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Abstract

The adaption of combinatorial duality to infinite graphs has been ham-
pered by the fact that while cuts (or cocycles) can be infinite, cycles are
finite. We show that these obstructions fall away when duality is rein-
terpreted on the basis of a ‘singular’ approach to graph homology, whose
cycles are defined topologically in a space formed by the graph together
with its ends and can be infinite. Our approach enables us to complete
Thomassen’s results about ‘finitary’ duality for infinite graphs to full du-
ality, including his extensions of Whitney’s theorem.

1 Introduction

The cycle space over Z2 of a finite graph G is the set of all symmetric differences
of its circuits, the edge sets of the cycles in G. If G∗ is another graph and there
exists a bijection E(G) → E(G∗) that maps the circuits of G precisely to the
minimal non-empty cuts (or bonds) of G∗, then G∗ is called a dual of G. The
classical result in this context is Whitney’s theorem:

Theorem 1.1 (Whitney [14]). A finite graph G has a dual if and only if it
is planar.

For infinite graphs, however, there is an obvious asymmetry between circuits
and cuts that gets in the way of duality: while cuts can be infinite, cycles are
finite. Indeed, let G be the half-grid shown in solid lines in Figure 1. Geomet-
rically, the dotted graph G∗ should be its dual. But then various infinite sets of
edges in G, such as the edge sets of its horizontal 2-way infinite paths, should
be circuits, because they correspond to bonds of G∗.

... ...
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Figure 1: A dual with infinite bonds requires infinite circuits

This problem ties in with similar recently observed difficulties about extend-
ing other homology aspects of finite graphs to infinite graphs [6]. In all those
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cases, the problems could be resolved in a topologically motivated extension of
the cycle space, which takes as its basic circuits not only the edge sets of finite
cycles but more generally the edge sets of all circles – the homeomorphic images
of S1 in the space |G| formed by the graph together with its ends. (When G
is locally finite, |G| is known as its Freudenthal compactification. In topologi-
cal terms, the key step is to use a singular-type homology in |G| rather than
the simplicial homology of the graph G.) In our example, every 2-way infinite
horizontal path D in G forms such a circle in |G| together with the unique end
of G, since both its tails converge to this end. The edge set of D would thus be
a circuit, as required by its duality to a bond of G∗.

We show that the obstructions to duality in infinite graphs can indeed be
overcome in this way. As in those other cases, we build the cycle space not just
on the edge sets of the finite cycles ofG but on the edge sets of all its circles. This
time, however, we take these circles not in |G| itself but in a natural quotient
space of |G|: whenever an infinite path R is dominated by a vertex v (that is, if
G contains infinitely many v–R paths that are disjoint except in v) we identify
v with the end of R, so that R converges to v rather than to a newly added
point at infinity. In Figure 1, every infinite path in the dotted graph converges
to the vertex v, so every maximal horizontal path and every maximal vertical
path in G∗ forms a circle through v.

Our results extend the duality of finite graphs in what appears to be a com-
plete and best-possible way. However, all our results build on previous work of
Thomassen [12, 13], who extended finite duality to infinite graphs as far as it will
go without considering infinite circuits. Thomassen’s approach was to overcome
the disparity between finite cycles and infinite cuts by disregarding the latter.
In his terms, G∗ qualifies as a dual of G as soon as the edge bijection between
the two graphs maps all the (finite) circuits of G to the finite bonds of G∗.

This weaker notion of duality already permits quite a satisfactory extension
of Whitney’s theorem to 2-connected graphs. Our stronger notion strengthens
this (in one direction), and in addition re-establishes two aspects of finite duality
that cannot be achieved for infinite graphs when infinite cuts (and cycles) are
disregarded: the uniqueness of duals for 3-connected graphs, and symmetry, the
fact that a graph is always a dual of its duals.

Concerning symmetry, note that taking duals may force us out of the class
of locally finite graphs: while the graph G in Figure 1 is locally finite, its dual is
not. But graphs with vertices of infinite degree do not, in general, have duals.
Indeed, Thomassen showed that any infinite graph with a dual (even in his
weaker sense) must satisfy the following condition:

No two vertices are joined by infinitely many edge-disjoint paths. (∗)

To achieve symmetry, we thus need that the class of graphs satisfying (∗) is
closed under taking duals. While this is not the case for Thomassen’s notion, it
will be true for ours.

Our paper is organised as follows. After providing the required terminology
in Section 2 we continue the above discussion in more precise terms in Section 3,
which leads up to the statement of our basic duality theorem, Theorem 3.4. We
prove this theorem in Section 4. In Section 5 we characterise the graphs that
have locally finite duals. In Section 6 we treat duality in terms of spanning
trees. In Section 7 we apply our results to colouring-flow duality.
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2 Definitions

The basic terminology we use can be found in [7]. However, graphs in this paper
are the ‘multigraphs’ of [7]: they may have loops and multiple edges. When we
contract an edge e = uv then this may create loops (from edges parallel to e)
and new parallel edges (if u and v had a common neighbour). Observe that
contracting a loop is the same as deleting it. Following Thomassen [12, 13], we
require 2-connected graphs to be loopless, and 3-connected graphs to have no
parallel edges.1 A 1-way infinite path is called a ray, a 2-way infinite path is a
double ray, and the subrays of a ray or double ray are their tails.

