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Abstract

Given a claw-free graph and two non-adjacent vertices x and y with-
out common neighbours we prove that there exists a hole through x and
y unless the graph contains the obvious obstruction, namely a clique sep-
arating x and y. We derive two applications: We give a necessary and
sufficient condition for the existence of an induced x–z path through y,
where x, y, z are prescribed vertices in a claw-free graph; and we prove
an induced version of Menger’s theorem between four terminal vertices.
Finally, we improve the running time for detecting a hole through x and
y and for the Three-in-a-Tree problem, if the input graph is claw-free.

1 Introduction

Given two non-adjacent vertices x and y in a graph G, what is an obvious
obstruction for the existence of a hole (an induced cycle of length ≥ 4) through
x and y? Clearly, a clique that separates x and y. Ideally, we would like to
prove that such a clique is the only obstruction:

there is a hole through x and y if and only if there does not exist
any clique that separates x and y.

(1)

If G is the line graph of a graph H then an easy application of Menger’s theorem
to H shows that the statement is true. On the other hand, (1) is false in general;
an example may be found in Figure 1 on the left. This is not at all surprising
as Bienstock [1] (see also Corrigendum [10]) proved that the following problem
is NP-complete, so that one should not expect a simple necessary and sufficient
obstruction.

x y

x y

Figure 1: No clique separating x from y and no hole through x and y either

Hole-through-two-Vertices. Given a graph G and two non-adjacent
vertices x, y, check whether there is a hole through x and y.

The complete bipartite graph K1,3 is called a claw. The class of claw-free
graphs, that is, the graphs not containing the claw as an induced subgraph, is
a natural superclass of the class of line graphs. Many of the properties of line
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graphs extend to claw-free graphs. This is also the case here: Hole-through-

two-Vertices becomes solvable in polynomial time as demonstrated by Lévêque,
Lin, Maffray and Trotignon [7]. Thus, there is hope for (1) to extend to claw-free
graphs, and indeed this is our main result:

Theorem 1. Let G be a claw-free graph, and let x and y be two non-adjacent
vertices without common neighbours. Then, there exists a hole through x and y
if and only if no clique separates x and y.

We remark that the exclusion of common neighbours of x and y is necessary,
see the right graph in Figure 1. However, it is easy to modify the theorem so
that common neighbours may be admitted. In fact, in order to prove Theorem 1
we will need a slightly stronger version that does allow common neighbours. We
will state and prove it in the next section.

In Section 3, we will derive two applications from Theorem 1. First, we will
find a similar obstruction to the existence of an induced x–z path containing
y, where x, y, z are prescribed vertices in a claw-free graph. Second, we will
investigate when there are two disjoint paths between two sets (of cardinality 2
each) so that, in addition, there are no chords between the two paths. In a way,
this is an induced version of Menger’s theorem for two paths.

In Section 4, we will look at algorithmic consequences. We will improve the
runnning time given by Lévêque et al, and we will see that the Three-in-a-

Tree problem introduced by Chudnovsky and Seymour [2] can, as one should
expect, be solved considerably faster in claw-free graphs. We conclude the paper
by posing two open problems in the last section.

2 A clique obstruction for holes

All our graphs are finite and simple. In general we follow the notation of Dies-
tel [4]. The centre of a claw is the unique vertex of degree 3 of the claw.

In this section we prove a version of Theorem 1 that does allow x and y
to have common neighbours. Moreover, for the benefit of the applications in
Section 3 we will slightly relax the requirement that G is claw-free. For this, let
us say that a graph G is claw-free except possibly at U , where U is a subset of
V (G), if the centre of every claw is contained in U .

Given two vertices x and y we call a vertex set S an x–y separator (in G)
if S is disjoint from {x, y} and if x and y are contained in different components
of G − S. For two sets X,Y ⊆ V (G), we allow an X–Y separator to contain
vertices of X ∪ Y , i.e. S ⊆ V (G) is an X–Y separator if every X–Y path meets
S. This slight abuse of notation makes for cleaner statements and we hope that
it does not cause much confusion. For brevity, we call a hole that contains x
and y an x–y hole. We consider the empty graph to be a clique. Thus, if two
vertices x and y are contained in different components then there exists an x–y
clique separator, namely the empty clique.

