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Abstract

By a result of Gallai, every finite graph G has a vertex partition into two
parts each inducing an element of its cycle space. This fails for infinite
graphs if, as usual, the cycle space is defined as the span of the edge sets of
finite cycles in G. However we show that, for the adaptation of the cycle
space to infinite graphs recently introduced by Diestel and Kühn (which
involves infinite cycles as well as finite ones), Gallai’s theorem extends to
locally finite graphs. Using similar techniques we show that if Seymour’s
faithful cycle cover conjecture is true for finite graphs then it also holds for
locally finite graphs when infinite cyles are allowed in the cover, but not
otherwise. We also consider extensions to graphs with infinite degrees.

1 Introduction

By a result of Gallai (see Lovász [9]), every finite graph has a ‘cycle-cocycle’
partition of its edge set induced by a bipartition of its vertex set:

Theorem 1.1. Every finite graph G admits a vertex partition into (possibly
empty) sets V1, V2 such that both E(G[V1]) and E(G[V2]) are elements of the
cycle space of G.

As stated above, Gallai’s theorem has no obvious extension to infinite graphs.
Indeed, when G is infinite, the elements of its (combinatorial) cycle space are
still finite sets of edges, so a partition as in Theorem 1.1 does not exist, for
instance, when G is an infinite disjoint union of triangles.

One way to deal with the problem is to look for an equivalent reformulation
of Theorem 1.1 and extend that. For example:

Theorem 1.2. Every locally finite graph G admits a vertex partition into (pos-
sibly empty) sets V1, V2 such that in both G[V1] and G[V2] all vertex degrees are
even.

(The proof of Theorem 1.2 is an easy exercise in compactness. It is also an
immediate corollary of Theorem 1.4 below.)

However, the requirement that all degrees of a subgraph H of a finite graph
G should be even is only one equivalent reformulation among many of saying
that E(H) lies in the cycle space of G. Another is that H should be an edge-
disjoint union of cycles (and isolated vertices). This would be just as meaningful
for infinite H , and for locally finite H it implies the even-degree condition but
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not conversely. (Consider a double ray, which is 2-regular but not a union of
cycles.) But with this latter reformulation, Theorem 1.1 no longer extends to
infinite graphs:

u1 u2 u3

v1 v2 v3

w1 w2 w3 w4 w5

Figure 1: A graph with no bipartition into edge-disjoint unions of cycles

Example 1.3. The graph G shown in Figure 1 has a unique vertex partition
into two induced even-degree subgraphs. One of these is edgeless, the other a
double ray.

Proof. Consider any partition (V1, V2) of V (G). Note that if two vertices x, y
(such as u1 and w1) have a common neighbour z (such as v1) not adjacent to
any other vertex, then x and y must lie in the same partition class: otherwise,
z would have degree 1 in its partition class. Thus if u1 ∈ V1, say, we deduce
inductively that w1, w3, w5, . . . ∈ V1 and hence also u2, u3, u4, . . . ∈ V1. But
u2, u3, u4 . . . must not have degree 3 in G[V1], so v2, v3, v4, . . . ∈ V2. Finally,
v1 lies in V1 because u2 does, so inductively w2, w4, . . . ∈ V1.

Thus, V2 is the independent set {v2, v3, . . . }, while V1 consists of the remain-
ing vertices, which span a double ray.

Our aim in this paper is to show that, despite Example 1.3, Theorem 1.2 is
not the strongest possible extension of Theorem 1.1. Indeed, we can say more
of the double ray G[V1] in Figure 1 than that its degrees are even: the double
ray forms an infinite cycle in the topological cycle space C(G) introduced for
infinite graphs in [3, 7]. (It does so, because its tails converge to the same end
of G, which thus ‘closes it up’; see Section 2 for formal definitions.) So for that
space C(G), the graph of Figure 1 is no longer a counterexample to Theorem 1.1.
And indeed, we have the following extension of Theorem 1.1 to infinite graphs,
which implies Theorem 1.2 but is quite a bit stronger:

Theorem 1.4. For every locally finite graph G there is a partition of V (G) into
two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈ C(G) for both i = 1, 2.

We shall prove Theorem 1.4 in Section 3. In Section 4 we use similar tech-
niques to extend the cycle double cover conjecture and Seymour’s faithful cycle
cover conjecture to locally finite graphs: if these conjectures are true for finite
graphs, they also hold for locally finite graphs with our notion of an infinite
topological cycle space. (The latter conjecture fails unless infinite cycles are
admitted; for the former we have been unable to decide whether infinite cycles
are really needed.) In Section 5 we generalize our results to graphs with infinite
degrees, as far as this can be reasonably expected.