A graph is said to be planar if it can be drawn in the plane in such a way
that if the images of two edges e and f have a point in common then this point
corresponds to a vertex incident with both e and f , and such that all the images
of vertices are disjoint. By Kuratowski’s theorem and compactness, a countable
graph is planar if and only if it contains neither K5 nor K3,3 as a minor [10].

Let G = (V,E) be a graph, fixed throughout this section. Two rays in G are
equivalent if no finite set of vertices separates them; the corresponding equiv-
alence classes of rays are the ends of G. We denote the set of these ends by
Ω = Ω(G). An end ω is said to be dominated by a vertex v if for some (equiva-
lently: for every) ray R ∈ ω there are infinitely many v–R paths that meet only
in v. The ends of G that are not dominated are precisely its topological ends
as defined by Freudenthal [11]; see [8] for details.

We will now define two topological spaces. The first of these, denoted as |G|,
has V ∪ Ω ∪⋃E as its point set; we shall call its topology VTop. The other,
denoted as G̃, will be a quotient space of |G|. Its point set can be viewed as
V ∪Ω′ ∪⋃E, where Ω′ is the set of undominated ends, and we call its topology
ITop. When G is locally finite, the two spaces will coincide.

Let us start with |G|. We begin by viewing G itself (without ends) as the
point set of a 1-complex. Then every edge is a copy of the real interval [0, 1], and
we give it the corresponding metric and topology. For every vertex v we take as
a basis of open neighbourhoods the open stars of radius 1/n around v. (That is
to say, for every integer n ≥ 1 we declare as open the set of all points on edges
at v that have distance less than 1/n from v, in the metric of that edge.)2 In
order to extend this topology to Ω, we take as a basis of open neighbourhoods
of a given end ω ∈ Ω the sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E̊(S, ω) ,

where S ⊆ V is a finite set of vertices, C(S, ω) is the unique component of G−S
in which every ray from ω has a tail, Ω(S, ω) is the set of all ends ω′ ∈ Ω whose
rays have a tail in C(S, ω), and E̊(S, ω) is the set of all inner points of edges
between S and C(S, ω).3 We shall freely view G and its subgraphs either as

1This is motivated by matroid theory. Disallowing loops is also necessary for uniqueness:
a graph with loops never has exactly one dual (unless it is itself a loop).

2If G is locally finite, this is the usual identification topology of the 1-complex. Vertices of
infinite degree, however, have a countable neighbourhood basis in VTop, which they do not
have in the 1-complex.

3In the early papers on this topic, such as [9], some more basic open sets were allowed: in

the place of E̊(S, ω) we could take an arbitrary union of open half-edges from C towards S,
one from every S–C edge. When G is locally finite, this yields the same topology. When G
has vertices of infinite degree, our topology is slightly sparser but still yields the same cycle
space; see the end of this section for more discussion.
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abstract graphs or as subspaces of |G|. Note that in |G| every ray converges to
the end of which it is an element.

Now let G̃ be the quotient space obtained from |G| by identifying each vertex
v with all the ends it dominates. Since G (ie., all the graphs we shall consider)
will satisfy (∗), the equivalence class containing v contains no other vertex. We
also denote this class by v, and think of it as the old vertex v to which now
the rays dominated by v converge. This quotient space G̃ is easily seen to be
Hausdorff (unlike |G|, where we cannot find disjoint open sets for an end and a
vertex that dominates it), and if G is 2-connected then G̃ is compact [5].

For the definitions that follow we shall formally work in G̃, but bear in
mind that they apply also to |G| when G is locally finite (in which case no
identification takes place and G̃ = |G|).

A subset of G̃ is a circle (respectively, an arc) if it is homeomorphic to the
unit circle S1 in the Euclidean plane (respectively, to the real interval [0, 1]). For
example, every horizontal double ray in the graph G of Figure 1 forms, together
with the unique end of G, a circle in G̃ = |G|, because its tails converge to this
end. Similarly, every vertical ray in the dotted graph G∗ that starts at v forms a
circle in G̃∗ (but not in |G∗|), because in ITop its end – the unique end of G∗ –
is identified with its starting vertex v.

Note that a circle C includes every edge of which it contains an inner point,
and thus it has a well-defined edge set, called its circuit. Conversely, it is not
hard to show [9] that C ∩G is dense in C, so every circle is the closure in G̃ of
the union of the edges in its circuit, and hence defined uniquely by its circuit.
Note that every finite circuit in G is also a circuit in this sense.

Call a family (Di)i∈I of subsets of E thin if no edge appears in infinitely
members of the family. Let the sum

∑
i∈I Di of this family be the set of all

edges that lie in Di for an odd number of indices i. Then the cycle space C(G̃)
of G̃ is the set of all sums of (thin families of) edge sets of circuits, finite or
infinite. Symmetric difference as addition makes C(G̃) into a Z2 vector space,
which coincides with the usual cycle space of G over Z2 when G is finite. We
remark that C(G̃) is closed also under taking infinite thin sums [9], which is not
obvious from the definitions. When G is finite or locally finite, we usually write
C(G) instead of C(G̃).

A set F ⊆ E is a cut of G if there is a partition (A,B) of V such that F is
the set of all the edges of G with one vertex in A and the other in B. We shall
also denote this set by E(A,B). A cut is called a bond if it is minimal among
the non-empty cuts.

We shall need the following two results as tools in our proofs.

Theorem 2.1. [9] Let G be a graph satisfying (∗). Then every element of C(G̃)
is a disjoint union of circuits.

