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Abstract

We prove that the set of long cycles has the edge-Erdős-Pósa property:
for every fixed integer ` ≥ 3 and every k ∈ N, every graph G either contains
k edge-disjoint cycles of length at least ` (long cycles) or an edge set X
of size O(k2 log k + `k) such that G−X does not contain any long cycle.
This answers a question of Birmelé, Bondy, and Reed (Combinatorica 27
(2007), 135–145).

1 Introduction

Many theorems have a vertex version and an edge version. There is a Menger
theorem about (vertex-)disjoint paths and a variant about edge-disjoint paths.
We prove here the edge analogue of an Erdős-Pósa-type theorem.

Erdős and Pósa [6] proved in 1962 that every graph either contains k disjoint
cycles or a set of O(k log k) vertices that meets every cycle. Since then many
Erdős-Pósa-type theorems have been discovered, among them one about long
cycles. These are cycles of a length that is at least some fixed integer `.

Indeed, every graph either contains k disjoint long cycles or a set of O(k`+
k log k) vertices that meets every cycle. With a worse bound this follows from
a theorem of Robertson and Seymour [18], while the stated bound is due to
Mousset, Noever, S̆korić, and Weissenberger [14]. We prove an edge-disjoint
analogue:

Theorem 1. Let ` be a positive integer. Then every graph G either contains k
edge-disjoint long cycles or a set X ⊆ E(G) of size O(k` + k2 log k) such that
G−X contains no long cycle.

This answers a question of Birmelé, Bondy, and Reed [2].
For vertex-disjoint long cycles, the bound of O(k`+k log k) proved by Mous-

set et al. [14] is optimal as it matches a lower bound found by Fiorini and Her-
inckx [7]. We show below that the set X in Theorem 1 also needs to have size
at least Ω(k` + k log k). We believe that, as in the vertex version, this is the
right order of magnitude.

A family F of graphs has the Erdős-Pósa property if there is a function
fF : N → R such that for every integer k every graph G either contains k
disjoint copies of graphs in F or a hitting set X ⊆ V (G) of size at most fF (k)
that meets every F-copy in G. Thus cycles have the Erdős-Pósa property, but
also, for instance, even cycles [20] and many other graph classes.

∗The research was also supported by the EPSRC, grant no. EP/M009408/1.
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Many such results are the consequence of a far-reaching theorem of Robert-
son and Seymour [18]: for a fixed graph H the class of graphs that have H as
a minor has the Erdős-Pósa property if and only if H is planar. For example,
the theorem implies that long cycles have the Erdős-Pósa property.

Less is known about the edge analogue of the Erdős-Pósa property. There,
the objective is to find edge-disjoint copies of graphs in F or a bounded hitting
set of edges. While cycles have the edge-Erdős-Pósa property [5, Exercise 9.5],
an edge version of Robertson and Seymour’s theorem, for example, is still wide
open. By our result, long cycles have the edge-Erdős-Pósa property.

We know of only two other graph classes that have the edge-Erdős-Pósa
property: S-cycles, cycles that each contain a vertex from a fixed set S, and
the graphs that contain a θr-minor, where θr is the multigraph consisting of
two vertices linked by r parallel edges. The first result is due to Pontecorvi
and Wollan [15], the second due to Raymond, Sau and Thilikos [16]. Strikingly,
both results are obtained via a reduction to their respective vertex versions.
For long cycles this does not seem to be possible (at least not that easily), and
consequently, our proof is direct.

Within restricted ambient graphs, two more graph classes are known to have
the edge-Erdős-Pósa property. Odd cycles do not have the Erdős-Pósa property,
and they do not have the edge version either [4]. The same is true for the class
of graphs that contain an immersion1 of H for certain graphs H. If, however,
the ambient graphs G are required to be 4-edge-connected, then odd cycles as
well as graphs with an H-immersion gain the edge-Erdős-Pósa property [10, 11].

There are many more results about the ordinary Erdős-Pósa property, most
of which are listed in the survey of Raymond and Thilikos [17]. A direction we
find interesting concerns rooted graphs. In this setting, a set S (or two or more
such sets) is fixed in the ambient graph G. The target objects are required to
meet the set S in some specified way. For instance, S-cycles, cycles that each
intersect S, have the Erdős-Pósa property [9, 15], and this is still true for long
S-cycles [3]. Huynh, Joos, and Wollan [8] verify the Erdős-Pósa property for
cycles satisfying more general restrictions that include for example S1-S2-cycles
(defined in the obvious way). Note that S1-S2-S3-cycles do not have the Erdős-
Pósa property. We do not know whether the Erdős-Pósa property extends to
edge-disjoint S1-S2-cycles.

In Section 2, we discuss the size of the hitting set and how the Erdős-Pósa
property and its edge analogue differ. In Section 3, we introduce tools needed in
the proof of Theorem 1. After a brief overview we prove Theorem 1 in Section 4.

2 Discussion

2.1 The size of the hitting set

Fiorini and Herinckx [7] observed that the hitting set for long cycles in the
ordinary Erdős-Pósa property needs to have size at least Ω(k`+ k log k). That
there is a hitting set of size O(k`+ k log k), the optimal size, is due to Mousset

1 A graph G contains an immersion of H if there is an injective function τ : V (H)→ V (G)
and edge-disjoint τ(u)–τ(v)-paths for every uv ∈ E(H) in G.
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et al. [14] who built on earlier work of Robertson and Seymour [18], Birmelé et
al. [2], and Fiorini and Herinckx [7].

What is the optimal size of the hitting set in the edge-disjoint version? As
for vertex-disjoint long cycles, the construction of Simonovits [19], originally
intended for the classic Erdős-Pósa theorem, gives a lower bound of Ω(k log k).
Indeed, the graphs in the construction are cubic, which means that cycles are
disjoint if and only if they are edge-disjoint.

That the size of the hitting set needs to depend on ` at all is not immediately
obvious. But it does, and indeed, the dependence is linear. To prove this we
construct graphs S` that do not contain two edge-disjoint long cycles and that
do not admit a hitting set of less than `

30 edges. Taking k − 1 disjoint copies
of S` then yields a graph without k edge-disjoint cycles and no hitting set of
size smaller than 1

30 (k − 1)` = Ω(k`). Therefore, the size of hitting sets for
edge-disjoint long cycles needs to be at least Ω(k`+ k log k).

Figure 1: The graph S17 contains no two edge-disjoint cycles of length at
least 17.

The graphs S` are constructed as follows. Let p = b 23 (`− 1)c, and let S` be
the graph obtained from a clique on p vertices v0, . . . , vp−1 by adding vertices
w0, . . . , wp−1 such that each wi is adjacent to vi−1 and vi (where we take indices
mod p). The graphs S` are sometimes called suns [1]. As the clique contains
only p < 2

3` vertices, every long cycle in S` passes through at least 1
3`+1 ≥ p

2 +1
vertices of {w0, . . . , wp−1}. As these have degree 2, there cannot be two edge-
disjoint long cycles in S`.

Let ` ≥ 30, and consider any set X of at most `
30 edges. We show that X

is not a hitting set. For every edge uv ∈ X delete its endvertices u and v in G,
and if we delete a vertex vi of the clique, also delete the adjacent vertices wi and
wi+1. All in all, we delete a set U of at most 6 · `

30 ≤
`
5 vertices in G. For the

cycle C = v0 . . . vp−1v0, let C1, . . . , Cr be the components of C−U . Let vsi and
vti be the two endpoints of the paths Ci. None of the vertices wsi , . . . , wti−1 is
deleted, and thus Pi = vsiwsivsi+1 . . . wti−1vti is a path in G− U .

Concatenating the paths Pi by adding the edges vtivsi+1
, we obtain a Hamil-

ton cycle D of G−U . Noting that p ≥ 2
3 (`− 3), we calculate that the length of

D is

|V (S`)| − |U | = 2p− 1

5
` ≥ 4

3
(`− 3)− 1

5
` = `+

2`− 60

15
≥ `

as ` ≥ 30. Since G−X ⊇ G− U still contains a long cycle, we deduce that no
edge set of size at most `

30 is a hitting set.

3



Comparing the lower bound of Ω(k`+ k log k) with Theorem 1, we see that
there is a gap in the second term by a factor k. We believe that the optimal size
of the hitting set coincides with the lower bound. In one argument our proof
seems to be wasteful by an additional factor of k. Unfortunately, we have been
unable to do the step in a more economical way.

2.2 Vertex versus edge version

Why is the edge-Erdős-Pósa property hard at all, especially when the corre-
sponding vertex version is known? Cannot a reduction be employed or the
proof be adapted? Pontecorvi and Wollan [15] obtain the edge version for S-
cycles from the vertex version by a simple gadget construction. Essentially,
they apply the vertex version to a modified line graph (a similar approach is
also used by Kawarabayashi and Kobayashi [10]). Why is that not possible for
long cycles?

Cycles do not have a unique image in the line graph. The line graph of a
cycle is a cycle but not every cycle in the line graph corresponds to a cycle in
the root graph. The preimage of an S-cycle in the (slightly modified) line graph
still contains an S-cycle—this is what allows Pontecorvi and Wollan to reduce
to the vertex version. For long cycles this will not work because every cycle
contained in the preimage of a long cycle might be short.

So how about adapting the proof of the vertex version in some more or less
obvious way? While the existing proof might, and does in our case, give some
clues, an easy adaption seems hopeless. We believe this is because edge-disjoint
long cycles actually require a mix of the two disjointness concepts.

