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Abstract

We extend Tutte’s result that in a finite 3-connected graph the cycle
space is generated by the peripheral circuits to locally finite graphs. Such
a generalization becomes possible by the admission of infinite circuits in
the graph compactified by its ends.

1 Introduction

In a finite graph, the edge set of a connected 2-regular subgraph is called a
circuit. The set of symmetric differences of circuits constitutes a F2-vector
space, the cycle space. A classical result of Tutte [12] states:

Theorem 1 (Tutte 1963). Every element of the cycle space of a finite 3-
connected graph is a sum of peripheral circuits.

Here, a circuit C = E(D) is peripheral if D is an induced non-separating
subgraph without isolated vertices. We show that despite obvious counterex-
amples Tutte’s result can be generalized to locally finite graphs by admitting
infinite circuits and sums as recently proposed by Diestel and Kühn [5].

Let us look at a simple example due to Halin [8]. Consider the cartesian
product of a double ray (an infinite 2-way path) with a pentagon (Figure 1).
The peripheral circuits of this graph are exactly its 4-circuits. We see that the
deletion of all vertices incident with C separates the graph but C is not the sum
of any peripheral circuits, so Tutte’s theorem fails for this graph.

C

Figure 1: The circuit C is not the finite sum of peripheral circuits

This can be mended, however, by allowing infinite sums. Indeed, C is clearly
the (infinite) sum of all the 4-circuits to the left of C (or to the right for that
matter).

However, infinite sums of circuits can also produce edge sets of subgraphs
such as the double ray shown in Figure 2, which should then also be legitimate
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Figure 2: An infinite edge set that arises from an infinite sum of circuits

elements of the cycle space closed under (well-defined) infinite sums. This com-
plicates matters, but not beyond control: the subspace of the edge-space of a
locally finite graph G that is generated by (possibly) infinite sums of the (fi-
nite) circuits of G has been studied by Diestel and Kühn in [5, 6], who obtained
this space as an adaptation of the cycle space to topological circles involving
the ends of G. (These circles are homeomorphic images of the unit circle in
the standard compactification of G by its ends; for example, the double ray in
Figure 2 forms an infinite circle together with the left end of the graph.) We
shall make use of the results in [5, 6] throughout this paper. See also Diestel [3]
for an introduction and survey.

We state now our main result:

Theorem 2. Every element of the cycle space C(G) of a locally finite 3-connected
graph G is a sum of peripheral circuits.

Infinite circuits and C(G) will be defined in the next section. Section 3
contains a discussion of the main result. In Section 4 we examine bridges and
the overlap graph of a circle in a 3-connected graph. In Section 5 we prove the
main lemma for Theorem 2, which then is proved in Section 6.

2 Definitions

In general our notation will be that of [4]. All our graphs will be undirected
and simple. Let G = (V,E) be a fixed graph. A 1-way infinite path will be
called a ray. A subray of a ray will be said to be a tail of that ray. Two rays
in a graph are equivalent if there is no finite vertex set separating them. The
resulting equivalence classes are called the ends of the graph. The set of ends
is denoted by Ω(G).

Let us define a topology on G∪Ω(G); in the case when G is locally finite this
will coincide with the Freudenthal compactification of G. Let G itself carry the
topology of a 1-complex, ie. every edge is homeomorphic to the [0, 1] intervall,
and the basic open neighbourhoods of a vertex x are the unions of half open
intervalls [x, z), one from every edge [x, y] at x. Next, let us describe the basic
open neighbourhoods of the ends. For a finite set S ⊆ V and an end ω there is
exactly one component of G − S that contains a tail for every ray in ω. This
component will be denoted by CG(S, ω) and we say ω belongs to CG(S, ω). The
union of CG(S, ω) with all the ends belonging to it is CG(S, ω). Write EG(S, ω)
for the set of all edges between S and CG(S, ω) and let E̊′G(S, ω) be any union of
half-edges (x, y] ⊂ e, one for every e ∈ EG(S, ω), with x ∈ e̊ and y ∈ CG(S, ω).
Then let the basic open neighbourhoods of ω be the sets of the form

ĈG(S, ω) := CG(S, ω) ∪ E̊′G(S, ω).
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Denote by |G| the resulting topological space on G ∪Ω(G). We will freely view
subgraphs of G also as subspaces of |G|.

For any subset X ⊆ |G|, put V (X) := X ∩V , and denote by E(X) the set of
edges e of G with e ⊆ X . For an edge set Z ⊆ E, denote by Z the closure of

⋃
Z

in |G|. A continuous image of the unit interval [0, 1] is a topological path. The
images of 0 and 1 are the endpoints of the topological path. A homeomorphic
image of [0, 1] in |G| is called an arc in |G|. The following lemma can be found
in Hall and Spencer [9, p. 208].

Lemma 3. Every topological path with distinct endpoints x, y in a Hausdorff
space X contains an arc between x and y.

The following two lemmas relate topological connectivity in |G| to graph-
theoretic connectivity in G.

Lemma 4. Every open topologically connected subset of |G| is path-connected.

Note that |G| is indeed Hausdorff. The lemma can be proved with standard
topological arguments. For closed topologically connected subsets this remains
still valid, provided G is locally finite, but not otherwise, see [7].

Lemma 5 (Diestel and Kühn [6]). Let A ⊆ |G| be an arc between two
vertices x and y, and let X be a closed subset of |G| which avoids A. Then G
contains an x–y path P with P ∩X = ∅.

Having established a topology we may define circuits. First, we call a home-
omorphic image C of the unit circle S1 ⊆ R2 in |G| a circle. In [6] it is shown
that every edge of which C contains an inner point is completely contained in
C. The set E(C) of all these edges is a circuit, and it is dense in C (in the sense
that E(C) = C), so a circuit uniquely defines a circle and vice versa. Clearly,
this definition of a circuit includes the traditional finite circuits. In contrast, the
infinite circuits are the edge set of unions of double rays whose ends fit together
nicely. We say a circuit D is peripheral if the subgraph D ∩ G is induced and
non-separating.

We now define infinite sums of edge sets. For this, let (Ai)i∈I be a family
of edge sets. The family is called thin if every vertex is incident with at most
finitely many of the Ai; for locally finite G this is exactly the case when every
edge lies in at most finitely many of the Ai. The sum

∑
i∈I Ai of such a thin

family is defined to be the set of all edges that appear in exactly an odd number
of the Ai. Whenever we talk about sums we will mean sums of thin families.

Now, assume that G is locally finite, and define the cycle space C(G) to be
the set of sums of (thin families of) circuits. One of the results of [5, Cor. 11]
is that the cycle space of a locally finite graph is closed under taking (infinite)
sums. It should be noted that C(G) is a vector space over F2.

