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Abstract

We prove that detA ≤ 6
n
6 whenever A ∈ {0, 1}n×n contains at most 2n ones. We also

prove an upper bound on the determinant of matrices with the k-consecutive ones property,
a generalisation of the consecutive ones property, where each row is allowed to have up to
k blocks of ones. Finally, we prove an upper bound on the determinant of a path-edge
incidence matrix in a tree and use that to bound the leaf rank of a graph in terms of its
order.

1 Introduction

There is a rich tradition of bounding the determinants of matrices with all entries 0 or 1 (or −1
and 1). Yet, even very simple questions remain open. For instance:

Problem 1. Given a matrix A ∈ {0, 1}n×n with at most 2n ones, how large can its determinant
be?

In fact, Problem 1 is open for any linear number O(n) of ones in A, and we consider the case
of at most 2n as a simple and restricted representative. Furthermore, this case naturally relates
to edge-vertex incidence matrices of graphs, which we exploit below.

We give an answer to this question as well as to questions about the determinants of similarly
simple matrices.

The most prominent question in this area is probably Hadamard’s maximal determinant
problem: Given A ∈ {−1, 1}n×n, how large can detA be? A partial answer lies in Hadamard’s
inequality [11]. For this, let us denote the ith row of a matrix A ∈ Rn×n by Ai,·, and similarly
we write A·,j for the jth column. Then

|det(A)| ≤
n∏
i=1

||Ai,·||2. (1)

If A is a −1/1-matrix, then (1) implies |det(A)| ≤ nn/2, and A is a Hadamard matrix of order
n if this inequality holds with equality. It is known that a Hadamard matrix of order n can
exist only if n ∈ {1, 2} ∪ 4N. Paley’s conjecture [17] states that for all these orders, Hadamard
matrices actually do exist.

Coming back to Problem 1, with the inequality of the arithmetic and geometric mean, it
is not hard to derive from (1) that detA ≤ 2

n
2 for any A ∈ {0, 1}n×n with at most 2n ones.

Ryser improved this estimate, and at the same time extended it to cover more general numbers
of 1-entries in A:

Theorem 2 (Ryser [18]). Let A ∈ {0, 1}n×n be a matrix containing exactly kn ones. If n ≥ 2
and 1 ≤ k ≤ n+1

2 then, for λ = k(k − 1)/(n− 1), it follows that

|detA| ≤ k(k − λ)
1
2 (n−1).
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Moreover, Ryser showed that the bound is tight for many pairs of k, n; see next section.
Inspecting Ryser’s bound, we see that in the situation of Question 1, when k ≤ 2, it yields a

bound of detA ≤ 2(2 − o(1))
n−1
2 , which is not much better than the bound of 2

n
2 that we get

from Hadamard’s inequality. Given that Ryser’s bound is tight for many k, n, does that mean
that we cannot hope for a better bound? No, it turns out. Our main result is:

Theorem 3. If A ∈ {0, 1}n×n has at most 2n non-zero entries, then |det(A)| ≤ 2n/6 · 3n/6 ≈
1.348n.

While a substantial improvement on the bound of 2
n
2 ≈ 1.414n, the bound in Theorem 3

is almost certainly not best possible. Indeed, the best lower bound we have found comes from
matrices of the kind

A = diag(C, . . . , C), where C =

1 1 0
0 1 1
1 0 1

 ,

that have determinant 2
n
3 ≈ 1.260n. We believe that larger determinants are impossible:

Conjecture 4. If A ∈ {0, 1}n×n has at most 2n non-zero entries, then |det(A)| ≤ 2n/3.

We discuss the conjecture a bit more in the next section, and we prove Theorem 3 in Sections 3
and 4. As a tool in the proof we consider incidence matrices I of graphs. Somewhat strikingly,
we find that the determinant det(IIᵀ) of the Gramian of the incidence matrix of a tree does not
depend on the structure of the tree (Theorem 7).

We also consider two other types of combinatorial matrices. Many 0/1-matrices arise in
combinatorial optimisation as constraints matrices of (mixed) integer programs. A particularly
nice type of such a matrix are those with the consecutive ones property. These are 0/1-matrices,
in which in each row all the one entries are consecutive. It is a standard exercise to show that
matrices with the consecutive ones property are totally unimodular, which means that solving
the linear relaxation also solves the corresponding integer program.

We consider two types of generalisations of the consecutive ones property. In Section 5,
we treat matrices with the k-consecutive ones property : matrices in whose rows the 1-entries
appear in at most k blocks. We will prove an upper bound on the determinant of such matrices
(Theorem 9). Perhaps not immediately recognisable as a generalisation are path-edge incidence
matrices of a tree. We treat these in Section 6 and similarly prove an upper bound on the
determinant (Theorem 12). Finally, in Section 7, we use the bound of Theorem 12 in order to
upper-bound a somewhat complicated graph parameter, the leaf rank of a graph. Our result is
the first that bounds the leaf rank in terms of the order of the graph.

2 Discussion

Ryser’s inequality in Theorem 2 is tight in many circumstances. Ryser proved that equality
holds if and only if A is the incidence matrix of an (n, k, λ)-configuration, that is, when A is the
incidence matrix of a collection of n subsets S1, . . . , Sn of [n] such that |Si| = k and |Si∩Sj | = λ
for every i ∈ [n] and every j ∈ [n] \ {i}. (We write [n] as a shorthand for {1, . . . , n}.)

As a consequence, equality in Theorem 2 may only hold if λ is an integer, which implies
λ ≥ 1. That, in turn, entails k ≥

√
n. To sum up, Ryser’s theorem can only be tight if the

matrix A contains at least n
√
n many ones. This explains why for only 2n ones, or indeed any

linear number of ones, improvements may be possible.
There is another well-known bound on the determinant of a 0/1-matrix that comes from a very

elegant transformation that turns any matrix A ∈ {0, 1}n×n into a matrix B ∈ {−1, 1}(n+1)×(n+1)
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such that 2n detA = detB; see [5]. In particular, if A is any 0/1-matrix (with possibly more than
2n ones), then direct application of Hadamard’s inequality (1) to A yields |detA| ≤ n

n
2 , while

an application of the inequality to B yields the better bound of |det(A)| ≤ 2−n(n+1)(n+1)/2. In
our setting, however, where A contains at most 2n ones, the latter bound is actually worse than
what we can get from (1) by exploiting that, on average, every row of A has Euclidean norm at
most

√
2.