Why is this? For simplicity, consider the case k = 2. We could construct two
long cycles in a graph G as follows. Choose 2` vertices v1, . . . , v` and w1, . . . , w`.
For the vertex version, suppose that all these vertices are distinct. What we now
need to do is to find internally vertex-disjoint paths P1, . . . , P` and Q1, . . . , Q`

such that Pi is a vi–vi+1-path and Qi a wi–wi+1-path for every i = 1, . . . , `
(where we set v`+1 = v1 and w`+1 = w1). In the edge version, we only need
to suppose that vi 6= vj and wi 6= wj for distinct i, j. Again, we seek for paths
connecting these vertices in cyclic order. But, and that is the crucial point, Pi

and Pj as well as Qi and Qj need to be internally vertex-disjoint for distinct
i, j, while Pi and Qj only need to be edge-disjoint. That is, we deal with two
different types of disjointness.

If instead we only require that all these paths are edge-disjoint, then we
obtain immersions of long cycles. Strikingly, for immersions the adaption of
vertex version arguments appears to work very well. Indeed, to prove his strong
result about edge-disjoint immersions, Liu [11] translates a part of the graph
minor theory to line graphs. (The translation, however, is not at all trivial.)

3 Preliminaries

In this section we introduce some notation. In particular, we define extensions
of paths and frames. We devote to each of these concepts a subsection where
we collect a few properties about these. In another subsection, we prove several
results about edge-connected multigraphs.

All logarithms log n will be to base 2.
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3.1 Paths and cycles

We follow the notation used in the textbook of Diestel [5]. In particular, we
write P = u . . . v for a path P with endvertices u, v and say that P is a u–v-
path. For two vertices x, y ∈ V (P ), we denote by xPy the subpath of P with
endvertices x, y. We also write xCy for an oriented cycle C and x, y ∈ V (C) to
denote the x–y-subpath of C. For paths x1P1y1 and x2P2y2 such that x2 = y1
and otherwise P1 and P2 are disjoint, we write x1P1x2P2y2 for the concatenation
of P1 and P2. For two vertex sets A,B, we define an A–B-path as a path P such
that one endpoint of P lies in A and one in B and P is internally disjoint from
A ∪ B. For a subgraph H of G (or a vertex set which we treat as a subgraph
without edges), we define an H-path is a path with endvertices in H that is
internally disjoint from H. Note that the path may have length 1.

For a cycle C and a path P , we denote by `(C) and `(P ) the number of
edges of C and P , respectively, and refer to `(C) and `(P ) as the length of C
and P , respectively.

Throughout the article, we fix a positive integer ` and call P and C short
if `(P ) < ` and `(C) < `, respectively. A cycle is called long if its length is at
least `.

3.2 Extensions of paths

The key trick in our proofs is to exclude cycles of intermediate length, that is,
cycles that are long but not too long. In this subsection we treat a tool, path
extensions, that allows us to construct such intermediate cycles. Since these are
excluded we will then obtain the desired contradiction.

Consider a path P with endvertices u, v. We write ≤P for the total order
of the vertices V (P ) induced by the distance from u on P . Let Q1, . . . , Qr be
P -paths, and for i = 1, . . . , r let ui and vi be the endvertices of Qi such that
ui <P vi. The tuple (Q1, . . . , Qr) is an extension of P if

(E1) the paths Q1, . . . , Qr are pairwise internally disjoint;

(E2) the cycle uiPvi ∪Qi is short for i = 1, . . . , r;

(E3) u1 = u and vr = v;

(E4) ui <P ui+1 <P vi <P vi+1 for i = 1, . . . , r − 1; and

(E5) vi ≤P ui+2 for i = 1, . . . , r − 2.

See Figure 2 for an illustration.

u1 v1 = u3u2 v2 v3u4 v4
P

Q1 Q2 Q3 Q4

Figure 2: A P -extension.
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Lemma 2. Let P be a path, and let (Q1, . . . , Qr) be an extension of P . For

any i, j with 1 ≤ i ≤ j ≤ r, there is exactly one cycle C in P ∪
⋃j

s=iQs that
contains ui, vj. The edge set of the cycle is

E(C) = E
(
P ∪

j⋃
s=i

Qs

)
\

j⋃
t=i+1

E(utPvt−1) (1)

Proof. The graph H = P ∪
⋃j

s=iQs is 2-connected as it is the union of cycles
usPvs ∪Qs, such that consecutive cycles overlap in an edge. Thus the graph H
contains a cycle C through ui and vj .

Note that C has to contain each of Qi, . . . , Qj−1: if Qt * C for a t ∈
{i, . . . , j−1} then, by (E5), ut+1 separates ui and vj in C , which is impossible.
We also have Qj ⊆ C as otherwise vj would have degree 1 in C as vj 6∈ Qj−1
by (E4).

Now, for t = i+ 1, . . . , j the vertex vt−1 has degree 2 in C. Therefore, either
utPvt−1 ⊆ C or vt−1Put+1 ⊆ C (where we temporarily interpret uj+1 as vj).
However, {ut, vt−1} separates ui from vj in H, which means that C has to pass
through {ut, vt−1} twice. Thus vt−1Put+1 ⊆ C and utPvt−1 * C (since already
Qt−1 ⊆ C). It is easy to check that this fixes C to be as in (1).

Lemma 3. Let P be a path, and let (Q1, . . . , Qr) be an extension of P . Assume
that every long cycle in H = P ∪

⋃r
s=1Qs has length at least 2`. Then every

cycle in H is short.

Proof. Suppose that H contains a long cycle C. Clearly, its intersection with
P is nonempty. Let i be the smallest index such that ui lies in C, and let j
be the largest index with vj ∈ V (C). Note that i < j by the definition of
extensions. We, furthermore, assume C to be chosen such that j− i is minimal.
Thus C ⊆ uiPvj ∪

⋃j
s=iQs.

The cycle C satisfies the conditions of Lemma 2, which implies that its edge
set is as in (1). Let C ′ be the unique cycle in uiPvj−1 ∪

⋃j−1
s=i Qs containing

ui and vj−1. Hence C ′ is short by the choice of C, and its edge set is given
by (1)—with j − 1 instead of j. Then, E(C)∆E(C ′) is equal to ujPvj ∪ Qj ,
which is a short cycle by (E2). As |E(C)| ≤ |E(C ′)| + |E(C∆C ′)| < 2`, the
length of the long cycle C is less than 2`, which contradicts the assumption of
the lemma.

Lemma 4. Let P be a path in a graph G, and let (Q1, . . . , Qr) be a tuple of
P -paths that satisfy (E2)–(E4) and

(E1′) if |i− j| > 1, then Qi and Qj are internally disjoint.

If every long cycle in G has length at least 2`, then there is an extension
(Q′1, . . . , Q

′
s) of P with

⋃s
i=1Q

′
i ⊆

⋃r
j=1Qj.

Proof. Among all tuples (Q′1, . . . , Q
′
s) of P -paths in

⋃r
j=1Qj that satisfy (E2)–

(E4) and (E1′) choose a tuple T ′ = (Q′1, . . . , Q
′
s) such that s is minimal. Such a

tuple exists as (Q1, . . . , Qr) satisfies (E2)–(E4) and (E1′). Let u′i and v′i be the
endvertices of Q′i such that u′i <P v′i holds.

Now, assume that there are two paths Q′i and Q′j , j > i, that share an
internal vertex. By (E1′) we have j = i+ 1. Following Q′i from u′i on, let x be
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the first vertex of Q′i − u′i that also belongs to Q′i+1. Now define a new path R
as R = u′iQ

′
ixQ

′
i+1v

′
i+1. The path R is a P -path as x is an internal vertex and

its endpoints are u′i and v′i+1. Furthermore, the length of the cycle R∪u′iPv′i+1

is at most
`(Q′i ∪ u′iPv′i) + `(Q′i+1 ∪ u′i+1Pv

′
i+1) < 2`,

which implies that R is short, by assumption.
Now, the tuple T ′′ = (Q1, . . . , Q

′
i−1, R,Q

′
i+2, . . . Q

′
s) satisfies (E2)–(E4) and

(E1′) as (E2) was just proved, (E3) is trivial, and (E4) and (E1′) are inherited
from T ′ as R just combines two consecutive paths of T ′. However, T ′′ uses only
s − 1 paths, which contradicts the choice of T ′. Thus, there are no such paths
Q′i, Q

′
j that share an internal vertex and hence T ′ satisfies (E1).

Assume, that T ′ does not satisfy (E5); that is, there is an i such that u′i+2 <P

v′i. By (E4), we have u′i <P u′i+1 <P u′i+2 and v′i <P v′i+1 <P v′i+2 which implies

u′i <P u′i+2 <P v′i <P v′i+2.

This is the statement of (E4) for the paths Q′i and Q′i+2 which makes Qi+1

unnecessary in T . This is again a contradiction to the minimality of s. Thus,
the tuple T ′ satisfies (E1)–(E5) and is therefore an extension of P .

Lemma 5. Let P be a path in a graph G, and let C1, . . . , Cr be a set of short
cycles such that

(i) Ci ∩ P = uiPvi for two (not necessarily distinct) vertices ui, vi, for i =
1, . . . , r;

(ii) Ci and Ci+1 meet outside P for i = 1, . . . , r − 1; and

(iii) uiPvi and ui+1Pvi+1 meet for i = 1, . . . , r − 1.

If every long cycle in G has length at least 3`, then there is a short cycle C ⊆⋃r
i=1 Ci such that C ∩ P = u1Pvr.

Proof. By induction on r we show that: there is a short cycle C ⊆
⋃r

i=1 Ci such
that C ∩ P = u1Pvr and such that C contains an edge in E(Cr) \E(P ) that is
incident with vr.

The induction starts with C = C1. Now, let C ′ be such a cycle for r − 1.
For every i, let Qi be the path Ci − uiPvi, and let pi and qi be its endvertices
such that pi is a neighbour of ui in Ci and qi a neighbour of vi in Ci. We define
Q′ with endvertices p′, q′ in the analogous way as Q′ = C ′ − u1Pvr−1.