Directly using the definition of the cycle space it may be a bit awkward to
identify a given edge set as belonging to the cycle space. Fortunately, Diestel
and Kühn provided a more accessible characterization as well. For this, let
{V1, V2} be a partition of the vertex set of a graph G. Then the set of all edges
with one endvertex in V1 and the other in V2 is called a cut; the cut is called a
finite cut if it consists of finitely many edges.

Theorem 6 (Diestel and Kühn [5]). Let G be locally finite, and let Z ⊆ E.
Then Z ∈ C(G) if and only if Z meets every finite cut in an even number of
edges.
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As circuits are easier to handle than arbitrary elements of the cycle space, it
turns out to be convenient that we can always decompose such an element into
constituent circuits.

Theorem 7 (Diestel and Kühn [6]). Every element of the cycle space of G
is a disjoint union of circuits in G.

Furthermore, when dealing with sums or unions of a family F we will make
use of the shorthands

∑F (resp.
⋃F) to express the sum

∑
F∈F F (resp. the

union
⋃
F∈F F ).

A tree T with a distinguished vertex r ∈ V (T ) is called a rooted tree with
root r. For another vertex t ∈ V (T ), the predecessor on the path rT t is called
the parent of t. The vertices that have t as their parent are the children of t. A
vertex without children is a leaf.

For vertices v and w of a graph G we denote by dG(v, w) the minimal length
of a v–w path. Similarily, for an edge e and a vertex v, dG(v, e) is the minimal
length of a path between v and one of the endvertices of e.

3 Discussion of main result

First, let us briefly motivate the definition of the cycle space C(G). The cycle
space of a finite graph has a number of well-known properties. Among others,
these are:

(i) an edge set is an element of the cycle space if and only if it meets every
cut in an even number of edges;

(ii) every element of the cycle space is a union of disjoint circuits;

(iii) the cycle space is generated by the fundamental circuits of every spanning
tree; and

(iv) Tutte’s generating theorem (Theorem 1).

To be useful the cycle space of an infinite graph should retain as many of these
properties as possible. For locally finite graphs, (i)–(iv) and virtually all others
remain true in C(G) (with some obvious adaptions; for instance, to ensure (iii) we
have to forbid spanning trees that contain infinite circuits). Moreover, C(G) is
the smallest cycle space to achieve this. Indeed, suppose C ′(G) is an alternative
cycle space. Certainly, C ′(G) should contain all finite circuits, and to ensure that
Theorem 1 remains valid in C ′(G), the discussion of Figure 1 seems to imply
that at least all sums of finite circuits should lie in C ′(G) too. But then (iii)
shows that C(G) ⊆ C ′(G). See Diestel [3] for more details, and an introduction.

Our notion of the cycle space is based on the topological space |G|, which
is the standard compactification for locally finite G. There are several other
compactifications of G, each of which leads to a different cycle space. For
instance, if we identify all the ends, we obtain a cycle space, called the even
cycle space, which has been investigated by Bonnington and Richter [2]. In the
even cycle space the circuits are precisely the edge sets of 2-regular connected
subgraphs. In particular, the edge set of every double ray is a circuit.

I do not know whether the properties (i)–(iv) above can be extended in a
meaningful way to cycle spaces based on compactifications of G other than the
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Freudenthal compactification. General compactifications have been studied by
Richter and Thomassen [10].

e

Figure 3: There is no finite peripheral circuit containing the edge e

In the introductory example in Section 1 we were able to generate our given
circuit C using only finite peripheral circuits. In general, however, we cannot
make do without infinite circuits, as Figure 3 demonstrates. The edge e there
is not contained in any finite peripheral circuit. Consequently, any circuit con-
taining e cannot be generated by finite peripheral circuits. On the other hand,
it is easy to see that e lies on exactly two infinite peripheral circuits (namely
the two face boundaries that are incident with e). Note that the graph shown
is indeed 3-connected.

... ...

e

Figure 4: The edge e is not contained in any peripheral circuit

Next, we note that Tutte’s result cannot be extended to arbitrarily infinite
graphs using the topology as defined in Section 2. A counterexample is shown
in Figure 4: for every circuit C containing the edge e, C ∩G is separating, and
hence C non-peripheral.

Finally, let us give a rough overview of the proof of Theorem 2. Let Z ∈ C(G)
be given. We fix one of the topological components B of |G| \ Z. By adding
peripheral circuits to Z we try to inflate B. More precisely, we want that for the
sum Z ′ there is a topological component B′ ) B of |G| \Z ′. Continuing in this
manner, we achieve eventually (after countably many steps) that the inflated B
covers all of |G|. This is only possible if the resulting sum is the empty set. We
have then found a generating set of peripheral circuits for Z. Finding suitable
peripheral circuits for the single steps will mostly be the work of Lemma 17.

The components B (in fact, we will be interested in their closures) are also
interesting for another reason: We will observe in the next section that for a
circle C, the circuit E(C) is peripheral if and only if |G| \ C is topologically
connected.
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4 Bridges and the overlap graph

A key tool in Tutte’s proof of Theorem 1 is the concept of a bridge. In a finite
graph G, a subgraph B is a bridge of another subgraph H if either B is a chord
of H (ie. both its endvertices lie in H) or if B consists of a component K of
G − H plus the edges E(K,H) between K and H together with the incident
vertices. There is also an alternative way to define bridges by introducing an
equivalence relation on E(G) \E(H); see Bondy and Murty [1] for more details
on bridges. Our aim in this section is to transport the concept of a bridge to
infinite graphs.

Let G be a fixed graph in this section.

Definition 8. Let Z be an edge set in G. We call the closure B of a topolog-
ical component of |G| \ Z a bridge of Z. The points in B ∩ Z are called the
attachments of B in Z.

For the subgraph H := Z ∩G, the following can be shown: a set B ⊆ |G| is
a bridge of Z if and only if it is a chord of H or if there is a component K of
G−H such that B is the closure of K plus the edges E(K,H) together with the
incident vertices. Thus, our definition coincides with the traditional definition
of a bridge in a finite graph. However, we will only need the weaker fact that B,
if it is not a chord, contains a whole component of G−H but no other vertices
of G−H , see (iv) in the next lemma.

The following observation will be used repeatedly: B \ Z is an open topo-
logical component of |G| \ Z, which is thus path-connected, by Lemma 4. As
a consequence, two points x, y ∈ |G| \ Z are in the same bridge if and only if
there is an arc between them that avoids Z.

Let us prove a number of basic properties.

Lemma 9. Let Z be an edge set in G, and let B be a bridge of Z. Let x be an
attachment of B. Then:

(i) x is a vertex or an end;

(ii) if x is an end then every neighbourhood of x contains attachments of B
that are vertices;

(iii) every edge of which B contains an inner point lies entirely in B; and

(iv) either B is a chord of Z (ie. B is an edge whose endvertices lie in V (Z))
or the subgraph (B ∩G)− V (Z) is non-empty and connected.