Conjectures need evidence. As a first piece of evidence for Conjecture 4, we quickly prove a
special case, where, more strongly, we require that every row of the matrix contains at most two
ones:

Proposition 5. If A ∈ {0, 1}n×n and if every row of A contains at most two ones, then
|det(A)| ≤ 2n/3.

Proof. Clearly, we may assume that A is non-singular. The proof is by induction on n. For
n ≤ 3, the bound is easily verified. Now, let n > 4. If some row or column of A contains at
most one non-zero entry, then expanding the determinant of A along this row or column, we
obtain, by induction, |det(A)| ≤ 2(n−1)/3. Hence, every row and column of A contains exactly
two non-zero entries. Since A is non-singular, this implies that, suitably permuting the rows and
columns of A, we may assume that

A =

(
A1 0
0 A2

)
,

where A1 is the vertex-edge incidence matrix of a cycle C`. If ` is even, then det(A1) = 0, and,
if ` is odd, then |det(A1)| = 2. Since A is non-singular, we obtain that ` is an odd integer at
least 3. By induction, we obtain

|det(A)| = |det(A1)| · | det(A2)| ≤ 2 · 2(n−`)/3 ≤ 2n/3,

which completes the proof.

Our main result is to improve on Ryser’s theorem for matrices that contain up to 2n ones.
But what about matrices with more ones? What about matrices with up to 3n ones? While we
do not know how to prove a small bound on the determinant, we at least can offer a lower bound
that arises in a similar way as for 2n ones. For this, denote by C ∈ {0, 1}7×7 the incidence matrix

of the Fano plane, or a (7, 3, 1)-configuration in Ryser’s terminology. Then detC = 3 ·2 7−1
2 = 24,

by Ryser’s theorem (or elementary calculation). Thus the n× n-matrix A = diag(C, . . . , C) has
determinant 24

n
7 ≈ 1.57n. We suspect that this is the maximal determinant for 3n ones.

3 Gramians of graphs

In this section we prove the main lemma for the proof of Theorem 3:

Lemma 6. Let I ∈ {0, 1}m×n be a matrix that contains exactly two ones in each row. Then

det(IIᵀ) ≤

{
2m if m ≤ n

2 and

2
1
3 (n+m) if m ≥ n

2 .

We recall some basic properties about the Gramian IIᵀ that hold for any matrix I ∈ Rm×n.
These properties follow quite easily from properties of determinants: If J arises from I by
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(G1) either multiplying some row with −1,

(G2) or adding a multiple of some row to another row,

(G3) or permuting rows and columns,

then det(JJᵀ) = det(IIᵀ). Consider, for instance, the situation that J arises from I by adding
αIj,· to Ii,· for distinct indices i and j, and some real α. If A = IIᵀ, and B arises from A by
adding αAj,· to Ai,·, then JJᵀ arises from B by adding αB·,j to B·,i. Since both operations do
not change the determinant, (G2) follows.

If I ∈ {0, 1}m×n is a 0/1-matrix with exactly two ones in each row, so if I is as in Lemma 6,
then in particular I may be seen as the edge-vertex incidence matrix of a graph G with vertex set
{v1, . . . , vn} and edge set {e1, . . . , em} such that vi is incident with ej precisely when Ij,i = 1. We
find this view quite convenient as many of the arguments and statements we will need are easier
to phrase in the language of graphs. For all basic graph-theoretical definitions and concepts
we refer to the textbook of Diestel [8]. We note that all our graphs will be finite, simple and
undirected.

There is a long interest in the algebraic properties of various matrices associated with graphs.
For instance, Mowshowitz [14] showed that the characteristic polynomial of the adjacency matrix
of a tree can be expressed in terms of matchings. The matrix IIᵀ, with I being the incidence
matrix of the graph G, is closely related to the Laplacian of a graph. Indeed, if Q is the incidence
matrix of an orientation of G, then the Laplacian of G is defined as L = QᵀQ. It is not hard
to verify that L does not depend on the actual orientation. We refer to the book of Chung [7]
for more on the Laplacian and other topics in spectral graph theory. While the Laplacian has
rows and columns that correspond to the vertices of G, the rows and columns of the matrix
IIᵀ correspond to the edges of G. Thus, the matrix IIᵀ that we are interested in, is even more
closely related to the edge-Laplacian, defined as QQᵀ, of the graph. For some results about the
edge-Laplacian see Bapat [4].

Often the determinant of a matrix associated with a graph G encodes properties of G. In
contrast, we find that, for a tree, the determinant det(IIᵀ) does not depend on the structure of
T at all.

Theorem 7. If T is a tree of order n ≥ 2, and I ∈ {0, 1}E(T )×V (T ) is the edge-vertex incidence
matrix of T , then det(IIᵀ) = n.

Proof. For a function s : V (T ) → {−1, 1}, let Is arise from I by multiplying the column with
index u by s(u) for every vertex u of T . We say that s is special, if s(u) = 1 for every non-leaf u of
T . Note that IsI

ᵀ
s = IIᵀ if s is special. We prove the following slightly more general statement:

If T is a tree of order n, s : V (T )→ {−1, 1} is special, and I is the edge-vertex incidence matrix
of T , then det(IsI

ᵀ
s ) = n.

First, if T is a star, then

det(IsI
ᵀ
s ) = det



2 1 1 . . . 1 1
1 2 1 . . . 1 1
1 1 2 . . . 1 1
...

...
...

. . .
...

...