Assume first that C ′ and Cr meet outside P . Starting in p′ let x be the first
vertex in Q′ that lies in Qr. Then put C = u1p

′Q′xQrqrvr ∪u1Pvr and observe
that C satisfies all required properties if, in addition, it is short. This holds, as
`(C) ≤ `(C ′) + (`(Qr) + `(urPvr)) < `+ ` = 2`.

Next, assume that Q′ and Qr are disjoint outside P . Since the edge q′vr−1
of C ′ is an edge of Cr−1 we see that q′ ∈ V (Qr−1), which means that Q′ and
Qr−1 have a vertex in common. Starting from p′ let y be the first vertex of
Q′ that lies in Qr−1. Starting from qr let z be the first vertex in Qr that lies
in Qr−1. Since Cr−1 and Cr meet outside P , by (ii), there is such a vertex z.
Put C = u1p

′Q′yQr−1zQrqrvr ∪ u1Pvr and observe that, again, C satisfies all
required properties if it is short.
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We now prove that C is a short cycle. Using (iii), we see that

`(C) ≤ `(C ′) + `(Cr−1) + `(Cr)

< `+ `+ ` = 3`,

as C ′ is short by induction and as the other two terms are smaller than ` as
well. Thus, the length of the cycle C is smaller than 3`, which means it is a
short cycle.

3.3 Frames

Simonovits’ [19] short proof of the Erdős-Pósa theorem rests on a maximal
subgraph of the ambient graph G, in which all the disjoint cycles are found.
We mimic this approach that also appears in other works [3, 15]. However,
in contrast to all such previous approaches, in our case this subgraph is not
subcubic, but may have arbitrary high maximum degree.

Any subgraph F of a graph G is a frame of G if its minimum degree δ(F ) is
at least 2 and if every cycle in F is long. For a frame F of G, we define

• U(F ) = {v ∈ V (F ) : dF (v) ≥ 3}, the set of vertices of degree at least 3
in F ; and

• ds(F ) =
∑

u∈U(F )

dF (u), the degree-sum of F .

In the proof we will choose a frame of maximal degree-sum. The main motivation
stems from the fact that large values in ds(F ) yield k edge-disjoint long cycles
in F . In the next lemma we collect a number of useful properties about frames.

Lemma 6. Let F be a frame of maximal degree-sum in a connected graph G.
Then

(i) F is connected;

(ii) if ds(F ) ≥ 84k log k then G contains k edge-disjoint long cycles;

(iii) every F -path is short; and

(iv) there exists a short path P = u . . . v ⊆ F for every F -path Q = u . . . v.
This path is unique if every long cycle in G has length at least 2`.

We need some preparation before we can prove the lemma.

Lemma 7 (Erdős and Pósa [6]). Let G be a multigraph on n vertices with
δ(G) ≥ 3. Then G contains a cycle of length at most max{2 log n, 1}.

Lemma 8. Let k ∈ N and G be a multigraph with |E(G)| ≥ 42k log k and
δ(G) ≥ 3. Then G contains k edge-disjoint cycles.

Proof. We proceed by induction on k. For k = 1 the statement holds, since
every multigraph with δ(G) ≥ 3 contains a cycle.

Let k ≥ 2. We may assume that n ≥ 2, as otherwise the statement is trivial.
Let C be a shortest cycle in G. Let n1 and n2 be the number of vertices with
degree 1 and 2 in G0 = G−E(C), respectively. Thus n1+n2 ≤ `(C). As long as

8



Gt contains a vertex of degree 1 or 2, let Gt+1 arise from Gt by either deleting
a vertex of degree 1 or suppressing a vertex of degree 2. Let s be the maximal
integer for which Gs is defined. We claim that one of the following statements
hold for the transformation from Gt to Gt+1.

(i) The number of vertices of degree 1 does not increase and the number of
vertices of degree 2 decreases.

(ii) The number of vertices of degree 1 decreases and the number of vertices
of degree 2 increases by at most 1.

To see that our claim is true, suppose we deleted a vertex u of degree 1 and let
v be the neighbour of u. If dGt(v) = 2, then (i) holds and otherwise (ii) holds.
If we suppress a vertex of degree 2, then (i) holds.

It is easy to see that (ii) holds at most n1 times. Hence (i) holds at most
n1 + n2 times. Observe that |E(Gt)| = |E(Gt+1)| − 1. Therefore, |E(Gs)| ≥
|E(G)| − `(C)− 2n1 − n2 ≥ |E(G)| − 3`(C).

Let H arise from Gs by deleting isolated vertices. Thus

|E(H)| ≥ |E(G)| − 3`(C). (2)

By construction, H does not contain vertices of degree 1 or 2; thus, δ(H) ≥ 3
holds or H is empty. We claim that |E(H)| > 42(k − 1) log(k − 1) ≥ 0. If
true, H contains in particular an edge, which implies that δ(H) ≥ 3. Moreover,
we can apply induction to H to find k − 1 edge-disjoint cycles in H. Since
G− E(C) contains a subdivision of H, we therefore obtain together with C in
total k edge-disjoint cycles in G.

It remains to prove that |E(H)| > 42(k−1) log(k−1). We write m = |E(G)|
and by δ(G) ≥ 3 we have |V (G)| ≤ 2m

3 . As C was chosen as the shortest cycle
in G, Lemma 7 implies

`(C) ≤ 2 log

(
2m

3

)
. (3)

Note that the function x 7→ x− 6 log
(
2
3x
)

is increasing for x ≥ 9. Since k ≥ 2,
we conclude log(28 log k) ≤ 6 log k. Together with m ≥ 42k log k ≥ 9, we deduce
from (2) and (3) that

|E(H)| ≥ m− 6 log

(
2

3
m

)
≥ 42k log k − 6 log (28k log k)

≥ 42k log k − 6 log k − 6 log(28 log k)

≥ 42k log k − 6 log k − 36 log k

> 42(k − 1) log(k − 1).

This finishes the proof.

Proof of Lemma 6. For (i), suppose that F has two components A and B. As
G is connected, there is an A–B-path P in G that is internally disjoint from
F . Thus, F ∪ P is a frame, as F ∪ P contains the same cycles as F . Since
ds(F ∪ P ) > ds(F ), we obtain a contradiction to the choice of F .

For (ii), denote by H the multigraph obtained from F by suppressing all
vertices of degree 2. Observe that |E(H)| = 1

2ds(F ) ≥ 42k log k and δ(H) ≥ 3.
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Thus, by Lemma 8, H and then also F contains k edge-disjoint cycles. Since
all cycles in F are long, the assertion is proved.

For (iii), suppose there is a long F -path Q. Then it can be added to F ,
since in F ∪Q all cycles are still long. However, ds(F ∪Q) > ds(F ), which is a
contradiction.

For (iv): As F is connected by (i), the distance of u and v in F is finite.
If distF (u, v) ≥ `, then any cycle in F ∪ Q containing Q is long, which again
contradicts (iii) and proves the first part of (iv). If there were two short u–v-
paths P1, P2 in F , their union P1 ∪ P2 ⊆ F would contain a cycle of length less
than 2` which is short by assumption. This is impossible as F only contains
long cycles.

3.4 Edge-connectivity

The aim of this subsection is to prove Lemma 13 which is an important tool for
defining a hitting set in subsection 4.4. Lemmas 9 to 12 only prepare 13.

A well-known result of Mader [12] states that every graph on n vertices with
at least 2kn edges contains a (k + 1)-connected subgraph. This is no longer
true for (loopless) multigraphs, but holds if we replace connectivity by edge-
connectivity.

Lemma 9. Let k ∈ N, and let G be a loopless multigraph on n vertices with
at least kn edges. Then G contains a (k + 1)-edge-connected multigraph as a
subgraph.

Proof. We show that

every loopless multigraph G on n ≥ 2 vertices and at least kn−k+1
edges contains a (k + 1)-edge-connected multigraph as a subgraph. (4)

For n = 2, the statement holds, as G is a graph on two vertices with at least
k + 1 edges joining them, which makes G (k + 1)-edge-connected itself.

For n ≥ 3, suppose that there is a counterexample to (4). Pick one, H say,
with the smallest number n of vertices. As a counterexample, H has a partition
A ∪B of its vertex set such that there are at most k edges joining A and B.

Consider first the case, when one of A,B consists of a single vertex, u say.
Then dH(u) ≤ k. Since H − u is a graph on n− 1 ≥ 2 vertices and has at least
(kn− k + 1)− k = k(n− 1)− k + 1 edges, it follows, by minimality of H, that
H −u contains a (k+ 1)-edge-connected subgraph. But such a subgraph is also
a subgraph of H, which is impossible.

Thus, both A and B contain at least two vertices. As the graphs H[A] and
H[B] do not contain a (k + 1)-edge-connected subgraph (as H does not), they
have at most k|A| − k and k|B| − k edges, by the minimality of H. Then H has
at most k(|A|+ |B|)−2k+k = kn−k edges, which is the final contradiction.

Let G be a multigraph and k ∈ N. For two vertices u, v ∈ V (G), we define
u ∼k v if either u = v or if there are k edge-disjoint u–v-paths in G. The
transitivity of ∼k follows from Menger’s theorem and thus ∼k is an equivalence
relation.
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Lemma 10. Let G be a multigraph and let A,B be nonempty subsets of dis-
tinct equivalence classes of ∼k. Then there is a set X of at most k − 1 edges
separating A and B.

Proof. Pick a ∈ A and b ∈ B, and observe that a 6∼k b. Thus there is an edge
set X of size at most k− 1 that separates a and b in G. Suppose that X fails to
separate A from B in G. Then there are a′ ∈ A and b′ ∈ B such that G−X still
contains an a′–b′-path. Since X is too small to separate a from a′, and b from
b′, we see that the vertices a, a′, b′, b belong to the same component in G −X,
which is a contradiction.