2



2 Definitions

In this section we briefly define those of our terms that are not commonly known.
A more detailed introduction covering all these, as well as standard terms not
defined below, can be found in [5].

When A is a set, we write
⋃
A for the union of all its elements. A 1-way

infinite path is called a ray, a 2-way infinite path is a double ray, and the subrays
of a ray or double ray are its tails. Let G = (V,E) be any graph. Two rays in
G are equivalent if no finite set of vertices separates them; the corresponding
equivalence classes of rays are the ends of G. We denote the set of these ends
by Ω = Ω(G) .

Let us define a topology on G together with its ends. We shall call this
topology VTop; if G is locally finite, then this topology is usually called its
Freudenthal compactification. We begin by viewing G itself (without ends) as
the point set of a 1-complex. Then every edge is a copy of the real interval [0, 1],
and we give it the corresponding metric and topology. For every vertex v we
take as a basis of open neighbourhoods the open stars of radius 1/n around v.
(That is to say, for every integer n ≥ 1 we declare as open the set of all points on
edges at v that have distance less than 1/n from v, in the metric of that edge.)1

In order to extend this topology to Ω, we take as a basis of open neighbourhoods
of a given end ω ∈ Ω the sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E̊(S, ω) ,

where S ⊆ V is a finite set of vertices, C(S, ω) is the unique component of G−S
in which every ray in ω has a tail, Ω(S, ω) is the set of all ends ω′ ∈ Ω whose
rays have a tail in C(S, ω), and E̊(S, ω) is the set of all inner points of edges
between S and C(S, ω).2 Let |G| denote the topological space on the point set
V ∪ Ω ∪ ⋃E thus defined. We shall freely view G and its subgraphs either as
abstract graphs or as subspaces of |G|. Note that in |G| every ray converges to
the end of which it is an element.

A set C ⊆ |G| is a circle if it is homeomorphic to the unit circle. Then C
includes every edge of which it contains an inner point, and the graph consisting
of these edges and their endvertices is the cycle defined by C. Conversely, it is
not hard to show [7] that C ∩ G is dense in C, so every circle is the closure in
|G| of its cycle and hence defined uniquely by it. Note that every finite cycle in
G is also a cycle in this sense, but there can also be infinite cycles; see [3, 5] for
examples and for more information on VTop and C(G).

Call a family (Di)i∈I of subsets of E thin if no vertex of G is incident with an
edge in Di for infinitely many i. (Thus in particular, no edge lies in more than
finitely many Di.) Let the sum

∑
i∈I Di of this family be the set of all edges

that lie in Di for an odd number of indices i, and let the topological cycle space
C(G) of G be the set of all sums of (thin families of) edge sets of cycles, finite or

1If G is locally finite, this is the usual identification topology of the 1-complex. Vertices of
infinite degree, however, have a countable neighbourhood basis in VTop, which they do not
have in the 1-complex.

2In the early papers on this topic, such as [7, 8, 6], some more basic open sets were allowed:

in the place of E̊(S, ω) we could take an arbitrary union of open half-edges from C towards S,
one from every S–C edge. When G is locally finite, this yields the same topology. When G has
vertices of infinite degree, our topology is slightly sparser but still yields the same topological
cycle space; see the end of this section for more discussion.
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infinite. Symmetric difference as addition makes C(G) into an F2 vector space,
which coincides with the usual cycle space of G when G is finite. We remark
that C(G) is closed also under taking infinite thin sums [7, 8], which is not
obvious from the definitions.

As with finite graphs, elements of C(G) can be decomposed into cycles:

Theorem 2.1. [8] Every element of the topological cycle space of a graph is the
edge-disjoint union of cycles.

For the conscientious reader we remark that, although the topology for |G|
considered in [7, 8, 6] is slightly larger than ours (see the earlier footnote), the
above theorem, as well as Lemma 3.1 below, is nevertheless applicable in our
context. This is because the cycles in |G| coincide for these topologies: as one
readily checks, the identity on |G| between the two spaces is bicontinuous when
restricted to a circle in either space.

3 Cycle-cocycle partitions

The purpose of this section is to prove Theorem 1.4. This proof will also serve
as a model for other proofs later in the paper, which will refer to this proof and
skip the corresponding details.