1 1 1
. . . 2 1

1 1 1 . . . 1 2


= det



2 1 1 . . . 1 1
−1 1 0 . . . 0 0
0 −1 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0
. . . 1 0

0 0 0 . . . −1 1


= n,

where the last equality follows easily by induction expanding the determinant along the final col-
umn. (Alternatively, the result also follows very quickly with the help of Sylvester’s determinant
identity.)

4



Next, we consider a simple operation moving a leaf within a tree. More precisely, let T be
such that uvw is a path in T , where u is a leaf, and w is not a leaf. Let T ′ = T − uv + uw, and
let

s′ : V (T ′)→ {−1, 1} : x 7→

{
−s(x) , if x = u, and

s(x) , if x 6= u.

Clearly, since s is special, the function s′ is special. Furthermore, if I ′ is the edge-vertex incidence
matrix of T ′, then I ′s′ arises from Is by subtracting the row with index vw from the row with
index uv, and multiplying the new row with index uv with −1, which, by (G1) and (G2), implies
det(I ′s′I

′ᵀ
s′ ) = det(IsI

ᵀ
s ).

Since every tree can be transformed to a star by a sequence of such simple operations, the
desired statement follows.

Let G be a connected graph of order n and size m, and let I be the edge-vertex incidence matrix
of G. If m > n, then the rows of I are linearly dependent, which, by (G2), easily implies
det(IIᵀ) = 0. If m = n, then G arises by attaching (possibly trivial) trees to the vertices of
some cycle C. Iteratively expanding the determinant of the square matrix I along columns
corresponding to vertices of degree 1, we obtain that det(I) = det(J), where J is the edge-vertex
incidence matrix of C. It is a simple known fact that, if C has even order, then det(J) = 0, and,
if C has odd order, then |det(J)| = 2.

Altogether, we obtain

det(IIᵀ) =


n if G is a tree,

0 if m > n or G contains an even cycle, and

4 if m = n and G contains an odd cycle.

(2)

Our next result is Lemma 6 phrased in terms of graphs.

Lemma 6b If G is a graph of order n that has at least one and at most m edges, and I is the
edge-vertex incidence matrix of G, then

det(IIᵀ) ≤

{
2m if m ≤ n

2 and

2
1
3 (n+m) if m ≥ n

2 .

Proof. Among all graphs with n vertices and at most m edges (but at least one), let G be chosen
in such a way that det(IIᵀ) is largest possible, and, subject to this condition, the number of
edges of G is smallest possible. Clearly det(IIᵀ) > 0. Let G have k components G1, G2, . . . , Gk
with edge-vertex incidence matrices I1, I2, . . . , Ik. Since, by (G3), permuting rows and columns
does not affect det(IIᵀ), we may assume that IIᵀ is a block diagonal matrix with k blocks each
corresponding to one component. Then

det(IIᵀ) = det(I1I
ᵀ
1 ) · det(I2I

ᵀ
2 ) · · · det(IkI

ᵀ
k ).

We claim that

(i) every non-tree component of G is a triangle, and

(ii) every tree component of G is either an isolated vertex, or an edge, or a path on three
vertices.
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Indeed, let J be the edge-vertex incidence matrix of a triangle. Since, again by (2), det(IiI
ᵀ
i )

equals det(JJᵀ) if Gi is a non-tree component, and since G has as few edges as possible, we
obtain (i). Suppose that G has a tree component of at least r ≥ 4 vertices. Then replacing the
component by two components, one a tree on r−2 vertices and the other an edge, results, by (2),
in an overall larger determinant. This proves (ii).

For i ∈ [3], let ki be the number of components of G with exactly i edges. It follows that

det(IIᵀ) = 2k1 · 3k2 · 4k3 = 2k1+log2(3)k2+2k3 , (3)

and that the non-negative integers k1, k2, and k3 satisfy

k1 + 2k2 + 3k3 ≤ m and (4)

2k1 + 3k2 + 3k3 ≤ n. (5)

Since log2(3) ≤ 5
3 ≤ 2, we obtain

log2 (det(IIᵀ))
(3)

≤ k1 + 2k2 + 3k3
(4)

≤ m, and

log2 (det(IIᵀ))
(3)

≤ k1 +
5

3
k2 + 2k3

=
1

3
(k1 + 2k2 + 3k3) +

1

3
(2k1 + 3k2 + 3k3)

(4),(5)

≤ m+ n

3
,

which completes the proof.

Lemma 6b is tight. In fact, if m ≤ n
2 , then G = mK2 ∪ (n − 2m)K1 yields equality, and, if

n
2 ≤ m ≤ n and 2m− n is divisible by 3, then G = (n−m)K2 ∪ 1

3 (2m− n)K3 yields equality.

4 Proof of Theorem 3

For the proof of Theorem 3, we need another property of the Gramian. Let B =
(
A
a

)
be a real

matrix with last row a. If a′ is the orthogonal projection of a onto the row space of A, then, by
(G2),

det(BBᵀ) = det

((
A

a− a′

)(
A

a− a′

)ᵀ)
= det

(
AAᵀ 0

0 ||a− a′||22

)
= det(AAᵀ) · ||a− a′||22
≤ det(AAᵀ) · ||a||22. (6)

Proof of Theorem 3. Clearly, we may assume that A is non-singular; in particular, every row of
A contains at least one 1-entry.

Iteratively, expand the determinant detA over rows with only one 1-entry, and let n1 be the
number of rows eliminated in this way, and let A′ be the resulting (n − n1) × (n − n1)-matrix
with |det(A)| = |det(A′)|. In particular, A′ contains at most 2n − n1 many ones, and every
row of A′ contains at least two ones. Denote by A2 the matrix consisting of the rows of A′ with
exactly two ones, and let A3 be the matrix consisting of the other rows (each with at least three
ones). Let Ai have ni rows for i = 2, 3. Since n1 + 2n2 + 3n3 ≤ 2n = 2n1 + 2n2 + 2n3, we obtain
n3 ≥ n1.
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Iteratively applying (6), we obtain

det(A)2 ≤ det (A2A
ᵀ
2) ·

n3∏
i=1

||A3,·||22.