Before we proceed, let us note that H-paths have the edge version of the
Erdős-Pósa property.

Lemma 11 (Mader [13]). Let k ∈ N, and let H be a submultigraph of a multi-
graph G. Then there exist either k edge-disjoint H-paths or a set X ⊆ E(G) of
size at most 2k − 2 such that G−X does not contain any H-path.

Lemma 12. Let k, p ∈ N, and let A1, . . . , Ap be subsets of p distinct equivalence
classes of ∼k in a multigraph G. Then there is an edge set X ⊆ E(G) of size at
most 2pk − 2 such that for all distinct i, j ∈ {1, . . . , p}, the multigraph G −X
does not contain any Ai–Aj-path.

Proof. We may assume that p ≥ 2. Let G′ arise from G by identifying for every
i ∈ {1, . . . , p} all vertices in Ai to a single vertex ai.

Assume first that G′ contains a set X ⊆ E(G′) such that for all distinct
i, j ∈ {1, . . . , p} the multigraphG′−X does not contain any ai–aj-path. Viewing
X as a set of edges in G, we observe that G−X does not contain any Ai–Aj-path
for any distinct i, j ∈ {1, . . . , p}: indeed, every Ai–Aj-path in G−X corresponds
to an ai–aj-path in G′ −X.

Thus, we may assume that any such set X in G′ has size strictly larger
than 2pk − 2. As a consequence of Lemma 11, there is therefore a set P of kp
edge-disjoint {a1, . . . , ap}-paths in G′. Define a multigraph GP on {a1, . . . , ap}
as vertex set, where ai and aj are joined by q edges if P contains exactly q
edge-disjoint ai–aj-paths for distinct i, j ∈ {1, . . . , p}. The multigraph GP has
kp edges and is loopless.

Applying Lemma 9, we obtain a k-edge-connected submultigraph of GP . In
particular, there are distinct i, j ∈ {1, . . . , p} such that ai and aj are linked by
k edge-disjoint paths QP1 , . . . , Q

P
k in GP . Each such path QPi corresponds to a

subset of paths in P whose union contains an ai–aj-path Q′i in G′. Since the
paths in P are pairwise edge-disjoint, this is also the case for the ai–aj-paths
Q′1, . . . , Q

′
k in G′.

By Lemma 10, there is a set F of at most k−1 edges which separate Ai and
Aj in G. The set F , seen as edges in G′, then separates ai from aj , which is
impossible because at least one of the paths Q′1, . . . , Q

′
k avoids F .

Let A be a vertex set in a multigraph G, and let k be a positive integer.
An edge set X k-perfectly separates A if for every a, a′ ∈ A with a 6∼k a′ in
G−X, the vertices a, a′ lie in different components of G−X. This means, that
two vertices either are not connected or there are at least k edge-disjoint paths
between them.
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Lemma 13. Let k ∈ N, and let A be a vertex set in a multigraph G. Then
there is a set X ⊆ E(G) of size at most 4(|A|−1)k that k-perfectly separates A.

Proof. We use induction on |A|. Let A1, . . . , Ap be a partition of A induced by
the equivalence classes of ∼k. If p = 1, the statement trivially holds as X = ∅
k-perfectly separates A. In particular, this covers the case |A| = 1.

Therefore, we may assume that p ≥ 2. We apply Lemma 12 to obtain a set
X ′ ⊆ E(G) of size at most 2pk−2 that separates Ai from Aj for all distinct i, j.
Denote for every i ∈ {1, . . . , p} by Gi the union of components in G−X ′ that
contain a vertex in Ai, and observe that the Gi are pairwise disjoint by choice
of X ′. By induction, there is a set Xi ⊆ E(Gi) of size at most 4(|Ai| − 1)k that
k-perfectly separates Ai∩V (Gi) in Gi. Thus, X = X ′∪X1∪ . . .∪Xp k-perfectly
separates A. Observe that

|X| ≤ 2pk − 2 + 4(|A| − p)k ≤ 4|A|k − 2pk ≤ 4(|A| − 1)k,

which completes the proof.

4 Proof of the main theorem

We start with a brief proof sketch. The key trick is to force a gap between short
and long cycles: by induction, we can ensure that there are no intermediate
cycles, cycles of length between ` and 10`. This forces a lot of structure. Re-
peatedly, we will argue that this or that property is satisfied because otherwise
we would find an intermediate cycle.

Throughout we fix a frame F of maximal degree-sum. As every long cycle
that is not contained in the frame contains at least one F -path, it is necessary to
find structure in the F -paths. To this end, we group F -paths to hubs. The hubs
together with parts of the frame F form the hub closures, which essentially
partition the edge set of G. Informally, the hub closures are the largest 2-
connected pieces that may contain cycles without also containing a cycle of F .

From the absence of intermediate cycles we will deduce via the path exten-
sions treated in the previous section that no hub closure contains a long cycle.
That means that every long cycle in some sense follows along a cycle in F (with-
out actually being contained in F ). In particular, it traverses at least two (in
fact, at least three) distinct hub closures. To define a candidate hitting set we
therefore disconnect hub closures when this is possible with few edges and when
this cuts a connection between branch vertices of F . The resulting edge set is
either a true hitting set, or we will be able to piece together k edge-disjoint long
cycles that all traverse well-connected hub closures in the same way.

Proof of Theorem 1. We define

f(k, `) = 714k2 log k + 10`(k − 1).

We prove by induction on k that

if a graph G does not contain k edge-disjoint long cycles, then it
contains an edge set X of size at most f(k, `) that meets every
long cycle.

(5)
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Clearly, (5) is true for k = 1 as either G contains a long cycle or X = ∅
meets all long cycles in G. We therefore assume that

k ≥ 2 and that G does not contain k edge-disjoint long cycles. (6)

Suppose G contains a long cycle C of length at most 10`. As G − E(C)
contains at most k−2 edge-disjoint long cycles, by induction there is a hitting set
X ′ ⊆ E(G)\E(C) for G−E(C) of size at most 714(k−1)2 log(k−1)+10`(k−2).
Observe that X = E(C) ∪X ′ is a hitting set of G such that

|X| = |X ′|+ |E(C)| ≤ 714(k − 1)2 log(k − 1) + 10`(k − 2) + 10`

≤ 714k2 log k + 10`(k − 1) = f(k, `).

Thus, we may assume that

every long cycle of G has length more than 10`. (7)

We may also assume that every edge of G lies in a long cycle. Otherwise, if
e ∈ E(G) is not contained in any long cycle, then every hitting set of G − e is
also a hitting set of G.

Suppose, G is not 2-connected; that is, G contains several blocks. Note that
every cycle lies in exactly one block. Since every edge belongs to at least one
long cycle, every block contains a long cycle. Let B be a block of G and let k′

be the maximal integer such that B contains k′ edge-disjoint long cycles. Hence
0 < k′ < k−1, as G−B contains at least one long cycle that is edge-disjoint from
every cycle in B. Observe that G−B contains at most k−k′−1 < k edge-disjoint
long cycles. We apply our induction hypothesis to B and G − B and obtain a
hitting set X1 ⊆ E(B) in B of size at most 714(k′ + 1)2 log(k′ + 1) + 10`k′ ≤
714(k′ + 1)2 log k + 10`k′ and a hitting set X2 ⊆ E(G) \ E(B) of size at most
714(k− k′)2 log k+ 10`(k− k′ − 1). Trivially X = X1 ∪X2 is a hitting set in G
such that

|X| ≤ 714(k′ + 1)2 log k + 10`k′ + 714(k − k′)2 log k + 10`(k − k′ − 1)

≤ 714 log k
(
k′2 + 2k′ + 1 + k2 − 2kk′ + k′2

)
+ 10`(k − 1)

= 714 log k
(
2k′(k′ + 1− k) + 1 + k2

)
+ 10`(k − 1)

≤ 714k2 log k + 10`(k − 1) = f(k, `)

as 2k′(k′ + 1 − k) + 1 ≤ 0 holds because of k′ < k − 1. Thus, we can assume
that

G is 2-connected. (8)

We now choose a frame F of G of maximal degree-sum ds(F ) (and we may
assume that G contains at least one long cycle, which implies that a frame in G
exists), which we let be fixed throughout the whole proof. As F only contains
long cycles, (7) implies that

the girth of F is more than 10`. (9)

Next, we investigate G− F and how the components of G− F attach to F .
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4.1 Bridges of the frame

In the light of (6) and (7), Lemma 6 now states:

F is connected; ds(F ) < 84k log k; every F -path Q = u . . . v is
short and F contains a unique short u–v-path P .

(10)

For any F -path Q = u . . . v, we call the unique short u–v-path in F its
shadow and denote it by SQ.

An F -bridge of G or simply a bridge is either an edge in E(G) \ E(F ) with
its two endvertices in V (F ), or a component K of G − F together with all its
neighbours N in F and all edges of G joining K and N . Equivalently, a bridge
is the union of all F -paths that form a component in the graph on the set of all
F -paths where two F -paths are adjacent if the share an internal vertex. For an
F -bridge B of G, we call the vertices in B∩F the feet of B (in H). The shadow
SB of B is the union of the shadows of all F -paths contained in B.

Claim 1. For every bridge B, the shadow SB is a tree of diameter less than `.

Proof. As B is connected, it contains an x–y-path Q between any two of its
feet x, y. The shadow of this F -path Q connects x and y in SB . As all vertices
in SB that are no feet lie in the shadow of an F -path between two feet, we
conclude that SB is connected.

