which
clearly implies that B −A cannot contain any graph from H.

Finally, suppose there are three separations (A1, B1), (A2, B2), (A3, B3) ∈ T
such that A1 ∪A2 ∪A3 = G. Let X =

⋃
i∈[3](V (Ai)∩ V (Bi)), and observe that

|X| ≤ 3t ≤ f(k). Then, any graph in H that is disjoint from X must lie in⋂3
i=1Bi − Ai = ∅. (Again, we use here that the graphs in H are connected.)

Thus, G − X is H-free, which is again a contradiction. Therefore, (T4) holds
and T is a tangle.

3.3 Walls

Let [r] denote the set {1, . . . , r}. The r × s-grid, r, s ≥ 2, is the graph on the
vertex set [r]× [s] where a vertex (i, j) is adjacent to a vertex (i′, j′) if and only
if |i − i′| + |j − j′| = 1. An elementary r-wall is the graph obtained from the
2(r+1)× (r+1)-grid by deleting all edges of the form (2i−1, 2j−1)(2i−1, 2j),
where i ∈ [r+1] and j ∈ [dr/2e], and also all edges of the form (2i, 2j)(2i, 2j+1),
where i ∈ [r + 1] and j ∈ [b(r − 1)/2c], and then deleting the two vertices of
degree 1. An elementary 8-wall is depicted in Figure 3 (where we assume that
first coordinate increases from left to right and the second coordinate increases
from bottom to top).

top rownailsvertical path

horizontal
path

brick

Figure 3: An elementary 8-wall

An r-wall or simply a wall is a subdivision W of an elementary r-wall Z.

In Z we define the path P
(h)
j−1 for j ∈ [r + 1] as the path on vertices ij for

i ∈ [2(r + 1)] (where we note that P
(h)
0 as well as P

(h)
r are missing the first or

last of these vertices as these are not present in Z.) The paths P
(h)
0 , . . . , P

(h)
r ,

which are pairwise disjoint, are the horizontal paths of Z. There are also r + 1

pairwise disjoint P
(h)
0 –P

(h)
r -paths in Z, the vertical paths P

(v)
0 , . . . , P

(v)
r of Z.
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The path P
(h)
r is also called the top row of Z. The vertices of degree 2 in the

top row are the nails of Z. Any 6-cycle in Z is a brick of Z.
We keep using the same concepts for walls as for elementary walls. That is,

we will talk about vertical and horizontal paths of W , and mean the paths that
arise from subdividing the corresponding paths in the elementary wall. A bit
of care has to be applied when it comes to nails, as there are several choices of
vertices in W that correspond to the (uniquely defined) nails in Z. But here, if
necessary, we assume that the wall W comes with a fixed choice of nails, which
allows us to speak about the nails of W .

Let s ≤ t. An s-subwall W ′ of a t-wall W is subgraph of W that is an s-wall
and such that every horizontal (vertical) path of W ′ is a subpath of a unique
horizontal (vertical) path of W .

3.4 Tangles and Walls

We collect more facts about tangles and walls. For more details and proofs see
Robertson and Seymour [11].

Let T be a tangle of order r, and let s ≤ r. Let T ′ be the subset of those
(A,B) ∈ T that are separations of order less than s. Then T ′ is again a tangle,
the truncation of T to order s.

Let T be a tangle of order r in a graph H and assume that H is a minor
of a graph G. We define a tangle TH in G induced by H as follows. Let (C,D)
be a separation in G of order less than r, and let CH be the induced subgraph
of H on all vertices whose branch set in G intersects C, and define DH in the
analogous way. Then every edge in H lies in CH or in DH as otherwise there
would be an edge in G between C−D and D−C. Moreover, since every branch
set that meets C as well as D also contains a vertex in C ∩ D, it follows that
|V (CH ∩ DH)| ≤ |V (C ∩ D)|. Thus, if we split up the common edges of CH
and DH we obtain a separation (CH , DH) of H of order less than r. Therefore,
either (CH , DH) ∈ T or (DH , CH) ∈ T and we then put (C,D) resp. (D,C)
into TH . That TH is indeed a tangle was shown by Robertson and Seymour [12].

Beside the tangle induced by the copies of a certain family H of graphs in a
minimal counterexample for the Erdős-Pósa property, we consider two further
tangles.

Lemma 5 (Robertson and Seymour [12]). Suppose n ≥ 3, t = d 2n3 e, and T is
the set of all (t− 1)-separations (A,B) of Kn such that V (B) = V (Kn). Then
T is a tangle.

For a Kt-expansion π, we refer to Tπ as the tangle induced by the tangle in
Kt that is described in Lemma 5.