Noting that A2 has n− n1 many columns and n2 many rows, we apply Lemma 6 to get

det(A2A
ᵀ
2) ≤

{
2n2 if n2 ≤ n−n1

2 and

2
1
3 ((n−n1)+n2) if n2 ≥ n−n1

2 .

Since A3 is a 0/1-matrix with at most 2n− n1 − 2n2 = n1 + 2n3 non-zero entries, the inequality
between the geometric and the arithmetic mean implies

n3∏
i=1

||A3,·||22 ≤
(

1

n3

n3∑
i=1

||A3,·||22
)n3

≤
(

2n− n1 − 2n2
n3

)n3

=

(
2 +

n1
n3

)n3

. (7)

Using n = n1 + n2 + n3, we obtain

det(A)2 ≤


2n−n1−n3 ·

(
2 + n1

n3

)n3

if n1 + 2n3 ≥ n, and

2
1
3 (2n−2n1−n3) ·

(
2 + n1

n3

)n3

if n1 + 2n3 ≤ n.

Setting x = n1

n and y = n3

n , we rewrite the right-hand side as 2f(x,y)n, where

f(x, y) =


1− x− y + 1

ln(2) · y · ln
(

2 + x
y

)
if x+ 2y ≥ 1, and

1
3 (2− 2x− y) + 1

ln(2) · y · ln
(

2 + x
y

)
if x+ 2y ≤ 1.

Since n3 ≥ n1, we have 0 ≤ y ≤ x ≤ 1.
Let

M1 = max {f(x, y) : 0 ≤ y ≤ x ≤ 1 and x+ 2y ≥ 1} and

M2 = max {f(x, y) : 0 ≤ y ≤ x ≤ 1 and x+ 2y ≤ 1} .

Taylor expansion around z = 1 implies ln(2 + z) ≤ ln(3) + z−1
3 for z ≥ 0, and, hence,

M1 ≤ max
{

1− x− y +
y

ln(2)

(
ln(3) +

x
y − 1

3

)
︸ ︷︷ ︸

=:g1(x,y)

: 0 ≤ y ≤ x ≤ 1, x+ 2y ≥ 1
}

M2 ≤ max
{

1
3 (2− 2x− y) +

y

ln(2)

(
ln(3) +

x
y − 1

3

)
︸ ︷︷ ︸

=:g2(x,y)

: 0 ≤ y ≤ x ≤ 1, x+ 2y ≤ 1
}
.

Since ∂
∂xg1(x, y) is a negative constant and ∂

∂y g2(x, y) is a positive constant, we obtain

M1 ≤ max
{
g1

(
max

{
y, 1− 2y

}
, y
)

: 0 ≤ y ≤ 1
}

, and

M2 ≤ max

{
g2

(
x,min

{
x,

1− x
2

})
: 0 ≤ x ≤ 1

}
.
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Since ∂
∂y g1(y, y) is a negative constant and ∂

∂y g1(1 − 2y, y) is a positive constant, we obtain

M1 ≤ g1(1/3, 1/3) = 1
3 + ln(3)

3 ln(2) . Since ∂
∂xg2(x, x) is a positive constant and ∂

∂xg2
(
x, 1−x2

)
is a

negative constant, we obtain M2 ≤ g2(1/3, 1/3) = 1
3 + ln(3)

3 ln(2) . Altogether, we obtain |det(A)| ≤

2( 1
3+

ln(3)
3 ln(2) )

n
2 = 2n/6 · 3n/6 ≈ 1.348n.

Obviously, we do not believe the bound in the theorem to be best possible, and indeed there
are some ways to improve the bound further. Since we can assume that every column with
a 1 in some row of A2 or of A3 contains at least two ones (otherwise we may expand over the
column), we see that for every row a in A2 or in A3 there is some other row b with scalar product
abᵀ ≥ 1. Then, however, one of the two rows a, b can be replaced by a shorter row. In this way,
it is possible to shorten at least half of the rows in A3 somewhat, which will result in a tighter
estimation in (7). A similar approach is used in the proof of Theorem 10 below. We have not
worked out the details here, because it is clear that this effect will not be enough to achieve the
bound in Conjecture 4.

5 The k-consecutive ones property

A 0/1-matrix A has the consecutive ones property if, in each row of A, the 1-entries are consec-
utive. That is, in each row the ones form a block. We generalise this property by allowing more
blocks of ones. For a positive integer k, let us say that A has the k-consecutive ones property if
in every row of A the 1-entries form at most k blocks. That means every row has the form

0 . . . 0 1 . . . 1︸ ︷︷ ︸
1st block

0 . . . 0 1 . . . 1︸ ︷︷ ︸
2nd block

0 . . . 0 . . . 0 . . . 0 1 . . . 1︸ ︷︷ ︸
`th block

0 . . . 0

for some ` ≤ k. It is well known that matrices with the consecutive ones property are totally
unimodular: every square submatrix has determinant −1, 0, or 1. While the determinant of a
matrix with the k-consecutive ones property is no longer bounded by any constant, we will still
find a bound that is substantially better than Hadamard’s bound (1).

We begin with a simple consequence of Hadamard’s inequality:

Proposition 8. If A ∈ {−1, 0, 1}n×n has t non-zero entries, then

|det(A)| ≤
(
t

n

)n/2
(8)

with equality if t
n and n2

t are integers, and there is a Hadamard matrix of order t
n .

Proof. For i ∈ [n], let si be the sum of the squares of the entries in column i of A. Note that
n∑
i=1

si = t. By Hadamard’s inequality (1), and, since the geometric mean is at most the arithmetic

mean, we obtain

|det(A)| ≤
n∏
i=1

√
si ≤

(
1

n

n∑
i=1

si

)n/2
=

(
t

n

)n/2
.

If k = t
n and n2

t are integers, and H is a Hadamard matrix of order k, then the block diagonal

matrix A with n2

t copies of H along the diagonal satisfies

|det(A)| = |det(H)|n
2/t =

((
t

n

)t/2n)n2/t

=

(
t

n

)n/2
,
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which completes the proof.