Suppose that SB contains a cycle C. Since C is contained in F , it follows
that C is a long cycle, which, in turn, implies `(C) ≥ 10`, by (7). Pick two
vertices r1, r2 in C at distance precisely 2` in C, and let R be the subpath of C
of length 2` between r1 and r2.

Why is ri in SB? Because there is an F -path Qi ⊆ B whose shadow Pi

contains ri. Denote by xi, yi the endvertices of Pi, and observe that Pi is a
short path, by Lemma 6 (iv). By the same statement, there exists also a short
x1–x2-path S in the shadow of B.

Since P1∪P2∪R∪S ⊆ SB has at most 5` edges it cannot contain a long cycle,
and because it is a subset of F it cannot contain a short cycle. In particular,
this means that S = x1P1r1Rr2P2x2, and thus that R ⊆ S. This, however, is
impossible since S has length at most ` but R has length 2`.

We deduce that SB is a tree. By the definition of a shadow, every leaf of SB

is a foot. As any two feet of B are connected by an F -path, their distance in
SB is short by Lemma 6 (iv). Thus, the diameter of SH is less than `.

4.2 Hubs

We define a graph G on the set of all bridges of G, where two bridges B1, B2

are adjacent if their shadows share a common edge. A hub is the union of all
bridges in a component in G. Thus, a hub is a subgraph of G consisting of all
bridges that form a component in G. We say that a bridge B belongs to a hub
H if B ⊆ H, that is, if B is part of the component in G that defines H. For a
hub H, the shadow SH of H is the union of the shadows of all bridges in H.
By Claim 1, the graph SH is connected. We will write H for H ∪ SH and call
it the closure of H.

One key step in our main proof is Claim 8 where we show that a hub closure
does not contain a long cycle. To this end, we first show that the shadow of a
hub does not contain a (long) cycle.
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Figure 3: A hub consisting of four bridges, and its shadow (in grey).

Let us start with a simple observation.

Claim 2. For every hub H, the closure H is 2-connected.

Proof. Since G is 2-connected, a bridge together with its shadow is 2-connected,
too. The closure of a hub is the union of adjacent bridges together with their
shadows. As adjacent bridges overlap on an edge, the union again is 2-connected.

For a hub H, let LH be the graph with vertex set E(SH) and e, f ∈ V (LH)
are adjacent in LH if e, f share a common vertex in G and there is a bridge B
which belong to H such that e, f ∈ E(SB). Let L∗H arise from LH by adding
all possible edges of the following type: for all e1, . . . , er ∈ V (LH) sharing a
common vertex in G which induce a connected graph in LH add all edges eiej
for i, j ∈ {1, . . . , r}.

Claim 3. The graph L∗H is connected for every hub H.

Proof. We will prove that LH is connected which immediately proves the claim
as LH ⊆ L∗H . First, it is easy to see that for any bridge B of H, the induced
subgraph LH [E(SB)] on the edges of SB is connected. This holds as edges of SB

with common endvertex in G are adjacent in LH as they belong to the shadow
of the same bridge. The connectivity of SB then implies the connectivity of
LH [E(SB)].

Let e, f ∈ V (LH) be two edges of the hub H that belong to the shadows of
different bridges B,B′. The definition of hubs implies that there is a sequence
of bridges B = B1, B2, . . . , Br = B′ such that SBi

and SBi+1
share at least one

edge. As all LH [E(SBi)] are connected in LH , there is a path in LH joining e
and f .

Let E = (Q1, . . . , Qr) be an extension of a path P . To simplify notation we
will identify the graph

⋃r
i=1Qi∪P with the tuple E = (Q1, . . . , Qr) (bending the

definition a bit). Thus, it will make sense to speak of vertices in an extension.
The following two claims are a bit technical but provide tools to prove that
shadows and closures of hubs do not contain long cycles.

Claim 4. Let H be a hub, and let P be a path in SH such that every P -path
in F has length at least 3` and such that every pair of consecutive edges in P is
adjacent in L∗H . Then there is an extension E of P that is contained in H and
for which distF (u, P ) ≤ ` holds for every u ∈ V (E) ∩ V (F ).
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P
usi vti−1 usi+1 vti

Figure 4: The path Qi (dotted).

Proof. As before, denote by ≤P the order on the vertices of P induced by the
path, where we fix arbitrarily one of the two endvertices as first vertex.

Denote by P ′ the union of E(P ) and all edges in F that have an endvertex
in P . By assumption, the set P ′ (seen as a vertex set in LH) contains a path
in LH that contains E(P ) entirely (recall that two consecutive edges of P may
be nonadjacent in LH , but adjacent in L∗H). That means, there is a sequence
of bridges B1, . . . , Bt such that

P ⊆
⋃t

i=1 SBi , and E(SBi ∩SBi+1)∩P ′ 6= ∅ for i = 1, . . . , t− 1. (11)

We choose the sequence B1, . . . , Bt such that t is minimal. Moreover, we fix
that the shadow of the first bridge B1 contains the first edge of P (and then the
shadow of Bt contains the last edge of P ). To avoid double subscripts we write
Si for the shadow SBi

.
We quickly note:

for every bridge B, the intersection SB ∩ P is a subpath of P . (12)

Indeed, this is the case as SB is connected and of diameter less than ` (Claim 1)
and as there are no P -paths in F of length at most 3`, by assumption.

We need a claim about the start and end of P :

if Si contains the first vertex of P , then i = 1, and if Si contains
the last vertex of P , then i = t.

(13)

Suppose that Si contains the first vertex of P and that i > 1. Then, omitting
the bridges B1, . . . , Bi−1 we still have a sequence of bridges that satisfies (11);
that P is still contained in the union of the shadows is due to (12). But this
contradicts the minimal choice of B1, . . . , Bt. The argument for the last vertex
of P is symmetric.

We claim:

if |i − j| > 1, then Si ∩ Sj is either empty or consists of a single
vertex in P .

(14)

Let Si ∩ Sj be non-empty and i < j − 1. Suppose first that Si and Sj contain a
common edge e that lies in P ′. Then we could omit the bridges Bi+1, . . . , Bj−1
from the sequence and still retain (11); that P is still contained in the union of
the shadows is due to (12).

Next, suppose that Si ∩ Sj contains a vertex v outside P . Both shadows,
which are contained in F , contain a v–P -path of length at most `, by Claim 1.
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As we had assumed that there are no P -paths in F of length at most 3`, this
implies that Si ∩ Sj contains a v–P -path, which in turn means that Si ∩ Sj

contains an edge in P ′, which is impossible as we have seen. Thus, Si ∩Sj ⊆ P .
By (12), the set Si ∩ Sj = Si ∩ Sj ∩P is a subpath of P . If it contains more

than one vertex, it thus contains an edge in P ′, which we had already excluded.
This proves (14).

For every i = 1, . . . , t− 1 pick an edge ei in Si ∩ Si+1 ∩ P ′—this is possible,
by (11). Denote by e0 the first edge of P , and by et the last edge of P . For
every i = 1, . . . , t, there is, by Claim 1, a path in Si containing ei−1 and ei. Let
S′i be a longest such path. By definition of a shadow, the endvertices of S′i are
feet of Bi. Pick a path through Bi and use it to complete S′i to a cycle Ci.

We claim:

(i) Ci ⊆ Si ∪Bi is a short cycle;

(ii) there are vertices ui ≤P vi such that uiPvi = Ci ∩ P ;

(iii) Ci and Ci+1 meet in an edge of P ′; and

(iv) uiPvj ⊆
⋃j

s=i Ss for every 1 ≤ i ≤ j ≤ t.

(15)

That Ci is short follows from (10), Claim 1 and (7); (ii) follows from (12),
and (iii) holds since both Ci and Ci+1 contain the edge ei. Finally, (iv) is a
consequence of (i), (ii) and (iii).

We also note that since e0 ∈ E(C1) and et ∈ E(Ct):

u1 is the first vertex of P , and vt is its last. (16)

The intersections of Ci∩P = uiPvi are paths. Two such paths of consecutive
cycles Ci and Ci+1 may intersect in a single vertex or in a longer path (they
meet by (15) (iii)). Let s2 < . . . < sr be precisely those indices such that
Csi−1 ∩ Csi ∩ P contains at least one edge. For a slightly less cumbersome
notation, define also ti−1 = si − 1 and set s1 = 1 and tr = t. Then the cycles
C1, . . . , Ct partition into sets {Csi , . . . , Cti} for i = 1, . . . , r such that always
Cti−1

and Csi share an edge of P . We claim:

for i = 1, . . . , r, there is a P -path Qi ⊆
⋃ti

s=si
(Bs ∪ Ss) between

usi and vti such that Qi ∪ usiPvti is a short cycle.
(17)

We prove this with Lemma 5 and therefore check that the conditions of Lemma 5
are satisfied. The first condition follows from (ii). Why do Cs and Cs+1 for
s ∈ {si, . . . , ti− 1} meet outside P? Because Cs and Cs+1 have a common edge
e in P ′ by (15) that, however, e cannot lie in P by definition of the si. Thus,
the endvertex of e outside P is a common vertex that lies outside P . The other
endvertex of e, the one in P , shows that Cs and Cs+1 meet also in P . Now,
the application of the lemma yields a short cycle C ⊆

⋃ti
s=si

(Bs ∪Ss) such that
C ∩ P = usiPvti . As Ssi needs to contain an edge of P , by definition of si, we
deduce that usi <P vti , and in particular that usi 6= vti . Deleting all vertices of
C in the interior of usiPvti results in the desired P -path Qi.

We note rightaway:

every vertex of F in
⋃r

i=1Qi has distance at most ` from P
in F .

(18)
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Indeed, such a vertex in F lies in some shadow Ss. Every such shadow meets
P , by (11), and has diameter at most ` (Claim 1), which results in a distance
at most ` to P in F since Ss ⊆ F .