Lemma 6 (Robertson and Seymour [12]). Suppose t ≥ 2 and W is a t-wall. Let
TW be the set of all t-separations (A,B) of W such that B contains an entire
horizontal path. Then TW is a tangle of order t+ 1.

We also need the converse direction, namely that a tangle of large order
forces the existence of a large wall.

Theorem 7 (Robertson and Seymour [12]). For every positive integer t, there
is an integer T (t) such that if G is a graph that has a tangle T of order T (t),
then there is a t-wall W in G such that TW is a truncation of T .
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3.5 Linkages

Let G be a graph, k ∈ N, and let A,B be subgraphs, or vertex sets, of G. An
A–B-path is a path from some a ∈ A to some b ∈ B that is internally disjoint
from A∪B. Moreover, an A-path is an A–A-path with at least one edge; if the
path consist of a single edge, then this edge must not lie in A.

Let W be a wall with nails N . A W -linkage L of order k, or simply a linkage,
is a set of k disjoint W -paths with first and last vertices in N . The top row of
W defines a linear order ≤ (in fact two; we pick one) on the nails. Consider two
paths P,Q in L, and let the endvertices of P be p1 < p2, and let the endvertices
of Q be q1 < q2. By symmetry, we may assume that p1 < q1. Then P and Q are
in series if p2 < q1; they are nested if p1 < q1 < q2 < p2; and they are crossing
if p1 < q1 < p2 < q2; see Figure 4. The linkage L is in series, nested, or crossing
if all paths in L are mutually in series, nested, or crossing. We call L pure if it
is in series, nested, or crossing.

. . .

(a) in series

. . .

(b) crossing

. . .

(c) nested

Figure 4: The three types of pure linkages

Assume W to be contained in a Σ-labelled graph, and let α ∈ Σ. A W -
linkage L is called α-clean1 if

• L is pure, and

• every path in L contains a vertex of label α.

Moreover, let (P,Q) be a partition of a W -linkage P ∪Q. We call (P,Q) a pair
of (α, β)-clean W -linkages if

• P is α-clean and if Q is β-clean,

• |P| = |Q|, and

• for all P, P ′ ∈ P and Q ∈ Q with endvertices p1 < p2, p′1 < p′2 and q1 < q2,
we have q1, q2 6∈ [p1, p

′
1]∪ [p2, p

′
2]. Here, [p1, p

′
1] is the set of all nails v with

p1 ≤ v ≤ p′1, and [p2, p
′
2] is defined similarly.

3.6 Flat walls

In their so-called flat wall theorem Robertson and Seymour [13] proved that
every graph with a huge wall contains a large clique-minor or a large flat wall, a
wall that lies in a nearly planar part of the graph. Huynh, Joos, and Wollan [5]
extended the theorem to graphs whose edges are labelled with elements from two
groups. We present below a version of the theorem that is adapted to labelled

1We adapt here a notion introduced by Huynh et al. [5] to the labelled setting. To keep
notation simple, we have slightly weakened it.
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graphs.2 For our purposes it is not important that the wall is flat, so we simply
drop the condition.

We need a little bit more notation before we can state our main tool, the
result of Huynh et al. We define a sort of doubly-labelled expansion of a complete
graph. For technical reasons, we weaken the definition of an expansion slightly.
Let π be a mapping from V (Kn)∪E(Kn) into some graph, and let α, β be two
labels. We say π is a (α, β)-thoroughly labelled (pseudo) Kn-expansion if

• π(x) is a tree for every vertex x of Kn,

• π(xy) is a set of at most two edges joining π(x) and π(y), and

• for every γ ∈ {α, β} and every triple x, y, z of vertices of Kn, there exist
eab ∈ π(ab) for each ab ∈ {xy, xz, yz} such that π(x)∪ π(y)∪ π(z)∪ exy ∪
exz ∪ eyz contains a vertex with label γ.

Although, technically, these pseudo expansions are not expansions in the strict
sense we defined earlier, we will simply call them (α, β)-thoroughly labelled
Kn-expansions, which is already long enough.

For walls we have an analogous concept. A wall W is thoroughly α-labelled
if every brick contains a vertex with label α, and the wall is thoroughly (α, β)-
labelled if every brick contains a vertex with label α and a vertex with label β.

Theorem 8 (Huynh, Joos, and Wollan [5]). For every t ∈ N, there exists an
integer t′ such that if G is an (α, β)-labelled graph that contains a t′-wall W
then one of the following statements holds.

(i) There is an (α, β)-thoroughly labelled Kt-expansion π in G such that Tπ
is a restriction of TW .