Our proof of Theorem 1.4 will be a compactness proof, but we shall need a
non-trivial lemma from [7] to make this possible. Recall that while Theorem 1.2
has a straightforward compactness proof, the näıve extension of Theorem 1.1
to locally finite graphs does not (and is in fact false). The reason is, roughly
speaking, that having all degrees even is a ‘local’ property of finite subsets
S ⊆ V (G) (one that S will satisfy in every large enough induced subgraph or
in none), while inducing part of an element of the (combinatorial) cycle space
based on finite cycles is not: the sequence of finite cycles Cn = Pn + en, for
example, where the Pn = v−nv−(n−1) . . . vn−1vn are nested paths and en is the
edge v−nvn, ‘tends’ for n → ∞ to the double ray D = . . . v−1v0v1 . . . whose
edge set does not lie in the combinatorial cycle space of

⋃
n∈N Cn. However, D

is an infinite cycle in
⋃
n∈N Cn, and more generally it turns out that all such

‘limits’ of finite cycles in a graph G are elements of C(G) (though not necessarily
single infinite cycles).

The following result from [7] makes that precise by providing a characteri-
zation of the elements of C(G) among all the subsets of E(G) that is ‘local’ in
the above sense.

Lemma 3.1. [7] Let G be a locally finite graph. Then the following statements
are equivalent for every Z ⊆ E(G):

(i) Z ∈ C(G); and

(ii) |F ∩ Z| is even for every finite cut F of G.

We shall cast our compactness proof in terms of König’s infinity lemma
(see [5]), which we restate:

Lemma 3.2. Let W1,W2, . . . be an infinite sequence of disjoint non-empty finite
sets, and let H be a graph on their union. For every n ≥ 2 assume that every
vertex in Wn has a neighbour in Wn−1. Then H contains a ray v1v2 . . . with
vn ∈Wn for all n.
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Proof of Theorem 1.4. By treating the components of G separately, we may
assume that G is connected. Hence, being locally finite, G is countable. Let
v1, v2, . . . be an enumeration of V (G). For n ∈ N set Sn := {v1, . . . , vn}, and
define Wn as the set of all tuples (V1, V2) such that

(i) (V1, V2) is a partition of Sn into two (possibly empty) sets; and

(ii) for i = 1, 2, there is a Z ∈ C(G) such that Z ∩ E(G[Sn]) = E(G[Vi]).

Each set Wn is clearly finite. It is non-empty by Theorem 1.1 applied to G[Sn].
Let us define a graph H on

⋃∞
n=1Wn. For n ≥ 2, let (V1, V2) ∈ Wn be

adjacent to (V ′1 , V
′
2) ∈ Wn−1 if and only if, for both i = 1, 2, V ′i ⊆ Vi. Observe

that for n ≥ 2 every vertex in Wn has a neighbour in Wn−1.
By the infinity lemma (3.2), there is a ray v1v2 . . . in H with (V n1 , V

n
2 ) :=

vn ∈Wn for all n. Clearly, V1 :=
⋃∞
n=1 V

n
1 and V2 :=

⋃∞
n=1 V

n
2 form a partition

of V (G).
We shall use Lemma 3.1 to show that E(G[V1]) ∈ C(G), and in a similar way

that E(G[V2]) ∈ C(G). Write Zn := E(G[V n1 ]) for each n. Consider a finite cut
F of G. Choose n large enough that F ⊆ E(G[Sn]). By (ii), there is a Z ∈ C(G)
with Z ∩ E(G[Sn]) = Zn. Then

F ∩E(G[V1]) = F ∩ E(G[Sn] ∩G[V1]) = F ∩ Zn = F ∩ Z ∩ E(G[Sn]) = F ∩ Z.

Since Z ∈ C(G), the last intersection is even. Hence E(G[V1]) ∈ C(G) by
Lemma 3.1, as desired.

4 Faithful cycle covers

Another problem concerning cycles is the well-known cycle double cover conjec-
ture, which states that every bridgeless finite graph has a cycle double cover.
(A cycle double cover of a graph G is a family of cycles such that each edge
of G lies on exactly two of those cycles.) Using the same techniques as in the
proof of Theorem 1.4 one can show that if the cycle double cover conjecture is
true for finite graphs then it also holds for locally finite graphs, possibly with
infinite cycles. However, we have been unable to construct an example where
infinite cycles are really needed.