Next:

if |i− j| > 1, then Qi and Qj are internally disjoint. (19)

Since two distinct bridges that meet meet in their shadows, we obtain that
Qi ∩Qj is contained in (

ti⋃
s=si

Ss

)
∩

 tj⋃
s=sj

Ss

 ,

which is contained in P by (14) as |sj − ti| > 1 since |j − i| > 1. Since Qi and
Qj are P -paths they can thus only meet in their endvertices. This proves (19).

Next:
usi <P usi+1 <P vti <P vti+1 for i = 1, . . . , r − 1. (20)

We prove this by induction on i. By definition of the si, the paths usiPvti and
usi+1Pvti+1 have a common edge. This implies usi <P vti+1 .

Suppose that usi+1 ≤P usi . Then i > 1, by (13) and (16). By induction,
we get usi−1

<P usi <P vti−1
. Since we also have that usi+1

≤P usi <P vti+1
,

we deduce that usi−1
Pvti−1

and usi+1
Pvti+1

have a common edge. By (15) (iv),
this means that there are s ∈ {si−1, . . . , ti−1} and s′ ∈ {si+1, . . . ti+1} such that
Ss and Ss′ have an edge in common—but this contradicts (14). Thus, we get

usi <P usi+1
<P vti ,

because usiPvti and usi+1
Pvti+1

have a common edge. Suppose that vti+1
≤P

vti . By (13) and (16), this implies ti+1 < t, which in turn implies i + 1 < r.
Moreover, usi+1Pvti+1 ⊆ usiPvti . By definition of the si, it follows that usiPvti
and usi+2Pvti+2 have an edge in common. Again from (15) (iv) we get that
there is an s ∈ {si, . . . , ti} and an s′ ∈ {si+2, . . . ti+2} such that usPvs and
us′Pvs′ share an edge. Since this edge then lies in the shadow Ss and in the
shadow Ss′ , we obtain again a contradiction to (14). This proves (20).

We now apply Lemma 4 to Q1, . . . , Qr in order to obtain the desired exten-
sion of P . We note that (16), (17), (19) and (20) ensure that all conditions are
satisfied. The desired extension of P does not contain vertices v of F such that
distF (u, P ) > ` because of (18).

Claim 5. Let H be a hub. Let P ⊆ F be a path of length at most 5` with first
and last edge e and f such that e and f belong to SH but are not adjacent in
L∗H . Then there is no e–f -path in L∗H − (E(P ) \ {e, f}).

Proof. Suppose there is such a P ⊆ F and an e–f -path Q∗ in L∗H − (E(P ) \
{e, f}). Among all such pairs (P,Q∗) choose P and Q∗ such that `(Q∗) is
minimal. We claim that

e and f are not adjacent in G. (21)
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If `(P ) = 5` then obviously e and f cannot be adjacent. Suppose that `(P ) < 5`
and let e′ be the successor of e in Q∗ (note that e′ is a vertex in Q∗ but an edge
in G). We construct a path P ′ that contradicts the minimal choice of P together
with Q∗ − e. As `(P ) < 5`, the graph P + e′ cannot contain a cycle because of
P + e′ ⊆ F and (9).

If P + e′ is a path, set P ′ = P + e′. Since e′ and f are not adjacent in G
they are not in L∗H either. If P + e′ is not a path, set P ′ = P − e+ e′. If e′ and
f were adjacent in L∗H , either P + e′ contained a cycle or P = ef and e, f, e′

all share a common vertex—then, however, the definition of L∗H implies that e
and f have to be adjacent in L∗H , too, which we have excluded.

As `(P ) < 5`, the new path P ′ satisfies `(P ′) ≤ 5` and there is a path in
L∗H − (E(P ′) \ {e′, f}) joining its endvertices e′ and f , namely Q∗ − e. Thus,
(P ′, Q∗ − e) contradicts the minimality of Q∗. This proves (21).

Consider the subgraph Q of G that consists of the edges V (Q∗) and all
incident vertices. We claim that Q is a path. By the definition of L∗H , Q is
connected. Thus, if Q is not a path, it contains a vertex v of degree at least 3.
Starting with e, let e′ be the first vertex of Q∗ that, seen as an edge in G,
contains v as an endvertex and let f ′ be the last such vertex of Q∗. As dQ(v) ≥ 3,
the edges e′ and f ′ are not adjacent in L∗H as Q∗ was chosen minimal. Note that
the path e′Q∗f ′ in L∗H is shorter than Q∗ as {e′, f ′} 6= {e, f}, by (21). Thus,
the path P ′ = e′f ′ together with the path e′Q∗f ′ in L∗H form a pair (P ′, e′Q∗f ′)
that contradicts the minimality of Q∗. Therefore, Q is a path in G.

Our next aim is to find a subpath Q′ ⊆ Q that satisfies the following two
conditions:

every Q′-path in F has length at least 5`; and (22)

there is a Q′-path R ⊆ F between the endvertices of Q′ of length 5`. (23)

The set of those subpaths that satisfy (22) is nonempty, since every subpath
of Q of length, say, at most ` satisfies (22)—recall that the girth of F is larger
than 10` by (9).

Pick a longest subpath S of Q that satisfies (22) in the role of S = Q′. If S
also satisfies (23), we found the desired path. Thus, we may assume that the
shortest S-path R ⊆ F between the endvertices u and v of S has length larger
than 5`. Suppose that u, v are precisely the endvertices of Q. Since `(P ) ≤ 5`,
either P is a shorter S-path than R, which is impossible, or P contains a S-path
of length less than 5`, which violates (22). Therefore, at least one of u, v is not
an endvertex of Q; let this be u.

Thus, S can be extended by the unique neighbour u′ of u in V (Q) \V (S) to
a path S′ ⊆ Q. By the maximality of `(S), the path S′ does not satisfy (22).
This is only possible if there is an S′-path R′ ⊆ F between u′ and some vertex
y ∈ V (S) that has length less than 5`. Since R = uu′Ry is an S-path in F it
follows from (22) that

5` ≥ `(R) = `(R′) + 1 ≥ 5`− 1 + 1 = 5`.

Setting Q′ = uSy yields a subpath of Q satisfying (22) and (23).
Let x and y be the endvertices of Q′ (and of R). We check that the conditions

of Claim 4 are satisfied by Q′. As Q′ satisfies (22), every Q′-path in F has length
at least 3`. The path Q′ is a subpath of Q for which E(Q) is a path in L∗H , and
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thus Q∗ is also a path in L∗H . This implies the second condition of the claim.
Thus, by Claim 4, there is an extension E ⊆ H of Q′ that uses no vertex of F at
distance more than ` from Q′ measured in F . By Lemma 3, G either contains
a long cycle of length at most 2`, which is impossible by (7), or every cycle in E
is short. Thus the cycle C ⊆ E containing x and y is short; recall that Lemma 2
ensures that there is such a cycle C.

Denote by R′ the path obtained from R by removing the first `+ 1 vertices
and the last ` + 1 vertices. Note that `(R′) ≥ 3` − 2 ≥ 2` as `(R) = 5`. We
claim that every vertex of R′ has distance more than ` from Q′ in F . Suppose
not. Then there exists a Q′–R′-path P1 of length at most `. From the endvertex
of P1 in R′ pick a subpath P2 of R that ends in x or in y and has length at
most 3` which is possible as `(R) = 5`. Since P1 6= P2 the union P1 ∪ P2 either
contains a cycle or is a Q′-path. It cannot contain a cycle, since such a cycle
would be contained in F but would have length at most `(P1) + `(P2) ≤ 4`.
Thus, P1 ∪ P2 ⊆ F is a Q′-path of length at most 4`—this contradicts (22) and
hence distF (R′, Q′) > `.

Since the cycle C does not contain any vertex in F at distance more than `
measured in F , it follows that C is disjoint from R′. We extend R′ to a subpath
R′′ of R that is a C-path. Then, R′′ has length

2` ≤ `(R′) ≤ `(R′′) ≤ `(R) = 5`.

Consequently, as C is short, each of the two cycles in C ∪R′′ through R′′ then
have length between 2` and `(C) + `(R) ≤ ` + 5` = 6`, which is impossible
by (7). Thus, there are no counterexamples to the claim.

Using the previous claim, we show that some assumptions of Claim 4 are
always satisfied and thus we obtain a simpler version of Claim 4.

Claim 6. Let H be a hub. Then

(i) every pair of edges e, f ∈ E(SH) with a common endvertex is adjacent
in L∗H ;

(ii) every SH-path in F has length at least 4`; and

(iii) for every path P ⊆ SH , there is an extension E of P that is contained in
H such that distF (u, P ) ≤ ` holds for every u ∈ V (E) ∩ V (F ).

Proof. For a proof of (i), let e = uv, f = vw ∈ E(SH) share an endvertex but be
non-adjacent in L∗H . Then P = uvw is a path in F of length 2 ≤ 5`. Applying
Claim 5 to P , we see that there is no e–f -path in L∗H , which is impossible as
L∗H is connected, by Claim 3.

To see (ii), suppose there is an SH -path P = u . . . v in F of length less
than 4`. Let e, f ∈ E(SH) be such that e and f contain u and v, respectively.
The edges e and f cannot share an endvertex because then F would contain a
cycle P + e+f of length less than 5` which contradicts (9). In particular, e and
f are not adjacent in L∗H . Extend P by these two edges and apply Claim 5 in
order to obtain a contradiction to L∗H being connected (Claim 3).

Statement (iii) is exactly the statement of Claim 4 without the assumptions
that P induces a path in L∗H (which is satisfied by (i)) and that P -paths in F
have length at least 4` (which is satisfied by (ii)).
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Claim 7. For every hub H, the graph SH is a tree.

Proof. We observed before that SH is connected. Since SH ⊆ F , it follows that
SH is acyclic unless it contains a long cycle C.