(ii) There is a 100t-wall W0 such that TW0 is a restriction of T and

(a) W0 is (α, β)-thoroughly labelled,

(b) for some γ ∈ {α, β}, the wall W0 is γ-thoroughly labelled and has an
({α, β} \ γ)-clean W0-linkage of size t, or

(c) W0 has a pair of (α, β)-clean W0-linkages of size t.

(iii) For some γ ∈ {α, β}, there is a set Z such that |Z| < t′ and the unique
TW -large block of G− Z does not contain any vertex labelled with γ.

4 Necessity

In this section we show that all labelled graphs H such that the class of all H-
expansion has the Erdős-Pósa property must have at least the properties stated
in Theorem 2. We split the proof in several lemmas establishing gradually more
properties of such H.

Lemma 9. Let H be a labelled graph such that the labelled H-expansions have
the Erdős-Pósa property. Then there is an embedding of H in the plane such
that all its labelled vertices are on the boundary of the outer face.

2For both groups we choose (Z,+). For an arbitrary ordering e1, e2, . . . of the edges of G,
we assign to ei the group value 2i in the j-th coordinate for j ∈ [2] if one of the endpoints of
ei is labelled with the j-th labelled and otherwise 0.
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Proof. First, we observe that we may assume H to be planar. Indeed, by The-
orem 1, non-planar graphs do not enjoy the (ordinary) Erdős-Pósa property.
Then, if we label every vertex in any graph G with all the labels of H, the la-
belled H-expansions do not have the Erdős-Pósa property for the same reasons
as in the unlabelled case.

We thus assume that H is a planar labelled graph that, however, does not
have any embedding in the plane such that all its labelled vertices are on the
boundary of the outer face. Observe that, in particular, H must have a com-
ponent with that property. Choose a minimum number ` such that there is an
embedding of H in the plane in which the labelled vertices are contained in the
union of ` face boundaries. By assumption, ` ≥ 2.

Let R ∈ N be sufficiently large, in a sense that will be made precise later in
the proof. Moreover, let Σ be the alphabet containing all labels of H. Consider
a plane `R × `R-grid, and pick ` mutually disjoint cycles C1, . . . C`, each of
length at least R (roughly R/4 × R/4 squares), so that each has distance at
least R/4 from the outer face and so that each two are at a distance of at least
R/4 from each other. Let G be the graph obtained by deleting the vertices in

the interior of each Ci, and labelling every vertex in
⋃`
i=1 V (Ci) with all labels

in Σ.
In what follows we see that every labelledH-expansion separates the interiors

of the cycles Ci from each other. Then it will be easy to deduce that there are
no two disjoint labelled H-expansions. The fact that we choose R large enough
ensures that every hitting set has to be large (as its size grows with R).

Since R is chosen to be large enough, G contains a labelled H-expansion.
Indeed, for sufficiently large R the graph G contains an unlabelled H-expansion
such that every labelled vertex of H maps to a branch set whose vertices of
degree at least 3 are all contained in the same Ci. Such an unlabelled H-
expansion is also a labelled H-expansion.

By increasing R, we can force the minimum size of a hitting set for labelled
H-expansions to be arbitrarily large. Thus, to finish the proof it suffices to show
that G does not contain any two disjoint labelled H-expansions.

Let H ′ be some labelled H-expansion in G. Denoting the interior faces of the
cycles C1, . . . , C` by F1, . . . , F`, we see that H ′ has a face F ′i ⊇ Fi for each i ∈ [`].
The faces F ′1, . . . , F

′
` are pairwise distinct: as the face boundaries of F ′1, . . . , F

′
`

contain all the labelled vertices of G in H ′, it follows from the minimality of `
that no two of these faces coincide.

Next, suppose there is a second labelled H-expansion H ′′ in G that is dis-
joint from H ′. Again, the minimality of ` implies that H ′′ has a component
that contains a vertex from C1 as well as a vertex from C2 (after relabelling
C1, . . . , C`). In particular, H ′′ contains a path P that starts in a vertex of C1

and ends in a vertex of C2. Then, however, P starts in F ′1 or in its boundary,
and ends in F ′2 or in its boundary. As F ′1 6= F ′2 it follows that P ⊆ H ′′ meets
H ′, which shows that H ′ and H ′′ are not disjoint.

Recall that a labelled graph is simply-labelled if each labelled vertex only
one label and all labelled vertices have the same label. We may use this notion
for subgraphs of labelled graphs, too.