Theorem 2.2. [9] Let G be a graph satisfying (∗). Then a set Z ⊆ E(G) is an
element of C(G̃) if and only if Z meets every finite cut in an even number of
edges.

For the conscientious reader we remark that, although the topology for |G|
considered in [9] is slightly larger than ours (see the earlier footnote), the above
two theorems are nevertheless applicable in our context. This is because the
circuits in G̃ coincide for these topologies: as one readily checks, the identity on
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G̃ between the two spaces is bicontinuous when restricted to a circle in either
space.

3 Duality in infinite graphs

As discussed in the introduction, Thomassen pursued an approach to duality in
infinite graphs that is based solely on finite circuits and cuts. While being very
successful in some respects, such as conditions for the existence of duals and
extensions of Whitney’s theorem, this approach leads to unavoidable problems
in others, such as symmetry and the uniqueness of duals. Our aim in this
section is to discuss these problems, to indicate why considering infinite circuits
and working in ITop is both, in essence, necessary and sufficient to cure them,
and to state our main result, Theorem 3.4.

Consider graphs G and G∗, possibly infinite, and assume that there is a
bijection ∗ : E(G) → E(G∗). Given a set F ⊆ E(G), put F ∗ := {e∗ | e ∈ F},
and vice versa. (That is, given a subset of E(G∗) denoted by F ∗, we write F
for the subset {e | e∗ ∈ F ∗} of E(G).) Call G∗ a finitary dual of G if, for every
finite set F ⊆ E(G), the set F is a circuit in G if and only if F ∗ is a bond
in G∗.

Expressed in these terms, Thomassen obtained the following extension of
Whitney’s theorem:

Theorem 3.1 (Thomassen [13]). A 2-connected 4 graph G has a finitary dual
if and only if G is planar and satisfies (∗).

Going back to Figure 1, we see that the dotted graph G∗ is a finitary dual
of the half-grid G. However, splitting the vertex v into two vertices u and w,
and making each of these adjacent to infinitely many neighbours of v in such a
way that every neighbour of v is adjacent to exactly one of u and w, we obtain
another finitary dual H of G. This violates the intended uniqueness of duals for
3-connected graphs such as G. (Recall that duals of 3-connected finite graphs
are unique.)

Moreover, admitting H as a dual violates symmetry, since G is not a finitary
dual of H . In fact, H has no finitary dual at all, and it might not even be planar,
depending on how we join u and w to the neighbours of v.

Thomassen realised these problems, as is witnessed by the following two
theorems.

Theorem 3.2 (Thomassen [12]). Let G be a 2-connected graph having a
finitary dual. Then G has a finitary dual G∗ satisfying (∗), and every such
finitary dual G∗ has G as its finitary dual.

We say that a graph H is a finitary predual of G if G is a finitary dual of H .

Theorem 3.3 (Thomassen [13]). If G has a 3-connected finitary predual then
this is its only predual, up to isomorphism.

4We expect that Thomassen’s theorem extends to graphs of smaller connectivity. There
is no mention of this in [13], however, and we note that the canonical proof for the forward
implication fails: when G∗ is a finitary dual of G, then the duality map ∗ need not map the
blocks of G to blocks of G∗, so it is not obvious that the blocks of G have finitary duals too.
Compare Lemma 4.8 below.
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By considering infinite as well as finite circuits, however, we can restore
uniqueness. In our example, consider the edge set F of the double ray D in G.
In G∗, its dual set F ∗ (the set of edges incident with v) is a bond. But F ∗ is
not a bond in H , because it contains the edges incident with u (say) as a proper
subset. Thus, if F counts as a circuit, then G∗ will be a dual of G but H will
not, as should be our aim. Taking the circuits of G in |G| = G̃ achieves this.

To restore symmetry, we have to allow vertices of infinite degree. (Note
that G∗ has one, and we want G to be its dual.) We thus have to decide now
whether to work in |G| or in G̃. That is to say, should we take the circles that
define our infinite circuits in the topology ITop specifically designed for graphs
satisfying (∗), or in the simpler VTop?

To answer this question, let us consider the graph G shown in unbroken lines
in Figure 2, and let G∗ be a hypothetical dual of G (by the definition we are
seeking). We want G to be a dual of G∗, and in particular a finitary dual. Thus,
G∗ will be a finitary predual of G. Now G is certainly a finitary dual of the
dotted graph H shown in Figure 2, so H is also a finitary predual of G. Since
H is 3-connected, Theorem 3.3 implies that H = G∗.

D

... ...

... ...

v

Figure 2: The self-dual graph G

Since the dotted edges at v form a bond of G∗, we thus have to make the
edge set F of the double ray D a circuit of G. Now in |G| the set F is not a
circuit, because G has two ends and D has a tail in each. In G̃, however, both
ends of G are identified with the vertex v, so the double ray D and the vertex
v together do form a circle, making F into a circuit as desired.

We therefore propose the following stronger notion of duality for infinite
graphs, in which the duality condition is required of all sets of edges, finite or
infinite, and circuits are defined as in G̃ under ITop.

Definition. Let G be a graph satisfying (∗). Let G∗ be another graph, with
a bijection ∗ : E(G) → E(G∗). Call G∗ a dual of G if the following holds for
every set F ⊆ E(G), finite or infinite: F is a circuit in G̃ if and only if F ∗ is
a bond in G∗.

Note that every dual in this sense is also a finitary dual, but not conversely.