Proof. (i) Suppose x is an inner point of an edge e. Then x ∈ Z implies e ∈ Z,
and hence there is a neighbourhood U ⊆ Z of x. Thus, U is disjoint from B \Z,
which is a contradiction to that x lies on the boundary of B \ Z.

Let us prove (iii) before (ii): Let e be an edge of which B contains an inner
point. Then the interior of e is disjoint from Z, as otherwise e ∈ Z. Thus,
e ⊆ B.

(ii) Consider any basic open neighbourhood Ĉ(S, x). As x ∈ Z there is a
vertex vZ ∈ V (Z∩C(S, x)). Similarily, let us find a vertex vB ∈ V (B∩C(S, x)).
Since Ĉ(S, x) ∩ (B \ Z) is open, it contains an inner point of an edge e. Then,
e ⊆ B, by (ii), and hence B contains both endvertices. One of these lies also in
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Ĉ(S, x); take that to be vB . Now, the first vertex on a vB–vZ path through the
connected subgraph C(S, x) that lies in Z is an attachment of B.

(iv) First, suppose that B \ Z consists only of inner points of edges. Take
two of those, x and y, and consider an arc in B \Z between them (which exists
by Lemma 4). Then, the arc has to lie completely in a single edge, and hence x
and y are inner points of the same edge. Thus, B is a chord of Z.

Second, if B\Z contains an end then it also contains an open neighbourhood
of that end. Consequently, K := (B∩G)−V (Z) is non-empty. As K is a subset
of the path-connected set B \ Z there is an arc between any two vertices of K
which avoids Z. Then, Lemma 5 yields also a path between them that is disjoint
from Z. Therefore, K is connected.

A consequence of (iv) is that a bridge is either a chord or it has at least k
attachments when G is k-connected. The next lemma provides the main reason
why we are interested in bridges.

Lemma 10. Let G be 3-connected, and consider a circle C ⊆ |G|. Then the
circuit E(C) is peripheral if and only if C has at most a single bridge.

Proof. First, let E(C) be peripheral. By Lemma 9 (iv), every bridge has a
vertex in G−V (C). Since G−V (C) is connected, there is thus only one bridge
of C.

Conversely, let C have only a single bridge B. Then B cannot be a chord
as in this case at least one of the vertices of C has degree 2 in G, and by
Lemma 9 (iv), G− V (C) is connected.

Consider a circle C in |G| with a bridge B. If G is finite the attachments
of B divide C into edge-disjoint paths, called the residual arcs of B (as long as
B has at least two attachments). Our aim is to reproduce this situation in an
infinite graph as closely as possible. So let G be an arbitrary graph, and define
a residual arc of B in C to be the closure of a topological component of C \B.
Note that if B has at least two attachments every residual arc is indeed an arc
(if not then the circle C itself is a residual arc, and it is the only one). As in the
finite case, any two residual arcs meet at most in their attachments. However,
C does not have to be the union of its residual arcs: consider an end ω ∈ C ∩B
against which attachments of B converge from both sides on C. Then ω does
not lie in any residual arc. Consequently, (iii) fails for ends in the following
lemma:

Lemma 11. Let G be 2-connected, and let C ⊆ |G| be a circle with a bridge B.
Then:

(i) the endpoints of a residual arc L of B in C are attachments of B;

(ii) for a point x ∈ C \ B there is exactly one residual arc L of B in C
containing x; and

(iii) for a vertex v ∈ V (B ∩ C) there are exactly two residual arcs of B in C
with v as an endpoint.

Proof. (i) The endpoints of L lie in B.
(ii) C is the union of the topological components of C \ B and C ∩ B, the

set of attachments. As x is not an attachment it lies in exactly one of the
components of C \B, and therefore in exactly one residual arc.
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(iii) Pick in each of the two with v incident edges in C an inner point, and
let L1 and L2 be the two residual arcs containing either one of them (as B has
at least two attachments no residual arc can contain both). Clearly, both L1

and L2 have v as endpoint.

Definition 12. Let C ⊆ |G| be a circle with two bridges B and B ′.

(i) We say that B avoids B′ if there is a residual arc of B that contains all
attachments of B′. Otherwise, they overlap.

(ii) B and B′ are called skew if C contains four points v, v′, w, w′ in that cyclic
order such that v, w are attachments of B, and v′, w′ attachments of B′.

Note that if B avoids B′ then B′ also avoids B. Indeed, let L be a residual
arc of B in which all attachments of B′ lie. Then, let x ∈ C \ L be any point,
and let L′ be the residual arc of B′ containing x (Lemma 11). As the endpoints
of L′ are attachments of B′ they lie in L. Now, if there is an attachment y of B
with y /∈ L′, then it lies in the interior of L, which is impossible for a residual
arc of B. Consequently, avoiding and overlapping are symmetric relations.

Clearly, if two bridges are skew, they overlap. On the other hand, it is not
difficult to prove that in a 3-connected graph two overlapping bridges are either
skew or 3-equivalent, ie. they both have only three attachments and those are
the same. However, we will not make use of this result.

For an edge set Z we define the overlap graph of Z in G as the graph on
the bridges of Z where two bridges are adjacent if they overlap. In contrast,
let the skew-overlap graph of Z in G be the graph on the same vertex set such
that two bridges are adjacent if they are skew. Clearly, the skew-overlap graph
is a subgraph of the overlap graph. See Thomassen [11] for more details on
skew-overlap graphs.

It is easy to see that if G is 3-connected then it is impossible for a bridge of
a circle to avoid all other bridges (unless there is only one). Thus, the overlap
graph of a circle cannot have trivial components. It turns out, even more is
true: there is only a single component at all. This will be the main result of
this section, which we shall prove with the help of the following lemma.

Lemma 13. Let G be 3-connected, and let C be a circle in |G|. Let K be a
connected subgraph in the skew-overlap graph of C in G, and let B be a bridge
of C. If there are four points u, u′, v, v′ appearing in that cyclic order on C such
that u and v are each an attachment of a bridge in V (K) and such that u′, v′

are attachments of B, then B is skew to some bridge in V (K).

Proof. Pick a bridge Bu ∈ V (K) for which u is an attachment, and respectively a
bridge Bv ∈ V (K) with attachment v. Denote by Lu the topological component
of C \ {u′, v′} that contains u, and by Lv the other one (which contains v). We
may assume that Bu has no attachments in Lv as otherwise Bu would clearly
be skew to B. Consider a Bu–Bv path P in K (ie. a sequence of consecutively
skew bridges). Let B′ be the first bridge on P to have attachments in Lv. As
B′ is skew to its predecessor on P , which has all its attachments in Lu∪{u′, v′},
B′ must have an attachment in Lu. As it has also one in Lv it is skew to B.