It is conceivable that equality holds in (8) if and only if t
n and n2

t are integers, and there is
a Hadamard matrix of order t

n . Note that, unlike Ryser’s theorem, which has a similar setting,
Proposition 8 is tight for some n× n matrices with only O(n) non-zero entries.

Theorem 9. If A ∈ {0, 1}n×n has the k-consecutive ones property, then |det(A)| ≤ (2k)n/2.
Furthermore, for every k such that a Hadamard matrix of order k exists, and every n for which
n/k is an integer, there is a matrix A with |det(A)| = k(n−k)/2 that has the k-consecutive ones
property.

Proof. Let A ∈ {0, 1}n×n have the k-consecutive ones property. Let the matrix B ∈ {−1, 0, 1}n×n
arise from A by subtracting, for i from n − 1 down to 1, column i from column i + 1. Since A
has the k-consecutive ones property, every row of B contains at most 2k non-zero entries that
alternate betwee 1 and −1, and Proposition 8 implies |det(A)| = |det(B)| ≤ (2k)n/2.

Now, let k and n be such that a Hadamard matrix H of order k exists, and p = n/k is an
integer. Clearly, we may assume that H·,1 is the all-1-vector.

There is a matrix R ∈ {−1, 0, 1}k×k such that R·,k is the all-0-vector, and in every row of
the matrix (H·,1R·,1H·,2R·,2 . . . H·,kR·,k)

(i) there are at most 2k non-zero entries,

(ii) the first non-zero entry is 1, and

(iii) the 1-entries and −1-entries alternate.

In fact, each column R·,i of R with i ≤ k − 1 is uniquely determined by the columns H·,i and
H·,i+1 of H.

Let Idk be the identity matrix of order k, and let the matrix A of order n = pk be as follows.

A =



H R 0 · · · 0 0
0 H R · · · 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . R 0

0 0 0 · · · H R
0 0 0 · · · 0 Idk


Clearly,

|det(A)| = |det(H)|p−1 = kk(p−1)/2 = k(n−k)/2.

Let vi = A·,i for i ∈ [n], and let B be the matrix equal to(
v1vk+1 . . . v(p−1)k+1v2vk+2 . . . v(p−1)k+2 . . . vk−1vk+(k−1) . . . v(p−1)k+(k−1)vkv2k . . . vpk

)
.

Since B arises by suitably permuting the columns of A, we obtain |det(B)| = |det(A)|, and the
properties of R imply that every row of B satisfies (i)–(iii). Let C arise from B by adding, for i
from 1 up to n− 1, column i to column i+ 1.

The matrix C has the k-consecutive ones property, and satisfies |det(C)| = k(n−k)/2.

Unfortunately, there is a notable gap between the upper bound and the determinant of the
matrix we construct. It is quite likely that that the upper bound can be improved substan-
tially. The following result concerning the 2-consecutive ones property illustrates possible ways
of improving Theorem 9.
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Theorem 10. If A ∈ {0, 1}n×n has the 2-consecutive ones property, then |det(A)| ≤ 3.936n/2.

Proof. Let A ∈ {0, 1}n×n have the 2-consecutive ones property, and let B ∈ {−1, 0, 1}n×n arise
from A exactly as in the beginning of the proof of Theorem 9. Note that every row of B contains
at most four non-zero entries, and that, within every row that contains four non-zero entries, the
−1-entries and the 1-entries alternate. Clearly, we may assume that the rows of B are linearly
independent, since otherwise |det(A)| = |det(B)| = 0. Let R be the set of rows of B that contain
four non-zero entries, let S be the set of the remaining rows of B, and let S′ = ∅.

Our strategy to improve the bound from Theorem 9 exploits the fact that the rows in R
cannot all be pairwise orthogonal if k = |R| is too big. More precisely, we will show that as long
as 4k > 3n, there are two rows a and b in R with abᵀ 6= 0. We remove a from R, add the shorter
row a′ = a− abᵀ

bbᵀ b to S′, and iterate this process. Once 4k ≤ 3n, at least n/4 rows are in S ∪ S′.
Since a matrix whose set of rows is R∪ S ∪ S′ has the same determinant as B, an application of
Hadamard’s inequality (1) will yield the desired bound.

Therefore, let 4k > 3n. By the pigeon-hole principle, there are four rows r1, r2, r3, and r4
in R that have a non-zero entry in the same column, say the column with index j. Suppose, for
a contradiction, that rir

ᵀ
i′ = 0 for every two distinct indices i and i′ in [4]. Since the −1-entries

and the 1-entries alternate in each row in R, this implies that, for every two distinct indices
i and i′ in [4], there are exactly two columns in which ri and ri′ both have non-zero entries.
Furthermore, this latter property implies that there are no three rows among r1, r2, r3, and r4
that all have non-zero entries in the same two columns. Since multiplying rows by −1 affects
neither the absolute value of the determinant nor the pairs of orthogonal rows, we may assume
that the rows r1 to r4 have entry 1 in column j. Let j2, j3, and j4 be the column indices distinct
from j in which row r1 has its non-zero entries such that the entry in column j3 is 1. Since
no three rows among r1, r2, r3, and r4 have non-zero entries in the same two columns, we may
assume, by symmetry, that row r2 has entry 1 in column j2, row r3 has entry −1 in column j3,
and row r4 has entry 1 in column j4. It follows that in the unique column distinct from columns
j, j2, and j4, in which r2 and r4 both have a non-zero entry, both these rows have a −1-entry,
which implies the contradiction that they cannot be orthogonal.

Altogether, it follows that for 4k > 3n, there are two columns a and b in R that are not
orthogonal. By symmetry, we may assume that abᵀ > 0. Since the rows of B are linearly
independent, and since a, b are integral, we obtain abᵀ ≥ 1. Let a′ = a− abᵀ

bbᵀ b. Then

||a′||22 = ||a||22 −
(abᵀ)2

||b||22
,

which implies ||a′||2 ≤
√

15/4 as ||a||22 = 4 = ||b||22.
Iterating the replacement of rows from R by shorter rows in S′ as long as 4k > 3n, we may

thus assume that R contains k ≤ 3n/4 rows r with ||r||2 = 2, and that S∪S′ contains n−k ≥ n/4
rows r with ||r||2 ≤

√
15/4. Since

(√
15/4

)n−k
2k ≤

(√
15/4

)n/4
23n/4 =

((√
15/4

)1/2
23/2

)n/2
≤ 3.936n/2,

Hadamard’s inequality (1) implies the desired bound.