Figure 3 shows that infinite circuits can get pretty wild, even in locally finite
graphs. The following theorem, which is our main result, can thus deviate more
from the corresponding finite situation than it might at first appear.
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Figure 3: The bold edges form an infinite circuit in G, the broken edges indicate
the corresponding cut in G∗

Theorem 3.4. Let G be a countable 5 graph satisfying (∗).

(i) G has a dual if and only if G is planar.

(ii) If G∗ is a dual of G, then G∗ satisfies (∗), G is a dual of G∗, and this is
witnessed by the inverse bijection of ∗.

(iii) If G∗ is a dual of G and F ⊆ E(G), then F ∈ C(G̃) if and only if F ∗ is a
cut in G∗.

We shall prove Theorem 3.4 in the next section.

Since all finitary duals of a 3-connected graph are again 3-connected [13],
Theorems 3.3 and 3.4 (ii) together imply at once that the dual of a 3-connected
graph is unique:

Corollary 3.5. A 3-connected graph has at most one dual, up to isomorphism.

4 Proof of the duality theorem

Recall that, by Theorem 3.1, any graph G with a finitary dual G∗ satisfies (∗).
Our first aim is to show that if G∗ is a dual of G, then G∗ too satisfies (∗).

We need two lemmas. The first we quote from [2]:

Lemma 4.1.[2] Let G be a 2-connected graph satisfying (∗), and let U be a finite
set of vertices in G. Then we can contract edges of G so that no two vertices
from U are identified, the graph H obtained has only finitely many edges and
vertices, and every cut in H is also a cut of G.

5By Lemma 4.4 below, the countability assumption is redundant for 2-connected graphs,
and therefore inessential. If we agree to call a graph ‘planar’ as soon as it has neither a K5

nor a K3,3 minor, then Theorem 3.4 becomes true also for uncountable graphs.
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Lemma 4.2. Let G be a 2-connected graph satisfying (∗), and let C be an
infinite circuit in G̃. Let X be a finite set of edges meeting C in exactly one
edge e. Then there is a finite circuit in G that meets X precisely in e.

Proof. Apply Lemma 4.1 to G, taking as U the set of endvertices of the edges
in X . Consider the finite graph H returned by the lemma. Applying Theo-
rem 2.2 twice, we deduce from C ∈ C(G̃) and the separation property of H that
C ∩ E(H) ∈ C(H). Let C ′ ⊆ C ∩ E(H) be a circuit containing e. As C meets
X only in e, so does C ′. Since no two vertices from U were identified when G
was contracted to H , the branch sets of the contraction induce no edge from
X in G. We can therefore expand C ′ to a finite circuit in G that still meets X
only in e.

We need the following strong version of Menger’s theorem for countable
graphs.

Theorem 4.3 (Aharoni [1]). For any countable graph G and two sets A,B of
vertices in G there exist a set P of disjoint A–B paths and an A–B separator X
in G such that X consists of a choice of one vertex from each of the paths in P.

As every uncountable connected graph has a vertex of uncountable degree,
it is easy to show that an uncountable 2-connected graph contains two vertices
joined by uncountably many independent paths. (See eg. [8, Lemma 2.1], or
Thomassen [13].) Thus:

Lemma 4.4. A 2-connected graph satisfying (∗) is countable.

We can now show that, unlike with finitary duals, the class of graphs satis-
fying (∗) is closed under taking duals.

Lemma 4.5. Any dual G∗ of a graph G satisfies (∗).

Proof. Suppose G∗ violates (∗). Then there are two vertices in G∗, x and y say,
that cannot be separated by finitely many edges. We may assume that x and y
lie in the same block B∗ of G∗. Let B be the subgraph of G consisting of the
edges e for which e∗ ∈ E(B∗) together with their incident vertices.

Let e be an edge of B, and consider an edge f that lies in the same block
of G as e. It is not hard to see that there is a finite circuit containing both
e and f . Thus, by duality, e∗ and f∗ lie in a common bond F ∗ of G∗. The
edges in F ∗ that lie in B∗ suffice to separate the endvertices of e∗ in G∗. By
the minimality of F ∗, these are all its edges, including f∗, and thus f ∈ E(B).
This shows that B is the union of blocks of G.

Since an edge set is a circuit (resp. bond) of a graph if and only if it is a
circuit (resp. bond) in one of its blocks, we see that B∗ is a dual of the graph B.
We may therefore assume that G∗ is 2-connected, and thus, by Lemma 4.4,
countable.

By Theorem 4.3 applied to the line graph of G∗ (which is countable because
G∗ is), we can find in G∗ an infinite set P of edge-disjoint x–y paths and a set
C∗ of edges separating x from y, such that C∗ consists of a choice of one edge
from each path in P . Then C∗ is a bond in G∗, and C = {e | e∗ ∈ C∗} is an
infinite circuit in G̃.
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Pick an edge e ∈ C. We claim the following:

There is an infinite sequence of distinct finite circuits C1, C2, . . .
in G, each containing e, and such that Ci \ C and Cj \ C are
non-empty and disjoint for all i 6= j.

(1)

To prove (1), assume inductively that C1, . . . , Ci−1 have been constructed,
and put

X := {e} ∪
⋃

j<i

Cj \ C .

Since C meets X only in e, Lemma 4.2 gives us a finite circuit Ci that contains e
and does not meet C1 ∪ . . . ∪ Ci−1 outside C. As both C and Ci are circuits
in G̃, neither contains the other properly, so Ci \ C 6= ∅. This proves (1).

