Proof of Hu's theorem

This short note contains the details of the proof of Theorem 24 in [1].

Theorem 1 (Hu [2]). Suppose there is a c > 2 so that any separating unionclosed family \mathcal{A}' with $|\mathcal{A}'| \leq c |U(\mathcal{A}')|$ satisfies the union-closed sets conjecture. Then, in every union-closed family \mathcal{A} , there is an element that appears in at least $\frac{c-2}{2(c-1)}|\mathcal{A}|$ member-sets of \mathcal{A} .

Proof. Let \mathcal{A} be a union-closed family. Clearly, we may assume \mathcal{A} to be separating. Moreover, we can suppose that $n := |\mathcal{A}| > cm$, where $m := |U(\mathcal{A})|$ is the size of the universe; otherwise there is even, by assumption, an element in $U(\mathcal{A})$ that appears in at least half of the member-sets.

Put

$$p := \left\lceil \frac{n - cm}{c - 1} \right\rceil \le \frac{n - cm}{c - 1} + 1 \tag{1}$$

Pick some element $x_0 \in U(\mathcal{A})$, and introduce p new elements $X := \{x_1, \ldots, x_p\}$, disjoint from $U(\mathcal{A})$. We define a family

$$\mathcal{A}' := \{ A \cup X : A \in \mathcal{A}, x_0 \in A \} \cup \{ A \in A : x_0 \notin A \}$$
$$\cup \{ U(\mathcal{A}) \cup (X - x_i) : i = 1, \dots, p \}$$

The family is obviously union-closed, and moreover, it is separating. Indeed, any elements of $U(\mathcal{A})$ can still be separated as \mathcal{A} is separating, while the elements x_1, \ldots, x_p are separated by the sets $\{U(\mathcal{A}) \cup (X - x_i) : i = 1, \ldots, p\}$.

The number of sets in \mathcal{A}' is n+p, while the universe has grown to m+p. We can easily check that $n+p \leq c(m+p)$, so that we can use the assumption that there is an element u^* in $U(\mathcal{A}')$ that appears in at least $\frac{n+p}{2}$ member-sets. Note that x_0 appears more often than any of x_1, \ldots, x_p , so that we may assume that $u^* \in U(\mathcal{A})$. Then, however, we see that u^* appears in at least $\frac{n+p}{2} - p = \frac{n-p}{2}$ of the member-sets of \mathcal{A} .

We compute with (1) that

$$\frac{n-p}{2} \ge \frac{1}{2} \left(n - \frac{n-cm}{c-1} - 1 \right) = \frac{1}{2} n \left(\frac{c-2}{c-1} + \frac{1}{n} \left(\frac{cm}{c-1} - 1 \right) \right)$$
$$> \frac{1}{2} n \cdot \frac{c-2}{c-1},$$

as c > 2 entails that cm > c - 1. Thus, there is an element that appears in at least $\frac{c-2}{2(c-1)}n$ of members-sets of \mathcal{A} .

References

- H. Bruhn and O. Schaudt, The journey of the union-closed sets conjecture, to appear in Graphs and Combinatorics.
- [2] Y. Hu, Master's thesis, in preparation.