For the 2-consecutive ones property, we can also improve the lower bound of 2
n−2
2 ≈ 1.414n−2

from Theorem 9. More precisely, for every positive integer n divisible by 3, there is an n × n
0/1-matrix A that has the 2-consecutive one property, and satisfies det(A) = 4

n−3
3 ≈ 1.587n−3.
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The matrix A is constructed as in the proof of Theorem 9 but with slightly different matrices H
and R:

H =

1 1 −1
1 −1 1
1 −1 −1

 and R =

−1 0 0
0 0 0
0 1 0


We believe that this construction is essentially optimal:

Conjecture 11. If A ∈ {0, 1}n×n has the 2-consecutive ones property, then |det(A)| ≤ 4n/3.

6 Path-edge incidence matrices

In the previous section we have generalised the consecutive ones property by allowing more blocks
of ones. In this section we consider a different generalisation.

Let P be a path with m edges, and let P be a set of some m subpaths of P . Then the
path-edge incidence matrix A(P, P ) ∈ {0, 1}P×E(P ) defined as

A(P, P )Q,e =

{
1 if e ∈ E(Q), and

0 otherwise

has the consecutive ones property (provided the edges are ordered as they appear in P ). Con-
versely, any matrix with the consecutive ones property is the path-edge incidence matrix for
suitable P and P . In this section we will consider path-edge incidence matrices A(P, T ), where
P is a set of subpaths in a tree T rather than in a path.

We prove:

Theorem 12. If T is a tree on n vertices, and P is a set of n− 1 paths in T , then

|det(A(P, T ))| ≤ 2n−1.

There is some relation between the two generalisations of the consecutive ones property.
Trivially, if T is the subdivision of a tree with m edges, then A(P, T ) has the m-consecutive ones
property. Yet, not even all matrices with the 2-consecutive ones property can be represented in
the form A(P, T ). As an example, one may easily check that the matrix

1 1 1 1
1 1 1 0
0 1 1 1
1 0 0 1


has the 2-consecutive ones property but is not of the type A(P, T ) for any tree T and set of
subpaths P.

Proof of Theorem 12. Select a vertex r in T and consider T as a rooted tree with root r. We
denote by ≤ the tree order with minimal element r.

We turn the incidence matrix A(P, T ) into a matrix A by subtracting from every column
with index e all columns with index e′ such that e is the unique ancestor edge of e′ in the tree
order; this is done for all e in breadth-first search order, that is, in non-decreasing tree order.
Obviously, A(P, T ) and A have the same determinant.

For every P ∈ P, the non-zero entries of row AP,· fall into one of four cases: If e, e′ are the
two leaf-edges of P , then
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• if e and e′ are incomparable in the tree order and P avoids r, then AP,· has entry 1 at e
and at e′, and entry −2 at the ancestor edge of the vertex of P that is smallest in the tree
order;

• if e and e′ are incomparable but P passes through r, then AP,· has entry 1 at e and at e′

(and no entry −2);

• if e ≤ e′ and P avoids r, then the row has entry −1 at the ancestor edge of e and entry 1
at e′; and

• if e ≤ e′ and P ends in r, then the row has a unique non-zero entry of 1 at e′.

Note that at this point, Hadamard’s inequality (1) already implies

|det(A(P, T ))| ≤ 6
n−1
2 .

In order to obtain our better bound, we still need to work a bit.

Denote by F the set of edges e such that the column A·,e has an entry −2. For every P ∈ P,
the row c = AP,· has the following properties:

(i) All edges e with positive entries ce > 0 are incomparable in the tree order.

(ii) c has at most one negative entry, and if ce = −2, then e ∈ F .

(iii) If c is negative at edge e and positive at edge f , then e ≤ f .

(iv) If ce 6= −2, then |ce| ≤ 1 for every edge e.

(v) The sum of all positive entries is at most 2, that is,
∑

e∈E(T ):ce>0

ce ≤ 2.

We now manipulate the rows of A without changing the determinant and without losing prop-
erties (i)–(v) for any row. Let F = {e1, . . . , ek} and let i be smallest such that the column A·,ei
also contains a positive entry.

Suppose that P is a row index with AP,ei = −2 and that Q is a row index with AQ,ei > 0. Set
α = AQ,ei and observe that α ≤ 1 by (iv). We replace the row AQ,· by a new row AQ,·+ α

2AP,·
and denote the new matrix by A′. Clearly, det(A′) = det(A).

We claim that if A had properties (i)–(v), then also A′ has these properties.
Indeed, (v) for A′ follows from (v) for A as the entry AQ,ei = α decreases to A′Q,ei = 0, and

α

2

∑
e∈E(T ):AP,e>0

AP,e ≤
α

2
· 2 = α.

In a similar way, (ii) for A′ follows from (ii) for A and α > 0.
If AQ,· has no negative entry, then (iii) holds trivially for A′

Q,· as α > 0. So, assume there is
an edge e with AQ,e < 0. It follows that e is strictly smaller in the tree order than any f with
AP,f > 0: By (iii) for AQ,·, the edge e is strictly smaller than ei as AQ,ei > 0, and, by (iii) for
AP,·, the edge ei is smaller than any edge f with AP,f > 0 as AP,ei < 0. This ensures (iii) for
A′ as A′

Q,· can only have a negative entry at e.

Now, let g be an edge of P with AP,g > 0 and let h 6∈ {ei, g} be an edge of Q with AQ,h > 0.
Suppose that g and h are comparable. If h ≤ g, then as also ei ≤ g, it follows that h and ei
are comparable, which is impossible by (i) for AQ,·. If, on the other hand, g ≤ h, then ei ≤ g
implies ei ≤ h, which is again impossible. Thus, g and h are incomparable. This guarantees (i)
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for A′. Since α
2 ≤ 1, it also guarantees (iv) as it implies that no two positive entries are added

when forming the new row A′
Q,·.