Let u, v be the endvertices of e∗ in G∗. Each of the sets C∗i is a cut in G∗

that contains e∗, and hence separates u from v in G∗. Denote by P the path in
P that contains e∗. Since E(P ) meets C∗ only in e∗, no edge of P other than e∗

lies in more than one of the sets C∗i (by (1)). Therefore only finitely many of the
sets C∗i meet E(P − e∗); let C∗n be one that does not. Since C∗n is finite, there
is a path Q ∈ P that has no edge in C∗n. But then (P − e∗) ∪Q is a connected
subgraph of G∗ that avoids C∗n but contains both u and v, a contradiction.

As pointed out before, every dual of a graph is also its finitary dual, and we
have just seen that it satisfies (∗). Our next aim is to show that, conversely,
every finitary dual satisfying (∗) is even a dual. We need the following lemma:

Lemma 4.6. A set F ⊆ E(G) in a graph G is a cut if and only if it meets
every finite circuit in an even number of edges.

Proof. Clearly, a cut meets every finite circuit in an even number of edges, so
let us prove the other direction.

Let G′ be the graph obtained from G by contracting every edge not in F .
Then G′ is bipartite (in particular, loopless), since any odd circuit would give
rise to a finite circuit in G meeting F in an odd number of edges. The bipartition
of G′ induces a partition (A,B) of the vertex set of G such that every edge in
F has one vertex in A and the other in B and such that no edge outside F has
that property. Thus, F = E(A,B) is a cut.

Lemma 4.7. Let G be a 2-connected graph, and let G∗ be a finitary dual of G
that satisfies (∗). Then the following assertions hold:

(i) G∗ is a dual of G (witnessed by the same map ∗).

(ii) A set F ⊆ E(G) lies in C(G̃) if and only if F ∗ is a cut in G∗.

Proof. We first prove (ii). Let F ∈ C(G̃) be given. To show that F ∗ is a cut
in G∗, it suffices by Lemma 4.6 to show that F ∗ meets every finite circuit Z∗ in
G∗ in an even number of edges. Since G is a finitary dual of G∗ (Theorem 3.2),
Z is a finite cut in G. Hence by Theorem 2.2, |F ∩ Z| = |F ∗ ∩ Z∗| is even.

Similarly, consider a cut F ∗ in G∗. To show that F ∈ C(G̃), it suffices
by Theorem 2.2 to show that F meets every finite cut D of G evenly. But
D∗ ∈ C(G̃∗) sinceG is a finitary dual ofG∗ (Theorem 3.2). So |F∩D| = |F ∗∩D∗|
is even by the trivial direction of Lemma 4.6 and the fact that D∗ is a disjoint
union of circuits.
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To prove (i), let now C be a circuit in G̃; we have to show that C∗ is a bond
in G∗. We have already shown that C∗ is a cut in G∗, and that any cut F ∗ ⊆ C∗
corresponds to a set F ∈ C(G). Since F cannot be a proper subset of C unless
it is empty, we deduce that C∗ is a bond.

Conversely, let F ∗ be a bond in G∗. Then F is a minimal non-empty element
of C(G). By Theorem 2.1, F must be a circuit.

For a proof of Theorem 3.4, it remains to combine Lemmas 4.5 and 4.7 with
Thomassen’s results on finitary duals, and to extend the result from 2-connected
to arbitrary graphs.

The latter is standard for finite graphs, but we have to be more careful here.
(Indeed, Lemma 4.8 below fails for finitary duals.) If G has a finitary dual G∗

and B is a block of G, let B∗ denote the subgraph of G∗ formed by the edges
e∗ with e ∈ B and their incident vertices.

Lemma 4.8. Let a graph G have a finitary dual G∗ that satisfies (∗). If B is
a block of G, then B∗ is a block of G∗ and a finitary dual of B. If G∗ is even a
dual of G then B∗ is a dual of B.

Proof. Two edges e, f ∈ G lie in a common block of G if and only if they lie in
a common finite circuit of G̃. For a proof that B∗ is a block of G∗, it therefore
suffices to show that the edges e∗ and f∗ lie in a common block of G∗ if and
only if they lie in a common finite bond of G∗.

If e∗ and f∗ lie in a common bond F ∗ of G∗, we proceed in a similar way as
in the proof of Lemma 4.5.

Now suppose that e∗ and f∗ lie in a common block B∗ of G∗. Then B∗ has
a finite circuit containing both e∗ and f∗. Deleting e∗ and f∗ from this circuit,
we obtain the edge sets of two paths, P and Q. Suppose that every X ⊆ E(G∗)
separating P and Q is infinite. Then there are also two vertices, one in P
and the other in Q, that cannot be separated in G∗ by finitely many edges.
Consequently, we find infinitely many edge-disjoint paths connecting these two
vertices, a contradiction to (∗). Therefore, there is a finite set F ∗ ⊆ E(G∗)
separating P from Q in G∗, which clearly contains e∗ and f∗. If we choose F ∗

to be minimal then it is a bond.
It remains to show that B∗ is a finitary dual (resp. dual) of B. But since B∗

is a block of G∗, a set F ∗ ⊆ E(B∗) is a bond of B∗ if and only if it is a bond
of G∗. Similarly, a set F ⊆ B is a circuit in B̃ if and only if it is a circuit in G̃.
The assertion therefore follows from the assumption that G∗ is a finitary dual
(resp. dual) of G.