Theorem 2. Let x and y be two non-adjacent vertices in a graph G that is
claw-free except possibly at {x, y}. Then either

(i) there exists an x–y hole; or

(ii) there exists an x–y clique separator in G − (N(x) ∩ N(y)), and (N(z) \
{x, y}) ∪ {z} is an x–y separator in G for every z ∈ N(x) ∩N(y),
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but not both.

We mention that it is quite likely that Theorem 2 can alternatively be proved
with Chudnovsky and Seymour’s structure theorem for claw-free graphs; see [3]
for an overview. Indeed, we checked some of the cases of the structure theorem
to gain confidence in the statement of Theorem 2 before formulating our proof.
In the end, however, we decide against using the structure theorem. First, while
it may first seem so, Theorem 2 is not a trivial consequence of the structure the-
orem. Second, Chudnovsky and Seymour’s theorem is a very deep and complex
theorem, and so it seems not warranted to use it for something that can be
proved from first principles with reasonable effort. Moreover, given the (neces-
sary) complexity of the structure theorem it is not at all clear whether using it
would indeed lead to a (much) shorter proof.

We will need two lemmas for the theorem. The first of these deals with the
rather special situtation when the whole graph is the disjoint union of neighbours
of x and y.

Lemma 3. Let x and y be two non-adjacent vertices in a graph G that is claw-
free except possibly at {x, y}, and assume that V (G)\{x, y} is the disjoint union
of N(x) and N(y). Then either

(i) there exists an x–y hole; or

(ii) there exists an x–y clique separator in G.

Proof. We proceed by induction on |V (G)|. If |V (G)| = 2 then G = K2 and
statement (ii) holds. (Note that we accept the empty set as a clique.) Now,
suppose that G has at least three vertices, and assume that G does not possess
any x–y hole. If y is an isolated vertex then clearly the empty set may serve as
the desired x–y clique separator. Thus, let N(y) 6= ∅, and pick some p ∈ N(y).
Since any x–y hole in G−p is clearly a hole in G as well, it follows that induction
yields a minimal x–y clique separator K in G− p.

Let us first show that we may assume that one of K ∩N(x) and K ∩N(y)
is empty. Suppose not, and choose k ∈ K ∩ N(x) and ℓ ∈ K ∩ N(y), and
consider any neighbour v of ℓ in N(x) \ K. Since x and y have no common
neighbours, k and y are non-adjacent, which means that, in order to avoid a
claw on ℓ, k, v, y with centre ℓ, we need to have kv as an edge of G. This implies
N(K ∩ N(y)) ∩ N(x) ⊆ N(k) for any k ∈ K ∩ N(x). From the minimality of
K it follows that k has a neighbour in N(y) \K, and consequently, as no claw
in G may have its centre at k, the set (N(k) ∩ N(x)) \ K is a clique. Hence
K ′ := (N(K ∩ N(y)) ∪ K) ∩ N(x) is an x–y clique separator in G − p that is
contained in N(x).

By replacing K with K ′ if necessary, and by observing that we are done if
K (or K ′) separates x from y in G, we obtain in any case the following:

for every p ∈ N(y) there exists a minimal x–y clique separator
K in G − p so that p has a neighbour in N(x) \K, and either
K ⊆ N(x) or K ⊆ N(y).