Let H be a labelled planar graph H that has an embedding in the plane in
which all labelled vertices are on the boundary of the outer face. Define the label
homogeneity of H as the smallest integer s such that for every sufficiently large
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integer n there is a labelling of the vertices in the top row P of an elementary
n-wall W such that H is a labelled minor of W and such that there are s
simply-labelled subpaths of P that cover all labelled vertices of P .

�`

H

Figure 5: A graph H of label homogeneity 2

Lemma 10. Let H be a connected labelled graph that has an embedding in
the plane in which all labelled vertices are on the boundary of the outer face.
If the labelled H-expansions have the Erdős-Pósa property, then H has label
homogeneity at most 2.

In the proof we will consider two grids, each on a vertex set indexed by a
set [n] × [n], that is, on a vertex set {vij : (i, j) ∈ [n] × [n]}. In both cases we
assume that the vertices are chosen in such a way that vij is adjacent to vi′j′ if
and only if i = i′ and |j − j′| = 1, or if |i− i′| = 1 and j = j′. The vertices vjn
for j ∈ [n] are the vertices of the top row of the grid.

Proof of Lemma 10. Suppose that H has label homogeneity ` ≥ 3. Then, there
is a labelled r × r grid G′ for some sufficiently large r such that G′ contains a
labelled H-expansion where all labelled vertices of G′ are contained in the top
row, and such that there are ` disjoint simply-labelled subpaths P ′1, . . . , P

′
` of

the top row that cover all its vertices. Let {vij : i, j ∈ [r]} be the vertex set of
G′.

Suppose that f is an Erdős-Pósa function for labelled H-expansions. We
enlarge G′ to an r′ × r′-grid G for r′ = rs = r · 3(f(2) + 1) with vertex set
{wij : (i, j) ∈ [r′]× [r′]}. We say that wij has pre-image vpq if i− (p− 1)s ∈ [s]
and j − (q − 1)s ∈ [s]. We label a vertex wjr′ in the top row of G with label α
if its pre-image vpr is labelled with α in G′.

Let X be a set of at most f(2) vertices in G. Let us convince ourselves
that G −X still contains a labelled H-expansion. For every q ∈ [r], there is a
j ∈ [r′] such that none of the (j − 1)th, the jth or the (j + 1)th column meets
X, and such that wj−1,r′ , wjr′ and wj+1,r′ have vqr as pre-image; let J be the
set of these j, one for each q ∈ [r]. In a similar way, there are r rows of G,
with index set I, that are disjoint from X. In particular, the union of the rows
with index in I and the columns with index in J define a subgraph F of G−X
that contains a subdivision of an r × r-grid. Let i1 be the largest integer in I.
We modify F by adding for every j ∈ J the path wj−1,r′wjr′wj+1,r′ together
with the three vertical paths from these vertices to wj−1,i1 , wj,i1 , and wj+1,i1

respectively. Call the obtained graph F ′ and observe that the labelled grid G′

is a labelled minor of F ′. Due to Lemma 3, H is a labelled minor of F ′. Since
F ′ is disjoint from X, we see that no set of at most f(2) vertices meets every
labelled H-expansion.
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Therefore, G must contain two disjoint labelled H-expansions, H1 and H2

say. By construction, the vertices of the top row of G can be covered by ` disjoint
simply-labelled paths Q1, . . . , Q`. By definition of the label homogeneity, each
of the two the H-expansions needs to contain at least one vertex from each of
the paths Q1, . . . , Q`. Let CG be the boundary of the outer face of G.

Starting with the plane graph CG ∪ H1 ∪ H2 we add a vertex x drawn in
the outer face of CG and make it adjacent to a vertex from each of Q1, Q2, Q3.
(Recall that ` ≥ 3.) The resulting graph K is planar. On the other hand, we
see that K has a K3,3-minor by contracting each of Q1, Q2, Q3, H1− (Q1∪Q2∪
Q3), H2 − (Q1 ∪ Q2 ∪ Q3) to a single vertex, a contradiction. This completes
the proof.

In Lemma 12 we give a characterisation of the labelled graphs of label ho-
mogeneity at most 2. To simplify its proof we use the following definition
together with Lemma 11. For a positive integer h we define a graph W (h) as
follows. Start with an elementary 2h2-wall W1, and let n1, . . . , n2h2 be the set
of nails (in the order they appear in the top horizontal path). We add to W1

a set of 2h further vertices a1, . . . , ah, b1, . . . , bh, and for each i ∈ [h] we make
ai adjacent to each of n(i−1)h+1, . . . , nih, while we make bi adjacent to each
of nh2+(i−1)h+1, . . . , nh2+ih. The graph W (h) is (α, β)-labelled if each vertex
a1, . . . , ah is labelled with α and each of b1, . . . , bh is labelled with β.

a1 b1a2 b2a3 b3

Figure 6: The graph W (3)

Lemma 11. Let H be a labelled graph. Then H has label homogeneity at most 2
if and only if H is labelled with at most two labels, say α and β, and there is an
h such that H is a labelled minor of the (α, β)-labelled graph W (h).