Lemma 4.9. If G and G∗ are two graphs and ∗ : E(G) → E(G∗) maps the
blocks B of G to the blocks of G∗ so that B∗ is a dual of B, then G∗ is a dual
of G.

Proof. It is easily checked that a subset of E(G) is a circuit in G̃ if and only
if it is a circuit in B̃ for some block B of G. Similarly, a subset of E(G∗) is a
bond in G∗ if and only if it is a bond in some block of G∗.

Proof of Theorem 3.4. (i) By Lemmas 4.5, 4.8 and 4.9, G has a dual if and
only if its blocks do. (To obtain a dual of G from duals of its blocks, take their
disjoint union.) Similarly, a countable graph is planar if and only if its blocks
are [10]. We may therefore assume that G is 2-connected.
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If G is planar then, by Theorems 3.1 and 3.2, G has a finitary dual G∗ that
satisfies (∗). By Lemma 4.7, G∗ is even a dual of G. Conversely, if G has a
dual G∗, then G is planar by Theorem 3.1.

(ii) Suppose that G∗ is a dual of G. By Lemma 4.5, G∗ satisfies (∗). By
Lemma 4.8, the subgraphs B∗ of G∗, where B ranges over the blocks of G, are
the blocks of G∗, and each B∗ is a dual of B. We show that, conversely, B is a
dual of B∗. Then, by Lemma 4.9, G is a dual of G∗.

By Theorem 3.2, B is a finitary dual of B∗. Now B satisfies (∗), because G
does so by assumption. Hence by Lemma 4.7, B is a dual of B∗.

(iii) For 2-connected graphs, this is Lemma 4.7 (ii). The general case reduces
easily to this with the help of Lemma 4.6 and Theorem 2.2.

5 Locally finite duals

We started out by observing that a dual of a locally finite graph may have
vertices of infinite degree. This raises the question under what circumstances
the dual is locally finite. For 3-connected graphs, Thomassen gave the following
characterisation in terms of peripheral circuits, circuits C whose incident vertices
do not separate the graph and do not span any edges not in C.

Theorem 5.1 (Thomassen [12]). Let G be a locally finite 3-connected graph.
Then G has a locally finite finitary dual if and only if G is planar and every
edge lies in exactly two finite peripheral circuits.

Since locally finite graphs trivially satisfy condition (∗), Lemma 4.7 implies that
Theorem 5.1 still holds if the word ‘finitary’ is dropped.

To obtain another characterisation, we need the following extension of Tutte’s
planarity criterion to locally finite graphs:

Theorem 5.2. [3] Let G be a locally finite 3-connected graph. If G is planar
then every edge appears in exactly two peripheral circuits. Conversely, if every
edge appears in at most two peripheral circuits then G is planar.

Theorem 5.3. A locally finite 3-connected graph has a locally finite dual if and
only if it is planar and all its peripheral circuits are finite.

Proof. Let G be a locally finite 3-connected graph. If G has a locally finite
dual then, by Theorem 5.1, G is planar and every edge lies in exactly two finite
peripheral circuits. By Theorem 5.2, its edges cannot lie in any other peripheral
circuits, so all peripheral circuits are finite.

Conversely, if G is planar and all its peripheral circuits are finite then, by
Theorems 5.2 and 5.1, G has a locally finite finitary dual. By Lemma 4.7, this
is in fact a dual.

6 Duality in terms of spanning trees

In this section we show that our notion of duality permits the extension of an-
other well-known duality theorem for finite graphs: that the complement of the
edge set of any spanning tree of G defines a spanning tree in any dual of G, and
conversely that any two graphs whose edge sets are in bijective correspondence
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so that their spanning trees complement each other as above form a pair of
duals.

It is not difficult to see that the verbatim analogue of this fails for infinite
graphs. Indeed, the edge set of an ordinary spanning tree of G might contain
an infinite circuit C (such as the edges of the double ray D in Figure 1), in
which case C∗ would be a cut in G∗, and G∗−C∗ could not contain a spanning
tree of G∗. However, the following adjustment to the notion of a spanning tree
makes an extension possible.

Let us call a spanning tree T of G acirclic (under ITop) if its closure in G̃
contains no circle – or equivalently, if its edges contain no circuit of G̃. (We
remark that if G is locally finite then its acirclic spanning trees are precisely its
end-faithful spanning trees [9].)6

Theorem 6.1. Let G = (V,E) and G∗ = (V ∗, E∗) be connected 7 graphs satis-
fying (∗), and let ∗ : E → E∗ be a bijection. Then the following two assertions
are equivalent:

(i) G and G∗ are duals of each other, and this is witnessed by the map ∗ and
its inverse.

(ii) Given a set F ⊆ E, the graph (V, F ) is an acirclic spanning tree of G if
and only if (V ∗, E∗\F ∗) is an acirclic spanning tree of G∗ (both in ITop).

Before we prove Theorem 6.1, let us show that those acirclic spanning trees
always exist. We need the following easy fact, whose proof is the same as for
finite graphs [7, Lemma 1.9.4].

Lemma 6.2. Every cut in a graph is a disjoint union of bonds.

Theorem 6.3 below settles Problem 7.9 of [9].

Theorem 6.3. Every connected graph G satisfying (∗) has a spanning tree
whose closure in G̃ contains no circle.