By Claim 6 (i), every two consecutive edges in C are adjacent in L∗H which
means that E(C) is a cycle in L∗H . Then, however, we obtain a contradiction to
Claim 5 with any path P ⊆ C of length 3.

Claim 8. For every hub H, the closure H of H does not contain a long cycle.
Thus, the diameter of H is at most `

2 .

Proof. Suppose there is a long cycle C in H. We say that C traverses a F -
bridge B of H t times if C∩B contains exactly t non-trivial components (where
non-trivial means that the component contains an edge). Among all long cycles
in H choose C such that the total number of bridge traversals of C is minimal.
We will prove that C does not traverse any bridge.

Suppose that C traverses a bridge B. Let P = u . . . v ⊆ C ∩ B be a non-
trivial F -path. Assume first that the intersection C∩SP of C and the shadow of
P contains only one component. As u, v ∈ V (C ∩SP ), this implies that SP ⊆ C
and together with P ⊆ C, we have C = P ∪ SP . Then C would have length at
most 2`, since F -paths as well as their shadows are short by Lemma 6. This,
together with (7), contradicts the assumption that C is long.

Hence we may assume that C ∩ SP contains at least two components. Let
Q ⊆ SP be a C-path in SP that joins two components of C ∩ SP . In C ∪ Q,
there are two cycles D1 and D2 that both contain Q. Let D1 be the one that
contains P . As `(C) ≥ 10` by (7), one of the two cycles D1 or D2 has length at
least 5` and is thus long.

If D2 is long, it contradicts the choice of C as D2 traverses B fewer times
than C and no other bridge more often than C. Otherwise D2 is short and as F
does not contain short cycles, D2 traverses a bridge B′ (that is not necessarily
distinct from B). Then, the other cycle D1 traverses B′ fewer times than C and
no other bridge more often than C. As D1 is long when D2 is short, the cycle
D1 contradicts the choice of C.

This implies that C does not traverse any bridge of H; that is, C ⊆ SH .
This, however, is a contradiction to Claim 7 and we conclude that there is no
long cycle in H.

For any distinct u, v ∈ V (H), there is a cycle C ⊆ H through u and v, as H
is 2-connected by Claim 2. Since hub closures do not contain long cycles, the
cycle C has length at most ` − 1. Thus, distH(u, v) ≤ distC(u, v) ≤ `

2 . This

implies diam(H) ≤ `
2 .

Claim 9. Let H be a hub, and let u, v ∈ V (SH), u 6= v. Let r ∈ N ∪ {0} be
such that the unique u–v-path Q ⊆ SH has length

r` < `(Q) ≤ (r + 1)`.

Then, for any t ∈ {0, . . . , r}, there is a u–v-path P ⊆ H such that

t` ≤ `(P ) ≤ t`+
3

2
`

and distF (w,Q) ≤ ` for every vertex w ∈ V (F ∩ P ).
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Proof. If t = r, then we can choose P = Q. Suppose therefore that t ∈
{0, . . . , r − 1}. Note that `(Q) > r` ≥ (t + 1)`. Let x ∈ V (Q) be the ver-
tex on Q with `(uQx) = (t + 1)`. Next we use Claim 6 (iii) to obtain an
extension E ⊆ H of xQv that uses no vertices of F at distance more than ` from
xQv measured in F . By Lemma 2, the extension E contains a cycle C through
x and v. Lemma 3 together with (7) implies that C is short. Thus, there exists
a x–v-path R ⊆ C in E of length at most `

2 .
Starting from u, let y be the first vertex of Q that lies in R. Note that

t` ≤ `(uQy) ≤ `(uQx) = (t + 1)`, as distF (y, xQv) ≤ `, because y ∈ V (E).
Thus the path P = uQyRv is a path in H such that

t` ≤ `(uQy) ≤ `(P ) ≤ `(uQx) + `(R) ≤ (t+ 1)`+
`

2
.

Every vertex w of P has either distance 0 from Q (if w ∈ V (uQy)) or at most
` (if w ∈ V (yRv) as R ⊆ E) in F .

4.3 Gates of hubs

For a hub H, we call those vertices v ∈ V (SH) that have neighbours in F − SH

the gates of H. Equivalently, v is a gate of H if it lies in H and has a neighbour
outside H. Thus, every path in G that contains a vertex in G−H and a vertex
in H also contains a gate of H.

Claim 10. The shadows SH1
and SH2

of any two distinct hubs H1, H2 share at
most one vertex.

Proof. Since two bridges belong to the same hub if their shadows share an edge,
it follows that SH1 ∩SH2 is a collection of isolated vertices. In particular, every
vertex of SH1 ∩ SH2 is a gate of H1 and of H2.

Suppose that |V (SH1
∩ SH2

)| ≥ 2. Consider two common gates g, g′ of H1

and H2. Pick a g–g′-path P in F that is shortest among all paths contained
in F . Then P either contains a SH1

-path or a SH2
-path (or both), which then,

by Claim 6 (ii), has length at least 4`. Thus

every two common gates g, g′ of H1 and H2 have distance at
least 4` in F and therefore also in SHi

.
(24)

Among all paths that join two common gates of H1 and H2, let R be the
shortest such path, and let g, g′ be its endpoints. Observe that every common
gate h distinct from g, g′ of H1 and H2 is at distance at least 2` from R in
SH1 ; otherwise, by (24), there would be a shorter path between two common
gates. Observe that also in F the common gate h has distance at least 2` from
R: otherwise, F would contain an SH1

-path of length at most 2`, contradicting
Claim 6 (ii).

Extend R with a g–g′-path through SH2
to a cycle C. As both g–g′-paths in

C have length at least 4`, we apply Claim 9 with t = 1 and obtain g–g′-paths
P1 ⊆ H1 and P2 ⊆ H2 each of length at least ` and at most 3`. In addition, the
claim ensures that every vertex in P1 ∩F has distance at most ` measured in F
to R. As Pi ⊆ Hi for i = 1, 2, every vertex of V (P1) ∩ V (P2) is a common gate
of H1 and H2, which then has distance at most ` to C in F . Any common gate
other than g or g′ has distance at least 2` to R in F , as argued above. Thus,
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H3

SH3

H1

SH1

H2

SH2

Figure 5: The dashed cycle traverses and visits H1 once, it traverses H2 once
and visits H2 twice. It does not traverse H3, thus it also does not visit it.

P1 and P2 meet only in g, g′ and P1 ∪ P2 is a cycle. The length of the cycle is
between 2` and 6`, which is impossible by (7). Therefore, SH1

and SH2
meet in

at most one gate.

Claim 11. Let C be a cycle, and let H be a hub such that C contains an edge
both in E(H) and in E(G) \ E(H). Then C is long.

Proof. We say a cycle C traverses a hub H if C contains an edge of H. The
number of traversals of H is the number of components of C ∩H that contain
an edge of H. For hubs H that are traversed by C, we define the number of
visits as the number of components of C ∩ H (which will be larger than the
number of traversals if C ∩H has components that are contained in the shadow
of H). When C fails to traverse H then the number of visits is 0.

Suppose there is a short cycle that contains an edge of some hub closure H
but is not completely contained in H. Choose such a cycle C such that the total
number of hub traversals is minimal and subject to that choose C such that the
total number of visits is minimal.

We claim:

if C traverses a hub H, then C ∩H is a path. (25)

Suppose that C ∩H has a component Q1 with an edge in H (as C traverses H)
and a second component (with or without edge in H). By Claim 8, the diameter
of H is at most `

2 . Thus, there is a C-path P ⊆ H of length at most `
2 that

starts in Q1 and ends in another component Q2 of C ∩H. Let D1, D2 be the
two cycles in C ∪ P that contain P . We observe that

each of D1, D2 shares an edge with H but is not contained in H. (26)

Indeed, each of D1, D2 shares an edge with H because of P ⊆ H. Neither of
D1, D2 is contained in H: running along the P -path Di ∩C from the endvertex
of P in Q1 we see that the first edge outside Q1 lies also outside H, and there
must be such an edge since Q1 and Q2 are distinct components.

Moreover,
each of D1, D2 is a short cycle. (27)
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For i = 1, 2, the length of Di is at most `(C) + `(P ) ≤ ` + `
2 . As every long

cycle has length at least 10` by (7), we deduce that Di is short.
The cycles D1, D2 are thus also counterexamples of the claim. To see that

one of them contradicts the minimal choice of C, we distinguish two cases.
First, assume that C traverses a second hub H ′ 6= H. Then one of D1, D2,

say D1, meets an edge of H ′. It follows that D2 has at least one hub traversal
less than C and, in light of (26) and (27), contradicts the minimality of C.
Second, assume that C traverses only one hub, namely H. Then each of D1, D2

has fewer visits of H (and at most the same number of traversals) and we again
obtain a contradiction to the minimality of C. This proves (25).

Since C is short, C cannot be contained in the frame F and therefore tra-
verses a hub H. Then, by (25), the component C∩H is a path, which we denote
by QH . Its endvertices are two gates g, g′ of H. If we replace QH in C by any
g–g′-path in H, we obtain a cycle, because otherwise C ∩H would have more
than one component.

Let PH be the (unique) g–g′-path in SH , and assume first that `(PH) < 5`.
We replace in C the path QH by PH and obtain a cycle C ′ such that `(C ′) ≤
`(C) + `(PH) ≤ 6`. Thus together with (7), C ′ is a short cycle. Moreover, C ′

does not traverse H anymore as C ′∩H ⊆ SH . Thus, C ′ contradicts the minimal
choice of C.