Lemma 14. If G is 3-connected then for every circle C ⊆ |G| the overlap graph
of C in G is connected.
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Proof. First, observe that if C is a triangle then all bridges have V (C) as the
set of attachments and are thus mutually overlapping. So we may assume that
|V (C)| ≥ 4.

Second, let K be a component of the skew-overlap graph. Suppose there is
a vertex w in V (C) which is not incident with any bridge in K. Let A be the
set of points of C that are attachments for some bridge in V (K). Fix an a ∈ A,
and let A1, A2 ⊆ C be arcs from w to a such that A1 ∪ A2 = C. Denote by xi
the first point on Ai in the closed set A (more precisely, if σi : [0, 1] → Ai is
a homeomorphism with σi(0) = w then let xi be such that σ−1

i (xi) is minimal
under all points in Ai ∩ A). Note that w 6= xi, as w /∈ A, and as w is a
vertex. Then C \ {x1, x2} has two topological components, one, Lw, which is
disjoint from A and another, LA, for which A ⊆ LA. Observe that both contain
vertices. Indeed, Lw contains w. If |A| ≥ 3, then LA clearly contains vertices
(note Lemma 9 (ii)). If A has cardinality two, then K consists of a single chord
with endvertices x1 and x2. But then x1 and x2 cannot be adjacent in C.

As G is 3-connected there is a path in G−{x1, x2} from a vertex u′ in V (Lw)
to a vertex v′ in V (LA) which meets C only in {u′, v′}. The path is contained
in a bridge of C; denote that bridge by B. Now, we can easily find u, v ∈ A such
that u, u′, v, v′ appear in that cyclic order on C. Indeed, if we cannot choose
x1 for u, then x1 ∈ A \ A. Consequently, every neighbourhood of x1 contains
elements of A, and thus a neighbourhood that is disjoint from u′ and v′ yields
a suitable u ∈ A. The same holds for x2. Lemma 13 yields a bridge in K which
is skew to B. Hence B ∈ V (K), a contradiction since the attachment u′ of B
lies in Lw, which is disjoint from A.

Finally, we show that every bridge B of C lies in V (K). As C is not a
triangle, B has two attachments u′, v′ which are not adjacent vertices in C.
Thus, we find two other vertices u, v such that u, u′, v, v′ appear in that cyclic
order on C. As u and v are each an attachment of some bridge in V (K),
Lemma 13 shows B ∈ V (K).

So far, the results were true for arbitrary graphs. For the final lemma of this
section, which we will need in the next one, G has to be locally finite.

Lemma 15. Assume that G is locally finite, and consider a circle C ⊆ |G| with
a bridge B. Let ω be an end which is an attachment of B in C. Then B \ C
contains a ray of ω.

For the proof we need a simple lemma which can be found in [5]:

Lemma 16. Let U be an infinite set of vertices in a connected locally finite
graph H. Then there exists a ray R ⊆ H for which H contains an infinite set
of disjoint R–U paths.

Proof of Lemma 15. By Lemma 9 (ii), there is a sequence x1, x2, . . . ⊆ V (G) of
attachments of B converging against ω. Let U be the set of neighbours of the
xi in K := (B ∩ G) − V (C). Applying Lemma 16 to the graph K (which is
connected by Lemma 9 (iv)) and the set U , we obtain a ray R and infinitely
many disjoint R–U paths in K ⊆ B\C. Then every neighbourhood of ω contains
a tail of R, and thus R ∈ ω.
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5 Locally generating a circuit

In this section we prove the following lemma, which will later be used in the
induction step for the proof of our main result. For a vertex v, denote by E(v)
the set of edges incident with v.

Lemma 17. Consider a circle C ⊆ |G| for a locally finite 3-connected graph G.
Let B be a bridge of C, and let v be a vertex in V (C ∩ B). Then there are
peripheral circuits D1, . . . , Dm which are disjoint from E(B) and which satisfy

m∑

i=1

Di ∩ E(v) = E(C) ∩ E(v).

Apart from being used in the proof of Theorem 2, the lemma may serve as
an indicator that the theorem itself is not unreasonable. Indeed, at the very
least one should be able to find a peripheral circuit for any given edge—and this
is in fact the case according to the lemma.

Lemma 17 and its proof are inspired by a result of Tutte [12, (2.2)]. For the
remainder of this section let us work in |G| for a fixed 3-connected locally finite
graph G.

B
~

B

v

x

y

L

A

Figure 5: The extension step

Consider a circle C ⊆ |G| with a bridge B and a vertex v ∈ V (C ∩ B). Let
a bridge B̃ overlapping B be given, and let L be a residual arc of B̃ in C that
meets v. Denote by x and y the two endpoints of L. Our aim is to replace the
arc (C \ L) ∪ {x, y} by an arc A through B̃ which is internally disjoint from
C; see Figure 5. For this, let us find a topological path Px from x to a point
x′ ∈ B \ C that meets C only in x, and analogously Py and y′. Then, as B \C
is path-connected (by Lemma 4) there is a topological path P ⊆ B \C from x′

to y′. Finally, Lemma 3 yields an arc A ⊆ Px ∪ P ∪ Py between x and y.
So how do we find x′ and Px (respectively y′ and Py)? If x is a vertex we

may simply take any edge [x, z] in B̃ incident with x, and put Px := [x, x′]
where x′ is any inner point of the edge. Observe, that we may choose freely the
edge [x, z] (as long as it lies in B̃), and that [x, z] ⊆ A. So assume that x is an
end. Lemma 15 yields then a ray R ⊆ B \C of x. Let x′ be the starting vertex
of R and put Px := R ∪ {x}.

As a result, C ′ := L ∪ A is a circle that contains v and that has a bridge
B′ ⊇ B. We say (C ′, B′) is gained from (C,B) through the extension step
(B̃, L, v).

More precisely, the following basic properties hold:
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Lemma 18. Let C be a circle with a bridge B, and let v ∈ V (C∩B). If (C ′, B′)
is gained from (C,B) by the extension step (B̃, L, v) then:

(i) C ′ ⊆ L ∪ (B̃ \ C);

(ii) (B ∪ C) \ L ⊆ B′ \ C ′; and

(iii) E(C ∪ B) ⊆ E(C ′ ∪ B′).

Proof. Assertion (i) is true by definition of A. For (ii), note that B \L ⊆ B ′ \L,
and that because of (i), B meets C ′ only in L. Hence B\L ⊆ B′\C ′. Also, since
B and B̃ are overlapping, B cannot have all its attachments in L. Thus, there is
an attachment of B in the connected set C \L, which is disjoint from C ′, by (i),
and therefore becomes a part of B′ ⊇ B. This shows (ii). Finally, for (iii), note
that C = L ∪ (C \ L) ⊆ C ′ ∪ B′.