Note that A and A′ have the same columns with −2 entries, namely those with index in
F , and that no column of A′ with index in {e1, . . . , ei−1} contains a positive entry since this is
also the case for A. Note, moreover, that A′ has one fewer positive entry in column A′·,ei , as

A′Q,ei = 0. Thus, by replacing A by A′ and iteratively repeating this procedure, we can eliminate
all positive entries in A·,ei . Doing this for all i results in a matrix B that satisfies (i)–(v), for
which det(B) = det(A) = det(A(P, T )) and for which

no column with index in F contains a positive entry. (9)

Define for such matrices B two sets of row indices:

• R(B), the set of those P ∈ P for which an edge e exists such that the column B·,e has a
−2 at P and zeros everywhere else; and

• S(B), the set of those P ∈ P that are 0 restricted to F and for which ||BP,·||2 ≤ 2.

As long as there is some P ∈ P \ (R(B) ∪ S(B)) such that the row BP,· has an entry of −2,
we will iteratively modify B so that the determinant does not change, properties (i)–(v) are
maintained for every row with index not in R(B) ∪ S(B), and (9) is maintained in such a way
that R(B) ∪ S(B) grows in each step.

Assume that there is P ∈ P \ (R(B) ∪ S(B)) such that the row BP,· has an entry of −2 at
the edge e, say. By (ii), e ∈ F . Since P /∈ R(B), there is a second non-zero entry in the column
B·,e; let this be in row Q ∈ P. By (9), we have BQ,e < 0. By the definition of R(B) and S(B),
it follows that Q /∈ R(B) ∪ S(B). In particular, (i)–(v) hold for the row BQ,·. Set β = BQ,e
and replace the row BQ,· by BQ,·+ β

2BP,·. This results in a matrix B′ of the same determinant
as B. By (ii) for the rows BP,· and BQ,·, and by (9), the new row B′

Q,· is 0 in F , which means

that B′ satisfies (9).
By (iv) for BQ,·, we have β ∈ [−2, 0), which implies, together with (iv) and (ii) applied to P

and Q, that every entry of B′
Q,· has absolute value at most 1, that is, ||B′

Q,·||∞ ≤ 1. Moreover,

from (v) we get

||B′Q,·||1 ≤
∑

f :BQ,f>0

BQ,f +
|β|
2

∑
f :BP,f>0

BP,f ≤ 2 + 1 · 2 = 4.

This implies

||B′Q,·||2 ≤
√
||B′

Q,·||1 · ||B′Q,·||∞ ≤
√

4 · 1 = 2,

which means that Q ∈ S(B′). Since the new row B′
Q,· is 0 in F , we have R(B) ⊆ R(B′). As

also S(B) ⊆ S(B′), it follows that R(B′) ∪ S(B′) strictly includes R(B) ∪ S(B).
As the rows of B′ with index outside of R(B′) ∪ S(B′) are the same as in B, it is clear that

such rows still satisfy (i)–(v).

Let C be the matrix obtained by a maximal sequence of such modifications, that is, for every
P ∈ P \ (R(C) ∪ S(C)), the row CP,· has no entry −2. If P ∈ P \ (R(C) ∪ S(C)), then (iv)
holds for P , and, hence, ||CP,·||∞ ≤ 1. Now,

||CP,·||2 ≤
√

1 · ||CP,·||1
(ii),(iv)

≤
√

1 +
∑

f :CP,f>0

CP,f ≤
√

3,
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where the last inequality follows from (v) for P . As a consequence, we always get ||CP,·||2 ≤ 2
for every P ∈ P \ R(C). Note that the restriction of C to rows in R(C) and columns in F is,
after permuting rows and columns, a diagonal matrix with −2-entries in the diagonal. Thus,
expanding the determinant of C along the columns with index in F , followed by an application
of Hadamard’s inequality (1), results in |det(A(P, T ))| = |det(C)| ≤ 2n−1.

The bound can be improved by a factor of 4 by choosing the root as a leaf in which at least
two paths from P end, which results in two unit vectors in A(P, T ) along which one can expand
the determinant.

We close this section with the construction of a tree T of arbitrarily large order n, and a set
P of n−1 paths in T such that |det(A(P, T ))| = 2

2
3n−

5
3 , which limits the possible improvements

of Theorem 12.
For any integer n′, let n ≥ n′ such that there is a tree T on n vertices in which all internal

vertices have degree 3, and in which there is a vertex r that has the same distance, d say, to
every leaf. Note that T has n− 1 = 3(2d − 1) edges, and consider T as rooted in r.

The set P of m paths consists of two subsets, PI and PL. For every edge uv of T between
two non-leaves u and v of T such that u is the ancestor of v, select a leaf-leaf path Puv containing
v but not u; we denote the set of these paths by PI . Note that |PI | = 3(2d−1 − 1) = n

2 − 2.
For the set PL partition the leaves of T into triples {a, b, c} such that a, b, and c are pairwise
separated by the root r. For each such triple add the a-b path Qa,b, the b-c path Qb,c, and the
c-a path Qc,a to PL. Note that |PL| = 3 · 2d−1 = n

2 + 1.
As in the proof of the theorem, we turn the incidence matrix A(P, T ) into a matrix A by

subtracting from each column the columns of direct descendant edges, where we go through the
columns/edges in breadth-first search order. Any row of A belonging to a path Puv in PI has
two +1-entries at leaf-edges, a −2-entry at uv, and 0-entries everywhere else. Any row belonging
to a path Qa,b in PL has a +1-entry at the leaf-edge incident with a, a +1-entry at the leaf-edge
incident with b, and 0-entries everywhere else. In particular, up to a permutation of its rows and
columns, the matrix A has the following form:

−2 . . . 0
...

. . .
...

0 . . . −2

∗

0

C . . . 0
...