(2)

Let us deal with the case of K ⊆ N(x) first. We set Kp := K ∩ N(p) and
Kp := K\Kp. Observe that we may exclude that K = Kp, as then K∪{p} is an
x–y clique separator in G. (Possibly, though, we may have K = Kp.) For every
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k ∈ Kp, and every neighbour v 6= p of k inN(y) it holds that p and v are adjacent
as otherwise k, p, v, x would be a claw. Thus, we get N(Kp)∩N(y)\{p} ⊆ N(p).
If also N(Kp) ∩N(y) ⊆ N(p) then (N(p) ∩N(y)) ∪ {p} is an x–y separator in
G and a clique—the latter follows since p has a neighbour in N(x) \K but G
does not contain any claws with centre at p. Thus, we may assume that there
is a non-neighbour w of p in N(Kp) ∩N(y).

The set N(p)∩N(x), which is a superset of Kp, forms a clique as there is no
claw centred at p. As a result, the x–y separator (N(p)∩N(x))∪Kp fails only
to be a clique if there exist non-adjacent a ∈ (N(p)∩N(x))\K and ℓ ∈ Kp. Let
ℓ′ ∈ Kp be a neighbour of w. If also a and ℓ′ are non-adjacent then xℓ′wypax is
an x–y hole. So, let aℓ′ be an edge in G, which means that ℓ′, a, ℓ, w is a claw,
unless ℓ is a neighbour of w. Then, however, xℓwypax is an x–y hole, and we
are done.

Let us now treat the case when K ⊆ N(y). Since we are done if K ∪{p} is a
clique, K needs to contain a vertex ℓ that is non-adjacent to p. If |K| > 1 then
pick any p′ ∈ K \{ℓ}, which is then a neighbour of y, and observe that (2) yields
a minimal x–y clique separator K ′ in G − p′ with K ′ ⊆ N(x) or K ′ ⊆ N(y).
Now, however, the latter case may not occur as any such K ′ needs to contain
K \ {p′} and p, and thus contains the non-adjacent vertices ℓ and p.

Therefore, we have K ′ ⊆ N(x), which means we have reduced to the case
above. So, let K consist of a single vertex p′, and observe that p and p′ are
non-adjacent, as otherwise {p, p′} is an x–y clique separator. If (N(p)∪N(p′))∩
N(x) is a clique then we have found the desired separator again. As each of
N(p)∩N(x) and N(p′)∩N(x) is a clique it follows therefore that there are non-
adjacent u ∈ N(p)∩N(x) and u′ ∈ N(p′)∩N(x). Then, however, xupyp′u′x is
a hole.

We will prove Theorem 2 by induction on the number of vertices. Assume
that the two vertices x and y have common neighbours. Unless the graph has
an x–y hole we obtain from Theorem 2 that there is an x–y clique separator
once the common neighbours are deleted, and that for every common neighbour
z of x and y the set NG(z) \ {x, y}∪ {z} separates x and y. However, these two
pieces of information are unrelated. We do not know anything, for instance, of
the position of the clique relative to all the separators given by the common
neighbours. This makes it hard to use these separators in the induction proof
of Theorem 2. The next lemma gives us more information to work with.

Lemma 4. Let x and y be two non-adjacent vertices in a graph G that is claw-
free except possibly at {x, y}. Set Z := NG(x)∩NG(y). Assume that there is an
x–y clique separator in G−Z, and that for every z ∈ Z the set NG(z)\{x, y} is
an x–y separator in G− z. Then at least one of the following statements holds:

(i) there is an x–y clique separator in G; or

(ii) for every z ∈ Z one of NG(x) ∩ NG(z) and NG(y) ∩ NG(z) is an x–y
separator in G− z.

Proof. Let us first note that Z is a clique. Indeed, as NG(z) \ {x, y} is assumed
to be an x–y separator in G − z for every z ∈ Z we clearly have that NG(x) ∩
NG(y) = Z ⊆ NG(z) ∪ {z}.
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Since z is adjacent to the two non-adjacent vertices x, y all its other neigh-
bours must be adjacent to at least one of x and y; otherwise we would find a
claw with centre at z. Thus, we obtain

NG(z) \ {x, y} ⊆ NG(x) ∪NG(y) (3)

Next, we claim that

If z ∈ Z and if K is a minimal x–y clique separator in G−Z so
that K * NG(z) then either NG(x) ∩NG(z) or NG(y) ∩NG(z)
separates x and y in G− z.