Proof. We may assume that G = (V,E) is 2-connected, since the union T of
acirclic spanning trees of the blocks of G is always an acirclic spanning tree
of G. (Indeed, any circle C in the closure of T must contain two edges e, e′

from different blocks; if x is a cutvertex separating these blocks in G, then e̊
and e̊′ are separated topologically in the space G̃ − x, which contradicts the
connectedness of the open arc C − x.)

By Lemma 4.4, E has an enumeration e1, e2, . . .. Put S0 = T0 = E, and
inductively for n = 1, 2, . . . define Sn, Tn ⊆ E as follows. Given n, denote by
in the least index i such that G̃ has a circuit C ⊆ Sn−1 that contains both en
and ei; if there is no such circuit, let in =∞. Analogously, choose jn minimum
so that some bond B ⊆ Tn−1 contains both en and ejn ; if there is no such bond,
let jn = ∞. If in < jn put Sn := Sn−1 − en and Tn := Tn−1; if in > jn put

6In [9], we considered the more general concept of ‘topological spanning trees’. These are
acirclic and path-connected subspaces of |G| or G̃, which however need not induce a connected
subgraph of G. Our acirclic spanning trees defined above are meant to be connected as graphs:
they are just graph-theoretical spanning trees of G with the additional property that their
closure in G̃ contains no circle (and is therefore a topological spanning tree of G̃).

7This assumption is for convenience only. For disconnected graphs, one has to replace
‘acirclic spanning tree’ with ‘subgraph inducing an acirclic spanning tree in every component’.
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Sn := Sn−1 and Tn := Tn−1 − en; if in = jn, choose arbitrarily whether to
delete en from Sn−1 or from Tn−1. (The ambiguity here is deliberate, to keep
the definition symmetrical in S and T . This symmetry will be used later.) Then
S :=

⋂∞
n=1 Sn and T :=

⋂∞
n=1 Tn partition E. More precisely:

For all n ≤ m, the edge en lies in exactly one of the two sets Sm, Tm. (2)

We shall prove that S contains no circuit, and that T contains no bond. Then
(V, S) is an acirclic spanning tree, completing the proof. (Indeed, if (V, S) is not
connected there is a bond B in G such that B ⊆ E \ S = T , a contradiction.)

So, assume that S contains a circuit or that T contains a bond, and choose
i minimum so that there is a set C ⊆ E with ei ∈ C, and such that C ⊆ S is a
circuit in G̃ or such that C ⊆ T is a bond of G. We first assume that C ⊆ S,
i.e. that C is a circuit.

If C is finite, consider the edge ek ∈ C with k maximum. As ek ∈ C ⊆ S ⊆
Sk, we have ek /∈ Tk by (2). Then jk ≤ i < ∞, so there is a bond D ⊆ Tk−1

containing ek. As ek ∈ C ∩D, Lemma 4.6 implies that C ∩D contains another
edge ej , with j ≤ k − 1 by the choice of k. As ej ∈ C ∩D ⊆ Sk−1 ∩ Tk−1, this
contradicts (2).

Therefore C is infinite. Let ei, ek1 , ek2 , . . . be distinct edges in C, and note
that i < kl for each l, by the choice of i. Since Skl−1 contains the circuit C 3 ekl
but ekl ∈ Skl , there is a bond Dl ⊆ Tkl−1 containing ekl and an edge eml with
ml ≤ i; otherwise we would have deleted ekl from Skl−1 to obtain Skl . Since
ei ∈ Skl−1 implies ei /∈ Tkl−1, by (2), we cannot have ml = i, so in fact ml < i.
Choose m < i so that m = ml for infinitely many l, and let L0 denote the set
of these l. Thus, em ∈ Dl for every l ∈ L0.

Put En := {e1, . . . , en}. Inductively for n = 1, 2, . . . , choose infinite index
sets L0 ⊇ L1 ⊇ . . . so that, for each n, the sets Dn := Dl ∩ En coincide for all
l ∈ Ln. We claim that D =

⋃∞
n=1D

n is a cut of G contained in T . The edge
em ∈ D will then lie in some bond B ⊆ T (Lemma 6.2), which contradicts the
minimal choice of i as m < i.

To show that D is a cut, it suffices to check that D meets every finite circuit
C ′ in an even number of edges (Lemma 4.6). Choose n large enough that
C ′ ⊆ En. Then

C ′ ∩D = C ′ ∩ En ∩D = C ′ ∩Dl

for every l ∈ Ln. But |C ′ ∩Dl| is even since Dl is a cut, again by Lemma 4.6.
To show that D ⊆ T , consider any edge en ∈ D. Then en ∈ Dl for every

l ∈ Ln. By definition, Dl is a subset of Tkl−1. Now as Ln is infinite, we may
assume that kl > n. But then en ∈ Tkl−1 implies that en ∈ T , as desired.

Finally, if C ⊆ T is a bond rather than a circuit, the proof is analogous to
the above, with the roles of S and T and of circuits and bonds interchanged.
Instead of Lemmas 4.6 and 6.2 we use Theorems 2.2 and 2.1.

Proof of Theorem 6.1. (i) ⇒ (ii): Let T = (V, F ) be an acirclic spanning
tree of G in ITop. Then E∗ \ F ∗ contains no circuit C∗ of G̃∗, since C would
then be a cut of G missed by T . Similarly (V ∗, E∗ \ F ∗) must be connected: if
not, then F ∗ contains a bond of G∗, and F contains the corresponding circuit
of G̃. The converse implication follows by symmetry, since G is a dual of G∗.