If B̃ contains v then there exists a second residual arc L′ of B̃ in C meeting v,
by Lemma 11 (iii). In that case we find an arc A′ from v to the other endpoint y′

of L′ which meets C only in {v, y′} and which uses the same e edge incident
with v as A (as noted above). Then C ′′ := L′ ∪A′ is a circuit with a bridge B′′

so that (C ′′, B′′) is gained from (C,B) by the extension step (B̃, L′, v). We call
(C ′′, B′′) a twin of (C ′, B′) with respect to (C,B). We see that the following
holds

E(C) ∩ E(v) = (E(C ′) +E(C ′′)) ∩ E(v). (∗)
The main idea in the proof of Lemma 17 is the following: given a circle C1

with a bridge B1 we try to inflate the bridge B1. More precisely, we will con-
struct a sequence (C1, B1), (C2, B2), . . . of circle-bridge pairs such that (Ci, Bi)
is gained from its predecessor by an extension step. Then, we have Bi ⊇ Bi−1

and our aim is to do the extension in such a way that eventually Bi grows so big
that it is the only bridge left. Clearly, the corresponding circuit is then periph-
eral. Unfortunately, this sequential approach may be insufficient. Rather, it is
sometimes necessary to perform two alternative extension steps simultaneously.
This parallel approach is captured in the concept of an extension tree we shall
now introduce.

Definition 19. Let C be a circle with a bridge B, and consider a vertex v ∈
V (C ∩ B). Let T be a finite rooted tree with root r, and let there be mappings

CT : V (T ) → {C ′ ⊆ |G| : C ′ is a circle}
BT : V (T ) → {B′ ⊆ |G| : B′ is a bridge of a circle}

satisfying the following:

(i) for w ∈ V (T ), BT (w) is a bridge of the circle CT (w);

(ii) CT (r) = C and BT (r) = B;

(iii) let p ∈ V (T ) be the parent of w ∈ V (T ). Then there is a bridge B̃
overlapping BT (p) and a residual arc L of B̃ in CT (p) meeting v such
that (CT (w), BT (w)) is gained from (CT (p), BT (p)) by the extension step
(B̃, L, v); and
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(iv) let p ∈ V (T ) have a child u such that (CT (u), BT (u)) has a twin with
respect to (CT (p), BT (p)). Then p has exactly one other child and that is
mapped on such a twin.

If all these conditions are satisfied we call T or, more formally, (T, r, CT , BT ),
an extension tree with parameters (C,B, v).

Note that, firstly, (iii) and (iv) imply that a vertex in an extension tree has
at most two children. Secondly, deleting all descendants of a given vertex and
restricting the mappings to the remaining vertices will yield another extension
tree with the same parameters. And finally, the converse operation leads to an
extension tree too: let (T1, r, CT1 , BT1) be an extension tree with parameters
(C,B, v), l a leaf of T1 and (T2, l, CT2 , BT2) an extension tree with parameters
(CT1(l), BT1(l), v). Then the tree T := T1 ∪ T2 with root r together with the
mappings CT , BT is an extension tree with parameters (C,B, v), where CT and
BT are induced by the corresponding mappings on T1 and T2.

Lemma 20. Let T be an extension tree with parameters (C,B, v). For every
vertex t ∈ V (T ) the circuit E(CT (t)) is disjoint from E(B).

Proof. Induction on the depth of t—note that if p is the parent of t we have
BT (p) ⊆ BT (t), and that BT (p)∩CT (t) ⊆ BT (t)∩CT (t) is a set of attachments,
hence a set of vertices and ends, by Lemma 9 (i).

The next lemma is the reason why we have introduced extension trees at
all, instead of employing a sequential algorithm: the circles associated with the
leaves sum to precisely the edges in C at v.

Lemma 21. Let T be an extension tree with parameters (C,B, v). Then the
following holds

∑

l leaf of T

E(CT (l)) ∩ E(v) = E(C) ∩ E(v).

Proof. Induction on |V (T )| and the equation (∗).

Recall that we want to inflate the bridge B so that eventually it is the
only one left. To achieve this, we have to ensure that B grows in a relatively
controlled way. In particular, we need to be able to perform the extension steps
in such a way that after finitely many steps our favourite bridge B̃ can be used
for the next step (if it is not already contained in the inflated bridge).

Lemma 22. Let C be a circle with bridge B, and let v ∈ V (C ∩ B). For a
bridge B̃ of C there is an extension tree T with parameters (C,B, v) such that
for every leaf l of T holds that

either B̃ ⊆ BT (l) or B̃ is a bridge of CT (l) overlapping BT (l).

Proof. By Lemma 14, there is a B–B̃ path P in the overlap graph of C in G.
We do an induction on the length of such a path.

If P is trivial we have B = B̃, and if P has length one then B and B̃ are
overlapping. In both cases we are done. So assume that P has length k − 1,
which is at least two. Let P = K1 . . .Kk, where K1 = B and Kk = B̃. We
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define an extension tree T ′ with parameters (C,B, v) as follows. For the root r
we map CT ′(r) := C and BT ′(r) := B. Now, let L be a residual arc of the bridge
K2 in C that meets v, and let (C ′, B′) be gained from (C,B) by the extension
step (K2, L, v). We assign a vertex c′ to be a child of r and map CT ′(c

′) := C ′

and BT ′(c
′) := B′. Should (C ′, B′) have a twin (C ′′, B′′) with respect to r, we

let r have a second child c′′ and define the mappings accordingly. The resulting
tree T ′ is an extension tree.

Consider the child c′. The bridge K3 overlaps K2 and has therefore, by
definition, an attachment in C\L. As K3 ∩ C ′ ⊆ K3 ∩ C this implies together
with C\L ⊆ B′ \ C ′ (by Lemma 18 (ii)) that K3 ⊆ B′. Therefore, the greatest
index i ≤ k with Ki ⊆ B′ is at least three. Any bridge Kj with a greater
index j must necessarily have all its vertices of attachement in L and is thus
still a bridge of C ′. Also, if for j, j′ > i, Kj and Kj′ are overlapping as bridges
of C then they are overlapping as bridges of C ′ as well (as this is decided on L).
If j = k then B̃ ⊆ B′, and we define T1 := ∅. Otherwise, B′Ki+1 . . .Kk is a
path in the overlap graph of C ′. As it is shorter than P , induction yields an
extension tree T1 with parameters (C ′, B′, v) such that the associated bridge of
every leaf either contains B̃ or overlaps it. Now, if r has only one child the tree
T := T ′∪T1 with root r satisfies the assertion. Otherwise, we obtain in a similar
way an extension tree T2 with parameters (C ′′, B′′, v) and T := T ′ ∪ T1 ∪ T2 is
the desired tree.