Second, assume that `(PH) ≥ 5`. By Claim 9, there is a g–g′-path P ′H in
H with ` ≤ `(P ′H) ≤ 3`. Thus, if we replace QH by P ′H in C, we obtain a
cycle C ′ such that ` ≤ `(P ) ≤ `(C ′) ≤ `(C) + `(P ′H) ≤ 4`, which is the final
contradiction to (7).

4.4 The hitting set

We distinguish two cases: that F is a cycle (U = ∅) and U 6= ∅. Even if the first
case could be transferred into the latter case, we found it useful to give a proof
on its own.

Claim 12. Unless there is a hitting set of at most k − 1 edges, the frame F is
not a cycle.

Proof. Assume F to be a cycle. As shadows of hubs are trees, by Claim 7, every
shadow of a hub is a path. In particular, the cycle F cannot lie in a single
shadow. Thus, there are two distinct vertices u1, u2 in F that do not lie in the
interior of any shadow (that is, if ui is in a shadow, then it is an endvertex of
the shadow).

Denote by P1 and P2 the two edge-disjoint u1–u2-paths in F . For i = 1, 2,
we let P i be the union of Pi and all hubs H so that SH ⊆ Pi. Then

G = P 1 ∪ P 2.

Indeed, any edge e of F is contained in P1 ∪P2. If e ∈ E(G) \E(F ), then e lies
in a hub, and every hub is contained in either P 1 or in P 2 as its shadow lies in
either P1 or in P2.

Since hub closures are blocks in P i—the endvertices of their shadow-paths
are cutvertices in P i—it follows from Claim 8 that every long cycle contains
an edge of P 1 and an edge of P 2. More precisely, every long cycle can be
decomposed into two u1–u2-paths—one in each P i.
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Suppose that for i = 1 or for i = 2, there is a set X of at most k − 1 edges
that separates u1 from u2 in P i. Then, X meets every long cycle, since every
such cycle contains a u1–u2-path in both P 1 and P 2. This means that X is a
hitting set of size at most k − 1, and we are done.

Thus, for i = 1, 2 there are k edge-disjoint u1–u2-paths Qi
1, . . . , Q

i
k contained

in P i. We combine them to k edge-disjoint cycles Q1
1∪Q2

1, . . . , Q
1
k ∪Q2

k, each of
which is long, by Claim 11, a contradiction to our assumption (6) that G does
not contain k edge-disjoint long cycles.

We may assume from now on that F is not a cycle, and that therefore U 6= ∅.
Since F is connected and has minimum degree at least 2, this implies that

F is the edge-disjoint union of U -paths. (28)

We distinguish two kinds of hubs: A hub H is a vertex-hub if SH∩U 6= ∅ and
a path-hub otherwise. Oberserve that the shadow of a path-hub is completely
contained in some U -path of F . Let H be the set of all vertex-hubs. A vertex-
hub is shown in Figure 3, while the hub in Figure 6 is a path-hub.

F

Figure 6: A path-hub consisting of four bridges, and its shadow (in grey).

For a hub H, let AH be the set of gates of H and let AV =
⋃

H∈HAH .
Next, we give a bound from above for

∑
H∈H |AH | for later use. We note

that for every g ∈ AV , the number of hub closures containing g is at most
dF (g). Observe that every U -path of F contains at most two vertices of AV . In
addition, if P contains two vertices g, g′ ∈ AV in its interior, then g, g′ belong
each to one vertex-hub only. This implies∑

H∈H
|AH | ≤

∑
g∈AV

dF (g)

=
∑

g∈AV ∩U

dF (g) +
∑

P : P ⊆ F is a U-path

2

≤ 2ds(F ).

Recalling (10) we obtain ∑
H∈H

|AH | ≤ 168k log k. (29)

Consider a U -path P of F . If the shadow of a vertex-hub intersects P , then
the intersection is either a path containing at least one endvertex of P , or the
disjoint union of two paths each of which contains an endvertex of P . Thus at
most one component of P −

⋃
H∈HE(H) is a path of length at least 1. If there

is such a component P ′, then let uP , vP be the endvertices of P ′. Then P ′ =
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uPPvP . Let P denote the set of all U -paths P of F such that P −
⋃

H∈HE(H)
is not edgeless. We note that

if P ∈ P, then uP , vP ∈ AV ∪ U.

For P ∈ P, we define P to be the union of P ′ and all (path-)hubs H so that
SH ⊆ P ′.

Next, we show

for any two distinct A,B ∈ H ∪ P the graphs A and B are
edge-disjoint and A ∩B ⊆ AV ∪ {uP , vP : P ∈ P}. (30)

Indeed, this follows directly if both A,B ∈ H, and also if both A,B ∈ P, since
U -paths in F meet only in U . If A ∈ H and B ∈ P, then uBBvB meets

⋃
H∈HH

at most in {uB , vB}, by definition.
We claim that

G =
⋃

H∈H
H ∪

⋃
P∈P

P (31)

To prove the claim, consider an edge e /∈
⋃

H∈HE(H) of G. Assume first that e
is contained in the closure of a path-hub L. The shadow of L then is contained in
a U -path P of F , by (28). Since the shadow of L is edge-disjoint from

⋃
H∈HH

this implies that P ∈ P. Then e ∈ E(L) ⊆ E(P ). Second, we have to consider
the case when e is an edge of F that lies outside every hub shadow. Let P be the
U -path of F containing e. Again we see that P ∈ P and trivially e is contained
in P . This proves (31).

Next we show

for every P ∈ P, every cycle contained in P is short. (32)

The graph P is the edge-disjoint union of path-hub closures and edges in F that
lie outside every hub shadow. In particular, the path-hub closures contained
in P are blocks in P . Thus, any cycle contained in P lies completely in some
path-hub closure, which only contains short cycles, by Claim 8.

We call P ∈ P thick if there are at least k edge-disjoint uP –vP -paths in P ,
and thin otherwise. If P is thin, then there is a set XP ⊆ E(P ) of at most k−1
edges separating uP and vP in P , by Menger’s theorem. As part of the hitting
set we define Xp as the union of all XP where P ∈ P is thin. By (10), we obtain

|Xp| =
∑
P∈P
|XP | ≤ k · 12ds(F ) ≤ k · 42k log k.

We note that (32) implies that

in G−Xp every long cycle is edge-disjoint from P for every thin
P ∈ P.

(33)

Consider H ∈ H. Applying Lemma 13 with H and AH playing the roles of
G and A, we obtain a set XH of size at most 4|AH |k that k-perfectly separates
AH in H. Let Xv =

⋃
H∈HXH . With (29) we find that

|Xv| ≤ 4k
∑
H∈H

|AH | ≤ 4k · 168k log k = 672k2 log k.
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We will show that X = Xp ∪ Xv is a hitting set for long cycles in G. We
note first that

|X| = |Xp|+ |Xv| ≤ 42k2 log k + 672k2 log k = 714k2 log k ≤ f(k, `).

Thus, if X is indeed a hitting set then the induction hypothesis (5) is proved.
Let J be the set of all graphs J such that either J = P for a thick P ∈ P,

or such that J is a component of H −X for some H ∈ H.

Claim 13.

(i) g ∼k g
′ in J for all g, g′ ∈ V (J) ∩ (AV ∪ {uP , vP : P ∈ P}).

(ii) Distinct J, J ′ ∈ J are edge-disjoint, and their intersection J ∩ J ′ lies in
AV ∪ {uP , vP : P ∈ P}.

(iii) Every long cycle in G − X is entirely contained in
⋃

J∈J J and no long
cycle is contained in a single J ∈ J .

Proof. Statement (i) holds as AH is k-perfectly separated for every H ∈ H and
if J = P for some thick P ∈ P then uP ∼k vP as P is thick and P disjoint
from X.

Observe that (ii) follows from (30) as all J ∈ J are subgraphs of graphs in
H∪P and two J, J ′ ∈ J that belong to the same vertex-hub H are disjoint by
definition as components of H −X.

To see (iii), consider a long cycle C. Since G is, by (31), the union of vertex-
hub closures and all P for P ∈ P, it follows that G−X is contained in the union
of all J ∈ J and all P for thin P ∈ P. By (33), the cycle C is edge-disjoint
from every P , when P ∈ P is thin, which means that C is contained in the
union of all J ∈ J . Finally, C cannot be contained in any single J ∈ J as this
is either a subgraph of a hub closure (recall Claim 8) or equal to P for some
P ∈ P (recall (32)).

Suppose that G − X contains a long cycle. Any long cycle C in G − X
decomposes by Claim 13 (iii) into paths g0P1g1, . . . , gsPsg1 such that each Pi

is contained in some Ji ∈ J . Choose a long cycle C (and paths) such that
the number s of paths Pi is minimal. That choice immediately guarantees that
Ji 6= Ji+1 for all i (taken mod s).

Suppose that Ji ∩ Jj 6= ∅ for |i − j| > 1. Since Ji is connected there is a
C-path Q between two components of C ∩Ji. Then there are two cycles D1, D2

in C ∪ Q that contain Q. Let H be the hub such that Ji ⊆ H. By Claim 8,
C does not lie completely in H. Thus, at least one of D1 and D2, D1 say, also
contains an edge outside H. Thus, it follows from Claim 11 that D1 is long.
Then, however, D1 contradicts the choice of C as it contains less paths Pi than
C. Therefore, the Ji are all distinct.

Next, observe that, by Claim 13 (ii), every gi either lies in AV or in {uP , vP }
for some thick P ∈ P. By Claim 13 (i), there are k edge-disjoint gi–gi+1-paths
P i
1, . . . , P

i
k in Ji for every i = 0, . . . , s. Observe that the concatenation Cj of

P 1
j , . . . , P

s
j is a cycle, which is long by Claim 11. Thus C1, . . . , Ck are k edge-

disjoint long cycles, which is the final contradiction to (6). Thus, the set X is
indeed a hitting set for the long cycles in G.
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