Proof. One direction is easy: if H has label homogeneity at most 2 then it must
be labelled with at most two labels, α and β, say, and there is a t such that
H is a labelled minor of the elementary 2t-wall W ′ in which the first t nails
are labelled with α and the other t nails with β. As obviously W ′ �` W (t) it
follows that also H �` W (t).

For the other direction, let h be such that H �` W (h). Let W0 be an
elementary (2h2 + 2)-wall, and let n0, . . . , n2h2+1 be its nails (in the order as
they appear in the top row). Label the nails n0, . . . , nh2 with α, and label the
other nails with β. We claim that W (h) �` W0.

To see this, denote by Q the top row of W0, and denote by n−i the predecessor
of ni on Q for each i. We define branch sets Aj , Bj for j ∈ [h] as follows. Set
Aj = n−(j−1)h+1Qnjh−1 and Bj = n−(j−1)h+h2+1Qnjh+h2−1. Taking in W0 the

sets Aj , Bj as branch sets, as well as all the vertices in W0 − Q as singleton
branch sets, we obtain a labelled W (h)-expansion, which means that W (h),
and thus also H, is a labelled minor of W0. As the labels of W0 can be covered
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by two simply-labelled subpaths of Q, it follows that H has label homogeneity
at most 2.

Lemma 12. Let H be a 2-connected graph. Then H has label homogeneity at
most 2 if and only if there is an embedding of H in the plane such that the
boundary C of the outer face contains all labelled vertices, and there are two
internally disjoint subpaths P,Q ⊆ C that together cover all of V (C) and we
can associate a label α with P and a label β with Q such that

• P −Q is simply-labelled with α and Q− P is simply-labelled with β; and

• for all v ∈ V (P ∩Q), we have dH(v) = 2 and v is labelled with {α, β}.

Proof. If H has an embedding in the plane as stated above, there is an h such
that H is a labelled minor of W (h). By Lemma 11, it follows that H has label
homogeneity at most 2.

If, on the other hand, H has label homogeneity at most 2, then there is an h
such that H is a labelled minor of an elementary 2h-wall W , in which the first
h nails are labelled with α and the other h nails are labelled with β. Let (H ′, π)
be a minimal labelled H-expansion in W .

If either α or β are not used at vertices of H, the statement of the lemma
clearly holds, as any labelled minor of W has all its labels on the boundary of
the same face.

We may, therefore, assume that some vertex in H is labelled with α and
some vertex is labelled with β. By contracting the branch sets of H ′, we obtain
a planar embedding of H. Let C ′ be the boundary of the outer face of H ′,
and let C be the boundary of the outer face of the embedding of H. Since H
is 2-connected, C is a cycle and since H ′ is a minimal H-expansion, C ′ is also
a cycle. In fact, C is obtained from C ′ by contracting all branch sets. As all
labelled vertices of W are contained in the top row and C ′ is the boundary of
the outer face, every labelled vertex of H ′ must be on C ′. Hence H has an
embedding in the plane such that the boundary C of the outer face contains all
labelled vertices.

Consider the nails of W ordered from left to right, say n1, . . . , n2h, and let
ni be the leftmost nail contained in C ′. Following C ′ in clockwise fashion we
obtain a sequence (ni = ni1 , ni2 , . . . , nir ) of all labelled vertices on C ′. Due to
planarity, we have that ij < ij+1 for each j ∈ [r− 1]. By definition of W , there
is some j ∈ [r] such that nij is the rightmost nail labelled α.

We observe that there are at most two vertices in H that are labelled with
{α, β} because every branch set of such a vertex must contain either {nij , nij+1}
or {nir , ni1}. Suppose u ∈ V (H) is labelled with {α, β} and it contains both
nij and nij+1

(the argument for ni1 and nir is similar). For a contradiction,
assume that dH(u) ≥ 3. Note that Tπu contains a vertex x of degree at least 3
on C ′. Observe that x can be neither inside nor outside nijC

′nij+1
as in both

cases there is a leaf-to-leaf path in Tπu that either contains no vertex labelled α
or no vertex labelled β.

Now it is not hard to construct the paths P and Q as in the statement.