If we can find an extension tree for which the circuit E(CT (l)) for every leaf l
is peripheral, we are done, as Lemmas 20 and 21 demonstrate. We introduce a
measure of how “far” the leaves of an extension tree are from being peripheral.

Let T be an extension tree with parameters (C,B, v). For a vertex t of T
we define

ρ(t) := sup{N ∈ Z : ∀e ∈ E(G), dG(v, e) ≤ N ⇒ e ∈ E(CT (t) ∪ BT (t))}

where we admit ∞. This definition ensures that every edge e with dG(v, e) ≤
ρ(t) lies in E(CT (t) ∪ BT (t)). If ρ(t) = ∞ then every edge is contained in
E(CT (t)∪BT (t)), and E(CT (t)) is therefore a peripheral circuit. With that we
define

ρ(T ) := min{ρ(l) : l is leaf of T}.
Thus, rewriting our statement above, if we can find an extension tree with

ρ(T ) =∞, we are done. Unfortunately, this is not always possible.

B,L,v( )
~

v v

C’

B B’

C

e e

Figure 6: An extension step
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Let us have a look at a concrete example. Consider the circle C on the left in
Figure 6. It has two bridges, the bridge B indicated in the figure, and another
one B̃ consisting of the infinite ladder in the interior face of C. We have ρ = 0
for the circle-bridge pair (C,B) as there are edges incident with a neighbour of
v that lie in B̃. We push up ρ by performing an extension step through B̃, the
result of which is seen on the right of Figure 6. Indeed, for the circle-bridge pair
(C ′, B′) we obtain ρ = 1. Note that C ′ is formed by replacing C \ L (where L
is the residual arc of B̃ which contains v) with a finite path A using a rung of
the infinite ladder that comprises B̃. Now, the next extension step might use a
similar arc A′ along another one of the rungs of the infinite ladder, and so on.
Then, all the subsequently gained circles will be finite, and consequently, we
will never reach an extension tree for which ρ(T ) = ∞, since there is no finite
peripheral circuit containing e.

Lemma 23, however, shows that we can achieve the next best thing, namely
finding a sequence of nested extension trees with strictly increasing ρ(T ). First,
we make the notion of nested extension trees more precise.

To keep notation simple we will just write T ⊆ T ′ for two extension trees
T and T ′ while tacitly assuming that both trees are extension trees with the
same parameters and the same root and that the mappings CT and BT of T
are induced by the corresponding mappings of T ′.

So let (Tn)n∈N be a family of extension trees with parameters (C,B, v) such
that Tn ⊆ Tn+1 for all n ∈ N. Then we call the family an extension family with
parameters (C,B, v).

Lemma 23. Let C be a circle with a bridge B, and let v ∈ V (C ∩B). Assume
that there is no extension tree T with parameters (C,B, v) and ρ(T ) =∞. Then
there is an extension family (Tn)n∈N with parameters (C,B, v) so that

ρ(T1) < ρ(T2) < . . .

Proof. We will inductively construct nested extension trees T1, . . . , Tn with
ρ(T1) < . . . < ρ(Tn). For T1, take any extension tree with parameters (C,B, v).
For n > 1, let T1, . . . , Tn be already constructed.

Setting d := ρ(Tn) + 1 (note that ρ(Tn) <∞) we put

m(t) := |{e ∈ E(G)\E(CT (t) ∪ BT (t)) : dG(v, e) ≤ d}|

for a vertex t of an extension tree T , and define

m(T ) := max
l leaf of T

m(l).

Observe, that since G is locally finite, m(T ) is always finite (and is, in particular,
defined). We see that m(T ) = 0 implies ρ(T ) ≥ d. Thus, our task is to find an
extension tree T with T ⊇ Tn and m(T ) = 0. For this, it suffices to establish
that

for each leaf p of Tn there is an extension tree Tp with root p and
parameters (CTp(p), BTp(p), v) such that m(Tp) < m(Tn).

Indeed, the union T of all those Tp and Tn is an extension tree (with parameters
(C,B, v)) with T ⊇ Tn and m(T ) < m(Tn). An induction argument then allows
us to find a Tn+1 with m(Tn+1) = 0.
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To establish the claim, consider an edge e /∈ E(CTn(p) ∪ BTn(p)) with
dG(v, e) ≤ d. Thus e contributes to m(p). Denote by B̃ the bridge of CTn(p)
containing e. With Lemma 22 we find an extension tree T ′ with parameters
(CTn(p), BTn(p), v) such that the associated bridge of every leaf of T ′ either
contains B̃ or overlaps it.

Let l be a leaf of T ′. If B̃ ⊆ BT ′(l) then e is contained in BT ′(l) as well,
and we obtain m(l) < m(p). So assume B̃ and BT ′(l) to be overlapping. Let L
be a residual arc of B̃ in CT ′(l) containing v, and let (C ′, B′) be gained from
(CT ′(l), BT ′(l)) by the extension step (B̃, L, v). Assume for the moment that
(C ′, B′) has no twin with respect to l. Denote by T the extension tree obtained
from T ′ by adding a child c to l and mapping CT (c) := C ′ and BT (c) := B′.
Observe, that e has a vertex in common with CT (l), say the vertex w (every edge
with lesser distance to v is contained in CT (l)∪BT (l)). Should w be contained
in CT (l)\L, we have by Lemma 18 (ii), e ⊆ BT (c), leading to m(c) < m(p).
Thus, we have to deal with the case that w is one of the two endpoints of L
(being an attachment, w cannot be contained in the interior of L). The w–B̃
edge f that is used to construct CT (c) clearly has the same distance to v as
e. Consequently, f contributes to m(p)—but not to m(c). Again, this leads to
m(c) < m(p). Should c have a twin with respect to l we extend T ′ in a similar
way for that twin. Modifying T ′ in this way for each leaf l we arrive at the
desired extension tree Tp.

Let (Tn)n∈N be an extension family with parameters (C,B, v). The union
T :=

⋃
n≥1 Tn is then an infinite rooted tree. We extend the mappings CTn

and BTn of the Tn to mappings CT and BT of T in the natural way. T will be
called an infinite extension tree with parameters (C,B, v). To distinguish clearly
between these infinite extension trees and the extension trees defined earlier (in
Definition 19) we shall speak of finite extension trees when the latter ones are
meant.

By Lemma 18 (iii), ρ(p) ≤ ρ(c) holds for a child c of a vertex p in an
extension tree. Thus, in the extension family (Tn) the sequence ρ(Tn) is mono-
tonically non-decreasing, and hence ρ(T ) := limn7→∞ ρ(Tn) is well defined (if we
admit ∞).

With this terminology Lemma 23 asserts that if we cannot find a finite
extension tree of which all the (associated circuits of the) leaves are peripheral,
then there is an infinite extension tree T with ρ(T ) =∞. Being infinite, T has
rays starting in the root vertex. These rays play a similar role as the leaves,
and indeed we may extract a peripheral circuit from each of these rays.