(ii) ⇒ (i): We show that the map ∗ makes G∗ a finitary dual of G. Then
Lemma 4.8 implies that for each block B of G the block B∗ of G∗ is a finitary
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dual. Then B∗ is even a dual of B (with the same map ∗, by Lemma 4.7), and
by Theorem 3.4 the inverse of ∗ makes B a dual of B∗. With Lemma 4.9 we
obtain (i).

So consider a finite circuit C of G. We first show that C∗ contains a cut
of G∗. Using Theorem 6.3, choose an acirclic spanning tree S∗ of G∗. If C∗

contains no cut, we can join up the components of S∗−C∗ by finitely many edges
from E∗ \C∗ to form another spanning tree T ∗ of G∗. Then T ∗, too, is acirclic:
any circle in its closure contains an arc A∗ that contains infinitely many edges
but avoids the (finitely many) new edges and hence lies in the closure of S∗, so
the union of A∗ with a suitable path from S∗ contains a circle in the closure
of S∗. Now use (ii) to find an acirclic spanning tree T of G corresponding to T ∗.
Since T ∗ contains no edge from C∗, the edges of T include C, a contradiction.

To show that C∗ is even a minimal cut in G∗, we show that for every e ∈ C
and A := C \ {e} the graph G∗−A∗ is connected. To do so, it suffices to find a
spanning tree T ∗ of G∗ with no edge in A∗, and hence by (ii) to find an acirclic
spanning tree of G whose edges include A. Let S be any acirclic spanning tree
of G. Since A is finite but contains no circuit, we can obtain another spanning
tree T from S by adding all the edges from A and deleting some (finitely many)
edges not in A. As before, T is acirclic in G̃ because S was, and hence is as
desired.

It remains to show that if B∗ is a finite bond in G∗ then B is a circuit
in G. As before, we first show that B contains a circuit. If not, we can modify
an acirclic spanning tree of G into one whose edges include B, which by (ii)
corresponds to a spanning tree of G∗ that has no edge in B∗ (contradiction).
On the other hand, given any proper subset D∗ of B∗, we can modify an acirclic
spanning tree of G∗ into one missing D∗, because D∗ contains no cut of G∗.
Then this tree corresponds by (ii) to a spanning tree of G whose edges include D,
so D is not a circuit in G.

7 Colouring-flow duality and circuit covers

As an application of Theorem 3.4 and our results from Section 4, we now show
that the edge set of every bridgeless locally finite planar graph can be covered
by two elements of its cycle space. For finite graphs, this is a well-known refor-
mulation of the four colour theorem. For infinite graphs, of course, it must fail
as long as the cycle space contains only finite sets of edges.

In our setting, however, Theorem 3.4 enables us to imitate the finite result
(and its proof from the four colour theorem), because 4-colourability extends by
compactness [4]. Rather than assuming that G is locally finite, we work slightly
more generally in G̃.

Theorem 7.1. Let G be a bridgeless planar graph satisfying (∗). Then there
are Z1, Z2 ∈ C(G̃) such that E(G) = Z1 ∪ Z2.

Proof. Assume that we find for every block B of G elements ZB1 , Z
B
2 of the

cycle space of B such that E(B) = ZB1 ∪ ZB2 . From Theorem 2.2 follows that
for i = 1, 2, ZBi ∈ C(G) and then also Zi :=

∑
B Z

B
i ∈ C(G), where the sum

ranges over the blocks of G. Clearly, we get E(G) = Z1∪Z2. As G is bridgeless,
we may therefore assume that G is 2-connected.
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By Theorem 3.4, G has a dual G∗ and is itself a dual of G∗, which therefore is
planar too. By the four colour theorem and compactness [4], G∗ has chromatic
number at most 4. Choose a 4-colouring c : V (G∗)→ Z2×Z2 of G∗. For i = 1, 2,
let ci : V (G∗)→ Z2 be c followed by the projection to the ith coordinate, define
fi : E(G) → Z2 by fi(e) := ci(v) + ci(w) where v and w are the endvertices
of e∗, and put Zi := f−1

i (1).
Let us show that every edge e of G lies in Z1 or Z2. If not, then f1(e) =

f2(e) = 0, and hence c(v) = c(w) for e∗ =: vw. But this contradicts our
assumption that c is a proper colouring of G∗.

Next we show that Zi ∈ C(G̃), for both i = 1, 2. By Theorem 2.2, it suffices
to show that Zi meets every finite cut F of G in an even number of edges, ie.
that

fi(F ) :=
∑

e∈F
fi(e) = 0 .

As every cut is a disjoint union of bonds (Lemma 6.2), we may assume that F
is a bond. Then F ∗ is a circuit in G∗. Hence,

fi(F ) =
∑

e∗=vw∈F∗
(ci(v) + ci(w)) = 2

∑

u∈U
ci(u) = 0 ,

where U is the vertex set of the cycle in G∗ whose edge set is F ∗.

References

[1] R. Aharoni, Menger’s theorem for countable graphs, J. Combin. Theory
(Series B) 43 (1987), 303–313.

[2] H. Bruhn, R. Diestel, and M. Stein, Cycle-cocycle partitions and faithful
cycle covers for locally finite graphs, J. Graph Theory 50 (2005), 150–161.

[3] H. Bruhn and M. Stein, MacLane’s planarity criterion for locally finite
graphs, To appear in J. Combin. Theory (Series B).
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