With Lemma 12 we can see that neither of the graphs in Figure 7 has label
homogeneity at most 2, which in light of the other results in this section means
that the expansions of neither of the graphs have the Erdős-Pósa property.
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Figure 7: Two graphs of label homogeneity larger than 2

5 Erdős-Pósa property for 2-connected H

In this section, we prove a slightly stronger version of our main result, Theo-
rem 2.

Theorem 13. Let H be a labelled 2-connected graph. Then the labelled H-
expansions have the Erdős-Pósa property if and only if there is an embedding of
H in the plane such that the boundary C of the outer face contains all labelled
vertices, and there are two internally disjoint subpaths P,Q ⊆ C that cover all
of V (C) and we can associate a label α with P and a label β with Q such that

• P −Q is simply-labelled with α and Q− P is simply-labelled with β; and

• for all v ∈ V (P ∩Q), we have dH(v) = 2 and v is labelled with {α, β}.

Note that Theorem 13 clearly implies Theorem 2. The proof closely follows
the different outcomes of Theorem 8.

For two labels α, β we write Kα,β
n for the complete graph on n vertices in

which every vertex is labelled with {α, β}.

Lemma 14. Let t ≥ 3, and let α, β be labels. Then every (α, β)-thoroughly

labelled K6t2−5t-expansion contains a labelled Kα,β
t -expansion.

Proof. Let K be the complete graph on the vertex set

c1, . . . , ct, vij1 , . . . , v
ij
6 for all distinct i, j ∈ [t]

of 6t2 − 5t distinct vertices. Let (X,π) be a (α, β)-thoroughly labelled K-
expansion.

Consider arbitrary distinct indices i, j ∈ [t]. By definition, there is a cycle C
in

π(vij1 ) ∪ π(vij1 v
ij
2 ) ∪ π(vij2 ) ∪ π(vij2 v

ij
3 ) ∪ π(vij3 ) ∪ π(vij3 v

ij
1 )

that contains a vertex with label α. By renaming the vertices vij1 , v
ij
2 , v

ij
3 if

necessary we may assume that there is a π(vij1 )–π(vij3 ) path P1 in C that contains

a vertex in π(vij2 ) with label α. With an analogous argument, we may assume

that there is a π(vij4 )–π(vij6 ) path P2 contained in

π(vij4 ) ∪ π(vij4 v
ij
5 ) ∪ π(vij5 ) ∪ π(vij5 v

ij
6 ) ∪ π(vij6 )

that contains a vertex in π(vij5 ) of label β. Using an edge in π(vij3 v
ij
4 ), as well

as an edge in π(civij1 ), we can find a π(ci)–π(vij6 ) path Qij that contains both
a vertex with label α and a vertex with label β in its interior and that itself is
contained in the induced graph on π(ci) ∪

⋃6
`=1 π(vij` ).
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Having constructed all such paths Qij , let ab ∈ π(vij6 v
ji
6 ) with a ∈ π(vij6 ).

Set π′(ij) = ab, and define a tree T ′i by taking the union of all paths Qij , a–

Qij paths in π(vij6 ) together with a minimal subtree of π(ci) so as to result in
a tree. Set π′(i) = V (T ′i ), and observe that π′ defines a Kt-expansion Y that is

contained in X. In Y the trees Tπ
′

i (recall the definition of a labelled expansion)

consist of T ′i together with all edges π′(ij). Every leaf-to-leaf path in Tπ
′

i passes
through π(ci) and then contains Qij and Qik for two j, k. Consequently, every
leaf-to-leaf path contains a vertex with label α and a vertex with label β that
lies in π′(i). Therefore, (Y, π′) is a labelled Kα,β

t -expansion.

Lemma 15. Let H be an (α, β)-labelled graph. For every k (and H), there is
a t such that every (α, β)-thoroughly labelled Kt-expansion contains k disjoint
labelled H-expansions.

Proof. Set h = k|V (H)|, and observe that there are k disjoint labelled minors

of H in Kα,β
h . Set t = 6h2 − 5h, and apply Lemma 14 in order to find Kα,β

h as
a labelled minor in any (α, β)-thoroughly labelled Kt-expansion.

Lemma 16. Suppose t ≥ 9r. If W is a (t+ 1)-wall with an α-clean linkage of
size 2r, there is a t-subwall W ′ of W with an α-clean linkage of size r that is in
series. Moreover, if W has an (α, β)-clean pair of linkages of size 2r, there is a
t-subwall W ′ of W with an (α, β)-clean pair of linkages that are both in series
and of size r.