Lemma 24. Let C be a circle with a bridge B, and let v ∈ V (C ∩ B). Let T
be an infinite extension tree with parameters (C,B, v) and ρ(T ) =∞. Consider
a ray c1c2 . . . in T starting in the root vertex of T . Then there is a peripheral
circuit D which is disjoint from E(B) and for which there is an M ∈ N such
that D ∩ E(v) = E(CT (cn)) ∩ E(v) for every n ≥M .

Proof. Let (Tn) be the T defining extension family. We may assume that
ρ(T1) < ρ(T2) < . . .. For n ∈ N, put Cn := CT (cn), Bn := BT (cn) and
Vn := {w ∈ V (G) : dG(v, w) ≤ n}.

(i) First, we claim that

for all m ∈ N there is a Nm ∈ N such that Cn ∩ G[Vm] = CNm ∩
G[Vm] for all n ≥ Nm.

(1)
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Then, putting

Z :=
⋃

m∈N
E(CNm ∩G[Vm]),

we see that
Z ∩ E(v) = E(Cn) ∩ E(v) for all n ≥ N1 =: M (2)

(note that for m = 1 all neighbours of v and v itself lie in G[Vm]). In addition,
observe that every vertex of G is incident with at most two of the edges in Z.

So let us prove (1). For m ∈ N, assume N1, . . . , Nm−1 to be already defined.
With N ∈ N such that m ≤ ρ(TN ) we observe that

Cn+1 ∩G[Vm] ⊆ Cn ∩G[Vm] ⊆ CN ∩G[Vm] (3)

holds for any n ≥ N . Indeed, note that m ≤ ρ(TN) implies G[Vm] ⊆ BN ∪ CN .
Let (CN+1, BN+1) be gained by the extension step (B̃, L, v). Then, B̃∩G[Vm] ⊆
B̃∩(BN∪CN ) ⊆ B̃∩CN . Hence, B̃\CN is disjoint fromG[Vm]. By Lemma 18 (i),
we obtain

CN+1 ∩G[Vm] ⊆ (L ∪ (B̃ \ CN )) ∩G[Vm] ⊆ CN ∩G[Vm].

Inductively, (3) follows.
Since Cn ∩ G[Vm] is finite for each n ≥ N , it follows from (3) that there is

an Nm from which point on Cn ∩G[Vm] does not change. This shows (1).
(ii) Next, consider a finite cut F of G. Choose m large enough for F ⊆

E(G[Vm]). We obtain

F ∩ Z = (F ∩ E(G[Vm])) ∩ Z = F ∩ (Z ∩ E(G[Vm])) = F ∩E(CNm),

where the last equality holds because of (1). Since E(CNm) ∈ C(G), F ∩E(CNm)
is an even set, by Theorem 6. Therefore, by the other direction of Theorem 6,
Z ∈ C(G). Consequently, it is, by Theorem 7, a disjoint union of circuits.
Exactly one of these circuits, which we denote by D, is incident with v (since v is
incident with exactly two edges of Z). Thus, (2) yields D∩E(v) = E(Cn)∩E(v)
for all n ≥M , as desired.

By Lemma 20, all the circuits E(Cn) are disjoint from E(B), so this holds
for D as well.

(iii) Finally, what remains is to show that D is peripheral. We start with
the claim that Z has a single bridge BZ . Let us show that any two points
x, y ∈ |G|\Z lie in the same bridge. As every bridge is either a chord or contains
vertices, by Lemma 9 (iv), we may assume that neither of x, y is an end. Thus,
both lie in some edge and we may choose m large enough so that at the same
time x, y /∈ CNm and that the distance from v to any edge x or y is incident with
is at most ρ(TNm). Clearly, this choice of m implies x, y ∈ BNm \ CNm . Thus,
there is an arc A with endpoints x and y in the, by Lemma 4, path-connected
set BNm \CNm . As BNn ⊇ BNm for every n ≥ m, it follows that A ⊆ |G| \CNn ,
and therefore A ⊆ |G| \ Z. Thus, Z has only one bridge BZ .

As a subset of Z, D has a bridge BD ⊇ BZ . Note that Z has no chords as
otherwise the only bridge BZ is a chord, which implies that there is a vertex in
G with degree two (since every vertex is incident with at most two of the edges
in Z). Then also D has no chords, and if every vertex in |G| \D lies in BD \D
then D has only a single bridge, by Lemma 9 (iv), and D is a peripheral circuit
(Lemma 10).

16



So consider a vertex v ∈ |G| \D. If v /∈ Z then v ∈ BZ \Z ⊆ BD \D. Thus,
let v ∈ Z. Then v has a neighbour w /∈ Z (otherwise the edge vw is a chord),
which consequently lies in BD \D. Hence, v ∈ BD \D too.

We have seen that the desired peripheral circuits may be obtained from
the leaves and rays (starting in the root vertex) of a suitable extension tree.
However, we want only finitely many peripheral circuits, but an infinite tree
can clearly have more leaves and rays. Fortunately, this cannot happen in an
extension tree:

Lemma 25. Let T∞ be an infinite extension tree. Then T∞ has only finitely
many leaves and only finitely many rays starting in its root vertex.

Proof. Let T∞ have the parameters (C,B, v). To establish the assertion it
suffices to show that there is a N ∈ N such that for any finite extension tree T
with parameters (C,B, v) the number of leaves is bounded by N . For a vertex t
of T , let k(t) be the number of edges of G incident with v that are not contained
in CT (t) ∪BT (t). We prove by induction on |V (T )| that

∑

l leaf of T

2k(l) ≤ 2k(r),

where r denotes the root vertex of T . Note that every leaf is counted in the
sum, as 2k(l) ≥ 1, and that the righthand side is the same for all extension trees
with parameters (C,B, v).

Clearly, the inequality holds for trivial trees. So assume |V (T )| > 1. Then,
we find a vertex p of T all of whose children are leaves. Deleting all these children
leads to an extension tree T ′ with fewer vertices than T . If p has only a single
child c, we have k(c) ≤ k(p) by Lemma 18 (iii). Now, assume that p has two
children c and d. Let (CT (c), BT (c)) be gained from its parent by the extension
step (B̃, L, v). Consider the edge f ∈ E(CT (c))\E(CT (p)) incident with v (such
an edge exists as (CT (c), BT (c)) has a twin). We see that f ∈ E(CT (c)∪BT (c))
but f /∈ E(CT (p) ∪BT (p)), leading to k(c) < k(p). By symmetry this holds for
d as well, yielding 2k(c) + 2k(d) ≤ 2k(p). Summing over all leaves of T we obtain

∑

l leaf of T

2k(l) ≤
∑

l leaf of T,
no child of p

2k(l) + 2k(p)

=
∑

l′ leaf of T ′

2k(l′)

≤ 2k(r),

where the last inequality is because of the induction hypothesis.