(4)

To show (4) choose S ⊆ NG(z) \Z to be a minimal x–y separator in G−Z.
Note that such a choice is possible as NG(z) \ {x, y} separates x and y in G− z.
Denote by Lx the component of G−Z −K containing x, and let Ly be the one
containing y. Define in a similar way Tx and Ty as components of G − Z − S.
Then both

X := (K ∩ Tx) ∪ (K ∩ S) ∪ (S ∩ Lx) and

Y := (K ∩ Ty) ∪ (K ∩ S) ∪ (S ∩ Ly)

separate x and y in G− Z; see Figure 2 (a).

(a) (b)

Z z
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K k

r

s
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Tx Ty

Lx

Ly

Tx Ty

Z

Figure 2: The separators in the proof of Lemma 4

Suppose that S ∩ Lx 6= ∅ and S ∩ Ly 6= ∅. Now, if Tx ∩ K = ∅ then X
would be a proper subset of S, which contradicts the minimality of S. Hence,
we obtain Tx ∩K 6= ∅ and by symmetry also Ty ∩K 6= ∅. However, since K is
a clique this implies that there is an edge between a vertex in Tx and a vertex
in Ty, contradicting that S is a separator. Therefore, one of S ∩Lx and S ∩Ly

must be empty. By symmetry we may assume that S ∩ Lx = ∅. This, in turn,
implies X ⊆ K, and it follows from the minimality of K that X = K, i.e. that
K ∩ Ty = ∅. Now, clearly, S ∩NG(x) ⊆ K ∪ Lx. As S ∩ Lx = ∅ this reduces to
S ∩NG(x) ⊆ K. We state these two facts as we will use them in the next step:

K ∩ Ty = ∅ and Sx := S ∩NG(x) ⊆ K. (5)
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Put R := NG(Sx) ∩ Ty, and suppose that R * NG(z). Pick a vertex r ∈ R
that is non-adjacent to z, and let s ∈ Sx be a neighbour of r. Next, as K *
NG(z) by assumption, there exists a k ∈ K that is non-adjacent to z. From (5)
we see that s lies in K too and thus is adjacent to k. Moreover, k lies outside Ty,
and it cannot be contained in S∩K either since S is a subset of NG(z). Thus, it
follows that k ∈ Tx. Now, however, we obtain a contradiction as s, k, r, z induce
a claw with centre s /∈ {x, y}; see Figure 2 (b).

Therefore, it holds that R ⊆ NG(z). No vertex in R is a neighbour of x since
R ⊆ Ty. Hence, it follows from R ⊆ NG(z) and (3) that R ⊆ NG(y) ∩ NG(z).
On the other hand, from S ∩ Z = ∅ and Sx = S ∩ NG(x) we deduce with (3)
that S \ Sx ⊆ NG(y)∩NG(z), too. Finally, it holds that Z ⊆ NG(z)∪ {z} as Z
is a clique. Thus, the set (S \ Sx) ∪R ∪ (Z \ {z}) is an x–y separator in G− z
that is contained in NG(y) ∩NG(z). This establishes (4).

By the assumption of the lemma, there exists a minimal x–y clique separator
K ′ inG−Z. IfK ′ ⊆ NG(z) for every z ∈ Z thenK ′∪Z is an x–y clique separator
in G, and the lemma follows (recall that Z is necessarily a clique). Thus, assume
there is a z′ ∈ Z such that K ′ * NG(z

′). By (4) and symmetry, we may assume
that NG(x) ∩ NG(z

′) separates x and y in G − z′. Thus, we find in G − Z a
minimal x–y separator S′ that is contained in (NG(x) ∩NG(z

′)) \ Z.
As Z is the set of all common neighbours of x and y we see that S′ ⊆

NG(z
′) \ NG(y). Thus, any two s1, s2 ∈ S′ need to be adjacent in order to

prevent z′, s1, s2, y from inducing a claw with centre at z′. Consequently, S′ is
a clique.