Proof. We prove the second statement since the first one follows in the same way.
Let (P,Q) be an (α, β)-clean pair of linkages of size 2r, and let R be the top row
of W . For each nail u, let Su be the path contained in W from u to the upper
right corner and then to the lower right corner of its brick in W ; see Figure 8.
Let P = {P1, . . . , P2r} be the paths in P and denote their left endvertices
by p1, . . . , p2r, and the corresponding right endvertices by p′1, . . . , p

′
2r. Assume

p1 < . . . < p2r where the ordering is from left to right in the top row R of
W . Moreover, let Q = {Q1, . . . , Q2r} with left endvertices q1, . . . , q2r and right
endvertices q′1, . . . , q

′
2r be ordered in the same way.

Figure 8: How to turn a crossing or nested linkage into one that is in series

Consider the paths

P ′i = Sp2i−1p2i−1P2i−1p
′
2i−1Rp

′
2iP2ip2iSp2i

for each i ∈ [r] if P is crossing or nested (see Figure 8), otherwise let P ′i =
Sp2ip2iP2ip

′
2iSp2i . We define Q′i analogously. Note that for each i, j ∈ [r] the

paths P ′i and Q′j are pairwise disjoint — this is due to the last condition in the
definition of a pair of clean (α, β)-linkages. Let W ′ be the t-subwall obtained
from W by deleting the top row and leftmost column, let P ′ = {P ′i : i ∈ [r]},
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and Q′ = {Q′i : i ∈ [r]}. Note that the pair (P ′,Q′) is (α, β)-clean for W ′, which
completes the proof.

Lemma 17. Let r ≥ 4t, and let W be a 100r-wall that is either thoroughly
(α, β)-labelled, or that is thoroughly α-labelled and has a β-clean linkage of size
r. Then W contains a 100t-subwall W ′ that has an (α, β)-clean pair of linkages
of size t such that both linkages are in series.

Proof. First, by Lemma 16, if W has a β-clean linkage of size 2r (rather than
being thoroughly (α, β)-labelled) then it also has such a linkage of size r ≥ 2t
that is in series — at the price of reducing the size of the wall by 1.

Pick a vertical path P of W such that each of the two components W1,W2

of W −P contains at least 49r of the vertical paths of W . We may assume that
if W has a β-clean linkage (which then is in series), then at least half of the
paths of the linkage have both endvertices in W1. That is, W1 has a β-clean
linkage of size t. Also, for each i ∈ [2], let W ′i be obtained by Wi by deleting
the first two horizontal paths.

Let B1, . . . , Bt be a choice of r (vertex-)disjoint bricks from the top row of
W2. Let Q3 be the third horizontal path of W2 from the top; that is, the top
path of W ′2. There are 2t disjoint Q3–

⋃t
i=1Bi paths R1, . . . , R2t such that R2i−1

and R2i end in Bi for each i ∈ [t]. Since each brick of W2 contains a vertex
labelled with α as W is thoroughly α-labelled, for each i, one of the two paths
in Bi between the endvertices of R2i−1 and R2i contains a vertex of label α.
Denote this subpath by Si. Hence (R2i−1 ∪ Si ∪ R2i)i∈[t] is an α-clean linkage
in series of W ′2 of size t.

If W is thoroughly (α, β)-labelled we repeat this procedure in W1 with the
label β. If W has a β-clean linkage, then, by prolonging the linkage through the
wall to W ′1, we obtain a β-clean linkage of W ′1 of size at least t. In both cases,
by using the horizontal paths that link W ′1 and W ′2 we find a 100t-wall W ′ as
a subwall with an (α, β)-clean pair of linkages of size at least t. Moreover, the
linkages are in series.

Note that if W is a wall with an (α, β)-clean pair of linkages which is in
series, the union of these two linkages is itself a linkage that is in series. This
follows from the definition of a (α, β)-clean pair. Hence, we may simply say that
an (α, β)-clean pair of linkages is in series if both linkages are in series.

Lemma 18. Let H be an (α, β)-labelled graph that has an embedding in the
plane such that all labelled vertices lie in the boundary of the outer face, and
assume H to have label homogeneity at most 2. For every k there is a t such
that the following holds: whenever W is a wall of size at least 20t that has an
in series (α, β)-clean pair of linkages of size t, then W together with the linkage
contains k disjoint labelled H-expansions.

Proof. For a positive integer t′, let Ut′ be a labelled graph consisting of an
elementary 2t′-wall where the first t′ nails are labelled α and the remaining
ones are labelled β. As H has label homogeneity 2, there is a t′ such that H
is a labelled minor of Ut′ . We now fix such a t′ and simply write U instead of
Ut′ . We will find k disjoint labelled U -expansions, that then contain k disjoint
labelled H-expansions.