We can now put the pieces together.

Proof of Lemma 17. If there is a finite extension tree T with parameters (C,B, v)
such that ρ(T ) =∞ then we are done, by Lemmas 20 and 21.

So assume otherwise. By Lemma 23 there is an extension family (Tn) with
parameters (C,B, v) such that ρ(T1) < ρ(T2) < . . .. Hence, we obtain an infinite
extension tree T := ∪n≥1Tn with parameters (C,B, v) and with ρ(T ) =∞. The
number of leaves of T is, because of Lemma 25, finite. We denote those leaves
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by l1, . . . , lk and put D1 := E(CT (l1)), . . . , Dk := E(CT (lk)). The circuits Di

are by definition peripheral and, by Lemma 20, disjoint from E(B). Lemma 25
also ensures that there are only finitely many rays starting in the root vertex; let
these be Rk+1, . . . , Rm. With Lemma 24 we obtain a peripheral circuit Di from
each of the rays Ri. In addition, for each i ∈ {k+ 1, . . . ,m}, Di is disjoint from
E(B) and there is a vertex ti on the rayRi such thatDi∩E(v) = E(CT (t))∩E(v)
for every vertex t on the tail tiRi.

Choose N large enough so that TN contains all the leaves li from T , and all
the vertices ti. The set of leaves of TN is then

{l1, . . . , lk, t′k+1, . . . , t
′
m},

where t′i is a vertex on the tail tiRi. Together with Lemma 21 we obtain

E(C) ∩E(v) =
∑

l leaf of TN

E(CTN (l)) ∩E(v)

=

k∑

i=1

E(CTN (li)) ∩ E(v) +

m∑

i=k+1

E(CTN (t′i)) ∩ E(v)

=

m∑

i=1

Di ∩E(v).

6 Generating the cycle space

Theorem 2 will be proved by induction, where Lemma 17 provides the essential
part of the induction step. However, the lemma is only applicable to circuits, but
we are dealing with arbitrary elements of the cycle space. In order to overcome
this, we strengthen Lemma 17:

Lemma 26. Let G be a locally finite and 3-connected graph. Let Z ∈ C(G), let B
be a bridge of Z, and let v ∈ V (B) be a vertex. Then there are peripheral circuits
D1, . . . , Dm each of which is disjoint from E(B) such that for Z ′ := Z+

∑m
i=1 Di

holds

(i) Z ′ leaves a bridge B′ ⊇ B; and

(ii) E(v) ⊆ E(B′).

Proof. By Theorem 7, Z is a union of disjoint circuits; denote by C1, . . . , Cn
those of these circuits which are incident with v. Since Ci ⊆ Z, the circle Ci
leaves a bridge Bi containing B. Therefore, applying Lemma 17 to Ci with
bridge Bi yields peripheral circuits Di1, . . . , Dimi each of which is disjoint from
E(Bi) ⊇ E(B) and for which hold

mi∑

j=1

Dij ∩ E(v) = Ci ∩ E(v)

(for i = 1, . . . , n). Summing up, we arrive at

n∑

i=1

mi∑

j=1

Dij ∩ E(v) =

n∑

i=1

Ci ∩ E(v) = Z ∩ E(v). (4)
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Next, observe that Dij is disjoint from B \ Z, for each i, j. Indeed, B \ Z
cannot contain any inner points of edges in Dij , as Dij is disjoint from E(B)
(note Lemma 9 (iii)). Since B \ Z is open this leads to (B \ Z) ∩Dij = ∅.

Consequently, the connected set B\Z is contained in a bridge ofDij and then
also in a bridge of Z ′′, for Z ′′ := Z∪⋃i,j Dij . Now, for Z ′ := Z+

∑n
i=1

∑mi
j=1 Dij ,

Z ′ ⊆ Z ′′ implies that Z ′ has a bridge B′ ⊇ B.
Finally, (4) shows that v is not incident with any edge in Z ′. Together with

v ∈ V (B) this leads to E(v) ⊆ E(B′), as required.

We now prove our main result, which we restate.

Theorem 2. Every element of the cycle space C(G) of a locally finite 3-connected
graph G is a sum of peripheral circuits.

Proof. We begin by proving the following statement.

Let Z ∈ C(G), and let B be a bridge of Z. Then Z is the sum of
a thin family D of peripheral circuits.

(5)

Fix a vertex b in B, and let {e1, e2, . . .} be an enumeration of the edge set of G
such that dG(b, ei) < dG(b, ej) implies i < j. We will obtain D as the union of
inductively constructed finite sets of peripheral circuits. More formally, for all
n ∈ N we inductively show the existence of finite sets Dn of peripheral circuits
and of bridges Bn of Zn, where Zn := Z +

∑Dn, satisfying

(i) Bn−1 ⊆ Bn;

(ii) Dn−1 ⊆ Dn;

(iii) every D ∈ Dn\Dn−1 is disjoint from E(Bn−1); and

(iv) {e1, . . . , en} ⊆ E(Bn),

where D0 := ∅, B0 := B and Z0 := Z.
For n ∈ N, let Dn−1 and Bn−1 be already constructed. We claim that en is

incident with a vertex v in Bn−1. If dG(b, en) = 0 this is obvious, so let there
be an edge ei adjacent to en with strictly lesser distance to b. By the choice of
the enumeration we obtain i < n and in turn ei ⊆ E(Bn−1). Hence, the vertex
v incident with both edges ei and en is contained in Bn−1 as well.

By applying Lemma 26 to Zn−1, bridge Bn−1 and vertex v we obtain periph-
eral circuits D1, . . . , Dm each of which is disjoint from E(Bn−1). In addition,
Zn leaves a bridge Bn ⊇ Bn−1 such that E(v) ⊆ E(Bn). Since en ∈ E(v) the
conditions (i)–(iv) are clearly satified by putting Dn := Dn−1 ∪

⋃m
i=1 Di.

We claim that D :=
⋃
n≥1Dn satisfies the assertion of the claim (5). To see

this, consider an edge en of G. First note that because of the conditions (iii)
and (iv) the edge en may only be used by the finitely many circuits in Dn and
by none other in D—proving D to be a thin family. Furthermore, (iv) implies
that

en /∈ Z +
∑
Dn and hence en /∈ Z +

∑
D

by the preceding argument. Thus, (5) is established.
Now, if for Z ∈ C(G), Z leaves a bridge, (5) guarantees that Z is the sum of

peripheral circuits. If that is not the case, let C be any circuit of G. Then, both
C and Z + C have at least one bridge and the statement (5) may be applied to
each of them. Clearly, the union of the two generating sets of peripheral circuit
is a generating set of Z.
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