The situation is different for the following related conjecture of Seymour,
which extends with infinite cycles but fails with finite cycles only. For a graph
G and a map p : E(G) → N (3 0) a faithful cycle cover of (G, p) is a family of
cycles such that every edge e ∈ G lies on exactly p(e) of those cycles. Such a
map p is admissible if p(F ) =

∑
f∈F p(f) is even and p(e) ≤ p(F )/2 for every

finite cut F and every edge e ∈ F . We call p even if all its values p(e) are even
numbers. If (G, p) is to have a faithful cycle cover, then obviously p has to be
admissible, and we shall see below that for some G it has to be even. Since
the constant map with value 2 is admissible for bridgeless graphs, the following
faithful cycle cover conjecture extends the cycle double cover conjecture:

Conjecture 4.1 (Seymour [10]). Let G be a finite graph, and p an even
admissible map. Then (G, p) has a faithful cycle cover.

Unlike the cycle double cover conjecture, we know that Conjecture 4.1 fails
for locally finite graphs unless we allow infinite cycles. Here is a simple example.
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Let G be the double (= two-way infinite) ladder, and let p assign 0 to every rung
and 2 to all the other edges. By our current definition of admissibility (which
requires p(e) ≤ p(F )/2 only for finite cuts F ), the function p is admissible. But
G contains no finite cycle that avoids all rungs, so (G, p) has no faithful cover
consisting of finite cycles. (It does, however, have a faithful cover consisting of
two copies of the infinite cycle spanned by the edges for which p = 2.)

The above example is no longer a counterexample to the infinite analogue of
Conjecture 4.1 if we require of an admissible map p that it satisfies p(e) ≤ p(F )/2
also for infinite cuts F (and edges e ∈ F ): if e is any edge with p(e) = 2 and R
is a maximal ray in the subgraph of G − e spanned by all its remaining edges
with p = 2, then e and the edges with p = 0 incident with R form an infinite
cut F such that p(e) = p(F ). Thus, p is no longer admissible, and we no longer
have a contradiction.

Our next example, however, shows that strengthening the definition of ‘ad-
missible’ as above is not enough to make Conjecture 4.1 true for locally finite
graphs—if only finite cycles are admitted. Consider the ladder G shown in Fig-
ure 2 and the admissible map p : E(G) → N defined by p(ei) = p(e′i) = 2i and
p(fi) = 2 for all i. (Since p(e) > 0 for all e, we trivially have p(e) ≤ p(F )/2
also for infinite cuts F .) Suppose there is a faithful cycle cover which contains
a finite cycle D. Obviously, D contains exactly two rungs fm, fn, with m < n,
say. Let C be the subfamily of the cover consisting of those cycles which pass
through the edge en. Each but at most one (which might go through fn) of the
cycles in C must use the edge en−1. Thus, at least |C| − 1 = 2n− 1 cycles of the
cover meet the edge en−1, contradicting p(en−1) = 2n− 2. Therefore, the only
faithful cycle cover that (G, p) can have (and which is easily seen to exist) must
be one consisting of infinite cycles.

e1 e2 e3 e4

f1 f2 f3 f4

e′

1 e′

2 e′

3 e′

4

Figure 2: The unique faithful cycle cover consists of infinite cycles only

As soon as we allow infinite cycles, however, Conjecture 4.1 does extend to
locally finite graphs:

Theorem 4.2. Let G be a locally finite graph and p : E(G) → N an even ad-
missible map. If Conjecture 4.1 is true then (G, p) has a faithful cycle cover.

Proof. We sketch how the proof of Theorem 1.4 has to be amended for Theo-
rem 4.2. As before, we may assume that G is connected. Let v1, v2, . . . be an
enumeration of its vertices, and set Gn := G[{v1, . . . , vn}]. We define Wn as the
set of all families E of edge sets E ⊆ E(Gn) such that

(i) every edge e ∈ Gn lies in exactly p(e) members of E ; and

(ii) for every E ∈ E there is a finite cycle C ⊆ G with E(C ∩Gn) = E.
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The sets Wn are nonempty. Indeed, consider the multigraph obtained by con-
tracting the components of G − Gn to one vertex each, keeping parallel edges
but deleting loops. Subdividing the parallel edges we obtain a simple finite
graph G′n. The map p induces an even and admissible map on G′n, for which
there is a faithful cycle cover by assumption. It is easy to see that the corre-
sponding edges in G satisfy (i) and (ii).