Now, consider z ∈ Z. If S′ ⊆ NG(z) then S′∪Z is an x–y separator in G−z
that is contained in NG(z)∩NG(x). If, on the other hand, S′ * NG(z) then (4)
with S′ in the role of K implies that one of NG(x)∩NG(z) and NG(y)∩NG(z)
separates x and y in G− z. Therefore the lemma follows in either case.

Proof of Theorem 2. Let us first show that (i) and (ii) cannot hold simultane-
ously. Clearly, the existence of a clique that separates x from y in G− (N(x)∩
N(y)) forces every hole C through x and y to contain at least one vertex, z say,
in N(x) ∩N(y). As N(z) \ {x, y} is an x–y separator in G− z it follows that z
is adjacent to an interior vertex of the x–y path C − z, which is impossible as
C is induced.

To see that at least one of (i) and (ii) always holds, we perform induction
on |V (G)|. Assume first that x and y have a common neighbour. Thus, the
induction hypothesis applied to G− (N(x)∩N(y)) either yields a hole through
x and y (in which case we are done) or an x–y clique separator K in G−(N(x)∩
N(y)). If there is a z ∈ N(x) ∩N(y) for which N(z) \ {x, y} does not separate
x from y in G − z then an x–y path in G − (N(z) \ {x, y}) − z together with
xzy yields a hole in G.

Therefore, we assume from now on that

x and y have no common neighbours. (6)

Lemma 3 takes care of the case when V (G) = N(x)∪N(y)∪ {x, y}, so pick
a vertex

p /∈ N(x) ∪N(y). (7)

Since any hole in G−p is a hole in G, we may assume that induction applied to
G−p yields an x–y clique separator K in G−p, which we choose to be minimal.
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Denote the component of G − p − K containing x by Cx and denote the one
containing y by Cy. If K separates x from y in G as well, we are done. Hence,
we may assume that

K is a minimal x–y clique separator in G− p, and p has neigh-
bours in both Cx and Cy.

(8)

As p /∈ N(x)∪N(y) by (7), Cx as well as Cy contains more than one vertex.
Thus, if Gx denotes the graph obtained from G by contracting all of Cx to a
vertex x′, and if Gy denotes the graph obtained from contracting Cy to a vertex
y′, then both Gx and Gy have fewer vertices than G. Moreover, Gx and Gy are
claw-free except possibly at {x′, y} and at {x, y′}, respectively.

We first observe that we may assume that

there is no x′–y clique separator in Gx, and no x–y′ clique sep-
arator in Gy.

(9)

Indeed, any such clique separator also separates x from y in G, which is one of
the desired outcomes of the theorem.

The induction hypothesis applied to Gx with x′ and y, and to Gy with x
and y′ either yields a hole through x′ and y (resp. through x and y′) or an
obstruction as in (ii) of the statement of the theorem. Note that x′ and y
(resp. x and y′) may have common neighbours, and indeed if the induction
yields such an obstruction as in (ii) then they will have common neighbours as
otherwise we find an x′–y clique separator in Gx (resp. such a separator in Gy),
in contradiction to (9). We distinguish two cases: either we find in Gx an x′–y
hole and in Gy an x–y′ hole, or at least one does not contain such a hole.

Case I. Assume there is an x′–y hole in Gx and an x–y′ hole in Gy.
Viewed in G the holes in Gx and Gy yield an induced p–K path R = p . . . r

through x, and an induced p–K path S = p . . . s through y. If the cycle pRrsSp
(note that r = s or rs ∈ E(G) as r, s ∈ K) is induced, we have found the desired
hole, so assume the cycle to have a chord, which also implies that r 6= s. Clearly,
such a chord needs to be an edge between r and p̊Ss̊ or between s and p̊Rr̊.1

Now, if neither r has a neighbour in pSẙ nor s a neighbour in pRx̊ then we may
assume, by symmetry, that r has a neighbour in ySs̊. Denoting by v the first
neighbour of r on ySs, we find with pRrvSp an x–y hole, and are done.