We set t = 5kt′. Let (P,Q) be an (α, β)-clean pair of linkages of the wall W
of size t that is in series. As P and Q are in series, all paths in P connect to the
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top row of W left of all paths in Q or vice versa. In particular, W , which has
size at least 20t = 100kt′, together with P and Q contains as a labelled minor a
10kt′-wall W ′ in which the first 5kt′ nails are labelled α and the remaining 5kt′

nails are labelled β. We claim that

W ′ contains k disjoint labelled U -expansions. (1)

The claim is proved by induction on k. For k = 1, (1) holds as U is a labelled
minor of W ′. Suppose now that k > 1. Let W ′′ be a subwall of W ′ of size
10(k−1)t′ that contains exactly 5(k−1)t′ α-labelled and and exactly 5(k−1)t′

β-labelled nails of W ′ such that the horizontal and vertical paths of W ′ that W ′′

meets are contiguous. By induction, W ′′ contains k − 1 labelled U -expansions.
The graph W̃ = W ′ −W ′′ contains the leftmost and rightmost 5t′ − 1 vertical
paths of W ′, as well as the 5t′ bottommost horizontal paths. Then, W̃ contains
U as a labelled minor. In total, we have found k disjoint labelled U -expansions.
This proves (1) and the lemma.

Lemma 19. Let H be an (α, β)-labelled graph that has an embedding in the
plane such that all labelled vertices lie in the boundary of the outer face, and
assume H to have label homogeneity at most 2. For every k there is a t such
that the following holds: if a graph G consists of a wall W of size at least 100t
such that

(a) W is (α, β)-thoroughly labelled,

(b) for some γ ∈ {α, β}, the wall W is γ-thoroughly labelled and has an
({α, β} \ γ)-clean linkage of size t, or

(c) W has a pair of (α, β)-clean linkages of size t,

then G contains k disjoint labelled H-expansions.

Proof. For a given k, let s be as the t in the statement of Lemma 18, and set
t = 4s. Then, with Lemma 17, we may assume that W has size 100s and comes
with a (α, β)-clean pair of linkages of size s that are in series. Lemma 18 now
yields the k disjoint labelled H-expansions.

We can now prove our main result.

Proof of Theorem 13. Necessity follows from Lemmas 9, 10 and 12.
It remains to prove sufficiency. For this, let H be a 2-connected (α, β)-

labelled graph that has an embedding as in the statement. To proceed to the
difficult case, we assume that H contains vertices of both labels, α and β. (If
not, set α = β.)

Suppose the theorem is false. Then there is a largest k < ∞ such that
there are values f(2), . . . , f(k− 1) such that for all k′ < k every graph G either
contains k′ disjoint labelled H-expansions or a vertex set X of size |X| ≤ f(k′)
that meets every H-expansion.

Fix numbers t1 � t2 � t3 � k, where we make precise what that means
below. Moreover, choose f(k) such that t1 ≤ min{f(k)−2f(k−1), f(k)/3} and
complete f to a function f : N→ N.

By the choice of k we may pick a minimal counterexample (G, k) to f being
an Erdős-Pósa function for the family of labelled H-expansions. Let T be the
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tangle as defined in Lemma 4 with t1 playing the role of t which, by Lemma 4,
has size at least t1.

We assume t1 to be chosen large enough such that Theorem 7 yields a t2-wall
W1 whose induced tangle TW1 is a truncation of T . Next, we assume t2 to be
large enough such that t2 and t3 can play the roles of t′ and t in Theorem 8.

We now go through the different outcomes of Theorem 8. For outcome (i),
we apply Lemma 15, where we choose t3 large enough to yield k disjoint H-
expansions). For outcome (ii), we apply Lemma 19, where again we assume
that t3 is large enough to ensure k disjoint H-expansions.

Finally, we observe that the outcome (iii) may not occur. Indeed, recall
that (iii) yields a label γ ∈ {α, β} and a set Z such that |Z| < t2 and the
unique TW1

-large block of G − Z does not contain any vertex labelled with γ.
Since H is 2-connected by assumption, any labelled H-expansion in G − Z is
edge-disjoint from the TW1

-large block of G−Z. As |Z| < t2 ≤ f(k) and (G, k)
is a counterexample, however, G− Z must contain some labelled H-expansion.
Thus, there is a separation (A,B) of order at most |Z| + 1 < t1 such that
B contains the unique TW1

-large block of G − Z. Hence, (A,B) ∈ T , but A
contains a labelled H-expansion (hence (B,A) ∈ T ), which is a contradiction
to (T2). This completes the proof.
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