The rest of the proof is analogous to that of Theorem 1.4: applying the
infinity lemma to an auxiliary graph H , we obtain a family of elements of
C(G) such that every edge e lies on exactly p(e) members of this family. By
Theorem 2.1, we can modify this into a faithful cover consisting of single cycles.
Therefore, if the faithful cycle cover conjecture holds for finite graphs, it is also
true for locally finite graphs.

Conjecture 4.1 requires p to be even, and indeed if p is allowed to assume
odd values the conjecture becomes false: take the Petersen graph, and give p
the value 2 on a perfect matching and 1 on all other edges.

Take any subgraph of an infinite graph G, and contract some—possibly
infinitely many—of its edges; the resulting graph will be called a minor of G.
Then the following result, whose finite version is a theorem of Alspach, Goddyn
and Zhang [1], can be proved like Theorem 4.2.

Theorem 4.3. Let G be a locally finite graph not containing the Petersen graph
as a minor, and let p : E(G) → N be any admissible map (even or not). Then
(G, p) has a faithful cycle cover.

5 Graphs with infinite degrees

Theorem 1.4 does not extend to arbitrary graphs with vertices of infinite degree.
For example, consider the graph G obtained by joining a vertex v0 to every
vertex of a ray R := v1v2v3 . . .. Suppose there is a partition as in Theorem 1.4,
and assume that v0 ∈ V1. By the definition of thin sums, no element of C(G)
can have infinitely many edges incident with v0. So there is a maximal n ≥ 0
with vn ∈ V1. But then vn+1 has degree 1 in G[V2], a contradiction.

The problem here is that no element of the topological cycle space is allowed
to have a vertex of infinite degree. Indeed if we weaken our concept of infinite
sums, forbidding only those where some edge lies in infinitely many of the sum-
mands (i.e. making no restrictions on vertices), our counterexample ceases to
be one: for V1 := {v3, v6, v9, . . .}, the set V2 := V \ V1 induces an element of
the cycle space. Of course, there was a good reason for forbidding these sums:
summing up the triangles v0v1v2v0, v0v2v3v0, v0v3v4v0, . . . yields the ray v0v1R,
which should then also be a member of the cycle space. But this is not unrea-
sonable: as v0 cannot be separated finitely from the ray R, this ray may be seen
as converging to v0. Indeed, although R does not converge to v0, it nearly does:
VTop cannot separate its end from v0 by two disjoint open sets. If we adjust
our topology so that R does converge against v0, by identifying v0 with the end
containing R, the ray v0v1R becomes a cycle as desired.

Let us make that precise. We say that a vertex v dominates an end ω in G
if there is ray R ∈ ω and an infinite set of v–R paths that meet pairwise only
in v. Assuming that

every end of G is dominated by at most one vertex, (1)
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we now identify each vertex with all the ends it dominates, to obtain space G̃
whose (quotient) topology we denote by ITop. Note that, by (1), the vertices of
G remain distinct in this identification. The identification space G̃ is Hausdorff
(unlike |G|, when G has a dominated end), and compact [4] if G is 2-connected
and satisfies condition (2) below. See [2, 6] for more on ITop.3

To obtain a cycle space which retains the natural properties of the topological
cycle space of a locally finite graph, we have to impose another restriction on
our graph G. Indeed, consider two vertices x and y that are linked by infinitely
many independent paths. Then we can generate each of these paths P as a
sum of cycles, so P should be in our cycle space. To avoid this, we require the
following:

No two vertices of G are joined by infinitely many independent paths. (2)

Note that (2) implies (1). As before, we define as cycles those subgraphs of G
whose closure in G̃ is homeomorphic to the unit circle, and the topological cycle
space C(G̃) of G̃ is defined as the span of all sums of cycles such that no edge
appears in infinitely many of the summands. For the rest of this section, we
assume that the graphs G we consider satisfy (2), and that all cycles are defined
with respect to G̃.

Our main result now extends to graphs with infinite degrees, as follows:

Theorem 5.1. Let G be a graph satisfying (2). Then there is a partition of
V (G) into two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈ C(G̃) for both
i = 1, 2.