. . .
...

0 . . . C


, where C =

1 1 0
0 1 1
1 0 1

 .

Since det(C) = 2, we obtain |det(A(P, T ))| = 2|PI | · 2 1
3 |PL| = 2

2
3n−

5
3 .

7 An upper bound on the leaf rank

Let us give an application of Theorem 12.
There are various ways to capture a graph, or at least its essential properties, in terms of a

tree. This often helps to understand the graph, since trees have a particularly simple structure.
While tree decompositions are certainly the most prominent example, other approaches have
been pursued as well. In the context of phylogenetic trees, for instance, Nishimura et al. [15]
proposed the concept of leaf roots: Given a graph G with vertex set V (G) a tree T is a k-leaf
root of G, for some integer k, if

• the set of leaves of T equals V (G), and,
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• any two distinct vertices u and v of G are adjacent in G if and only if distT (u, v) ≤ k, that
is, if their distance in T is at most k.

Not all graphs have k-leaf roots for any given k, or indeed any k at all. Brandstädt et al. [1]
define the leaf rank of a graph G: if there is an integer k such that G has a k-leaf root then let
the leaf rank of G be the smallest such k. If for no k the graph G has a k-leaf root then we say
that G has infinite leaf rank. The 4-cycle, for instance, has infinite leaf rank.

The structure of graphs with leaf rank at most 4 is well understood [2, 3, 9, 16]. For leaf
rank 5 at least an efficient recognition algorithm has been described [6], but for larger leaf rank
both a structural characterisation and efficient recognition algorithms are unknown.

Even simpler properties are open, such as: How large, in terms of the order, can the leaf rank
be (provided it is finite)? While Brandstädt et al. [1] prove that ptolemaic and interval graphs
of order n have leaf rank at most 2n, for general graphs an upper bound in terms of n on the
leaf rank was previously known. We prove such a bound:

Theorem 13. Every graph of order n has either infinite leaf rank or leaf rank at most 2n22n.

Is the bound tight? On the contrary, it appears incredibly loose: We do not know of any
graph on n vertices that has finite leaf rank larger than n. Any polynomial bound in terms of n
would be very much welcome.

Proof. Let G be a graph of order n, and assume G to have finite leaf rank. For a tree T whose
set of leaves equals the vertex set V (G) of G, we consider the following system I(T ) of linear
inequalities using the n(T ) real variables (`e)e∈E(T ) and k

I(T ) :

{
`(uTv)− k ≤ 0 for every pair u, v of adjacent vertices of G, and

`(uTv)− k ≥ 1 for every pair u, v of non-adjacent vertices of G,

where uTv is the path in T between the leaves u and v of T , and `(P ) =
∑
e∈E(P ) `e for any

path P .
If T is a k-leaf root of G, then ((`e)e∈E(T ), k) with `e = 1 for e ∈ E(T ) is a non-negative

integral solution of I(T ). That is, the polyhedron

P(T ) =
{

((`e)e∈E(T ), k) ∈ Rn(T )
≥0 : ((`e)e∈E(T ), k) satisfies I(T )

}
is non-empty. Conversely, for any tree T whose set of leaves equals V (G)

if (`, k) is an integral point of P(T ) then the leaf rank of G is at most k. (10)

Now, let T be a tree of minimum order such that P(T ) is non-empty. Clearly, the tree T has
no vertex of degree 2, which implies that the number of its internal vertices is not larger than
the number of its leaves. Consequently

n(T ) ≤ 2n. (11)

Suppose that P(T ) contains a point ((`e)e∈E(T ), k) that has a zero entry. As k = 0 is
impossible there is then some edge e of T with `e = 0. Contracting the edge e within T yields a
smaller tree T/e such that P(T/e) is non-empty, which contradicts the choice of T . Therefore,
every point of P(T ) has only strictly positive entries. By the convexity of polyhedra, this implies
that the non-negativity condition is redundant, that is,

P(T ) =
{

((`e)e∈E(T ), k) ∈ Rn(T ) : ((`e)e∈E(T ), k) satisfies I(T )
}
.

15



Since P(T ) is contained in the positive orthant Rn(T )
≥0 and as it is non-empty, the polyhedron

P(T ) must have a vertex x. By a theorem of Hoffman and Kruskal [12], there is a subsystem
I ′(T ) of I(T ) such that x is the unique solution of the system of linear equalities obtained by
turning the inequalities in I ′(T ) into equalities. Since the ambient space is n(T )-dimensional,
we may assume |I ′(T )| = n(T ).

In view of the structure of I(T ), there are two sets P0 and P1 of altogether n(T ) paths in T
such that

{x} =
{

((`e)e∈E(T ), k) ∈ Rn(T ) : `(P )− k = i for every i ∈ {0, 1} and every P ∈ Pi
}
.

Let us write that in a slightly more concise way. Set P = P0 ∪ P1 and − 1 = (−1, . . . ,−1)ᵀ ∈
Rn(T ). Then there is a 0/1-vector b of length n(T ) such that x is the unique solution of the
system (A(P, T ),−1)x = b of linear equalities.

Denote by Ai the matrix obtained from (A(P, T ),−1) be replacing the ith column by b.
Then, by Cramer’s rule,

xi =
detAi

det((A(P, T ),−1))
.

In particular, the last entry k of x equals

k =
det((A(P, T ),b))

det((A(P, T ),−1))
.

Thus, |det((A(P, T ),−1))|x is an integral point of P(T ). Recalling (10), we therefore see that

k′ := |det((A(P, T ),−1))|k = |det((A(P, T ),b))|

is an upper bound on the leaf rank of G. Expanding the determinant of the matrix (A(P, T ),b)
along the last column b, we obtain, by Theorem 12 and (11), that

k′ = |det((A(P, T ),b))| ≤ n(T )2n(T )−1 ≤ (2n)22n.

References

[1] A. Brandstädt, C. Hundt, F. Mancini, P. Wagner, Rooted directed path graphs are leaf
powers, Discrete Mathematics 310 (2010), 897-910.
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