For the proof of Theorem 5.1 we may assume G to be 2-connected, because
the topological cycle space of a graph is the direct product of the topological
cycle spaces of its blocks. (Recall that vertices are now allowed to lie in infinitely
many summands as long as no edge does.) Then G is countable [6]. We now
proceed exactly as in the proof of Theorem 1.4, except that instead of Lemma 3.1
we use the following analogous result:

Lemma 5.2. [6] Let G be a graph satisfying (2). Then C(G̃) consists of precisely
those sets of edges that meet every finite cut in an even number of edges.

Our results of Section 4 can also be extended to graphs with infinite degrees,
but we require the following strengthening of (2):

No two vertices of G are joined by infinitely many edge-disjoint paths. (3)

This is indeed stronger than (2), see [6].
We need another lemma.

Lemma 5.3. Let G be a 2-connected multigraph satisfying (3), and let U be
a finite set of vertices in G. Then we can contract edges of G, deleting loops
but keeping any multiple edges that arise, so that no two vertices from U are
identified, the multigraph H obtained has only finitely many edges and vertices,
and every cut of H is also a cut of G.

3Here, we obtain Itop from VTop, which is slightly sparser than the topology Top from
which ITop is derived in [6]. However, in a similar way as detailed at the end of Section 2,
we see that both topologies yield the same cycle space. In particular, Lemma 5.2 is still
applicable.
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Proof. First, note that the set K of components of G−U is finite. Indeed, as G
is 2-connected, every component C of G−U has distinct neighbours u, v in U . If
K is infinite, then infinitely many C ∈ K are joined to the same two vertices u, v
(because U is finite), so these are linked by infinitely many independent paths.
This contradicts (3).

Next, consider a component C ∈ K. For every two vertices u, v ∈ U that
both send infinitely many edges to C there is a finite cut Fu,v ⊆ E(C) separating
N(u)∩V (C) from N(v)∩V (C) in C, because of (3). Let FC be the union of all
such cuts Fu,v . Note that FC is finite, as there are only finitely many pairs u, v.
Then the set KC of components of C−FC is also finite, and so is K′ :=

⋃
C∈KKC .

Each D ∈ K′ sends only finitely many edges to G − U − D, and at most one
vertex in U sends infinitely many edges to D. If such a vertex exists, we denote
it by uD.

In G, contract every D ∈ K′ to a vertex vD , keeping parallel edges but
deleting loops. If two vertices of the resulting multigraph are joined by infinitely
many edges, then these are uD and vD for some D ∈ K′. In a second step, we
now contract all these edges uDvD , again keeping parallel edges. We obtain a
finite multigraph H in which no two vertices from U are identified. (Note in
particular that the edge set of H is finite, despite the parallel edges that arose
in the contraction.) Since we did not delete any edges except loops, every cut
of H is also a cut of G.

Theorem 5.4. Let G be a graph satisfying (3), and let p : E(G) → N be an
even admissible map. If Conjecture 4.1 is true then (G, p) has a faithful cycle
cover.

Proof. Consider a block B of G. Every cut of B is a cut of G, so the restriction
of p to B is an even admissible map on B. As C(G) is the direct product of the
topological cycle spaces of the blocks of G, we may therefore assume G to be
2-connected. (Note that p assigns zero to bridges, so we need not cover these.)
Then G is countable [6].

Consider an enumeration v1, v2, . . . of V (G), and set Gn := G[{v1, . . . , vn}].
Define Wn as the set of all families E of sets E ⊆ E(Gn) such that

(i) every edge e ∈ E(Gn) lies in exactly p(e) members of E ; and

(ii) for every E ∈ E there is a finite cycle C ⊆ G with E(C ∩Gn) = E.

Let us show that the sets Wn are not empty. Apply Lemma 5.3 with U =
{v1, . . . , vn}, and denote the multigraph H obtained by G′n. Since every cut of
G′n is also one of G, the map p induces an admissible even map p′n on G′n. By
subdividing edges we obtain from G′n a simple graph G′′n with admissible even
map p′′n (induced by p′n). Then by assumption there is a faithful cycle cover of
(G′′n, p

′′
n). Every cycle in that cover can be extended to a finite cycle in G. The

family of these cycles then satisfies (i) and (ii), thus proving Wn 6= ∅.
The rest of the proof is again analogous to that of Theorem 1.4, since every

element of C(G̃) is an edge-disjoint union of cycles [6].

Using the same techniques as above, we can also extend Theorem 4.3:

Theorem 5.5. Let G be a graph that satisfies (3) and does not contain the
Petersen graph as a minor, and let p : E(G)→ N be any admissible map. Then
(G, p) has a faithful cycle cover.
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