Let r′ be the predecessor of r on R, and denote by s′ the predecessor of s
on S. We note that

if r has a neighbour in pSẙ then r′ ∈ NG(s), and if s has a
neighbour in pRx̊ then s′ ∈ NG(r).

(10)

Indeed, let r have a neighbour v in pSẙ. Since r, r′, s, v cannot induce a claw
and since S is induced it follows that sr′ ∈ E(G). We argue in a similar way
for s and R.

Suppose that both r has a neighbour in pSẙ and s has a neighbour in pRx̊.
Recall that K is a minimal separator in G − p. Thus, for any k ∈ K the sets
NG(k)∩Cx andNG(k)∩Cy are cliques, and it follows that r can have at most two
neighbours, which are then consecutive, on the induced path p̊Ss′. Then (10)

1Here, and in what follows we use the notation of Diestel [4] for paths. In particular, if
P = v1 . . . vn is a path then v̊iPvj denotes the subpath vi+1 . . . vj .
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implies that r′ = x. In a similar way, s may have at most two, necessarily
consecutive, neighbours on p̊Rr′, and we conclude that s′ = y. But this means
that r (and s) is a common neighbour of x and y, which contradicts (6).

Therefore, we may assume, again by symmetry, that r has a neighbour on
pSẙ, but s has no neighbour on pRx̊. By (10), s has a neighbour on xRr′—pick
u to be the first neighbour on xRr′. Then pRusSp is an x–y hole, which finishes
Case I.

Case II. There is no x′–y hole in Gx, or no x–y′ hole in Gy (possibly both).
Assume that there is no x′–y hole in Gx. Set Z := NGx

(x′) ∩ NGx
(y), and

observe that Z consists of those vertices in K that are adjacent to y. Indeed,
by (8) we have that NGx

(x′) = K ∪ {p} and by (7) that p /∈ NGx
(y). Thus,

Z = K ∩NGx
(y).

Recall that the induction hypothesis applied to Gx with x′ and y yields an
x′–y clique separator in Gx−Z, and that, moreover, it holds thatNGx

(z)\{x′, y}
is an x′–y separator in Gx−z for every z ∈ Z. Lemma 4 together with (9) implies
that Z 6= ∅ and that for every z ∈ Z either NGx

(z)∩NGx
(x′) or NGx

(z)∩NGx
(y)

is already an x′–y separator in Gx − z. Denote by Zx′ those vertices z in Z for
which NGx

(z) ∩NGx
(x′) is an x′–y separator in Gx − z, and set Zy := Z \ Zx′ .

Note that for every vertex z ∈ Zy the set NGx
(z) ∩NGx

(y) separates x′ from y
in Gx − z.

Assume that Zx′ 6= ∅ and consider z ∈ Zx′ . By (8), NGx
(x′) = K ∪ {p},

and moreover, every vertex in K ∪ {p} has a neighbour in Cy ⊆ Gx. Thus, for
NGx

(z)∩NGx
(x′) to be an x′–y separator in Gx−z, it is necessary thatK∪{p} ⊆

NGx
(z)∪{z}. Now NGx

(z)\NGx
(y), which is a superset of (K \Z)∪{p}, forms

a clique since no vertex in NGx
(z) \ NGx

(y) is adjacent to the neighbour y of
z; otherwise we would find a claw with centre z. As K ∪ {p} ⊆ NGx

(z) ∪ {z}
holds for every z ∈ Zx′ we get that (K \Zy)∪{p} is a clique. This then implies
Z 6= Zx′ as otherwise K∪{p} would be a clique, and thus a contradiction to (9).
We have shown that

Z 6= Zx′ and, unless Zx′ = ∅, (K \ Zy) ∪ {p} is a clique. (11)

As Z 6= Zx′ there is some z ∈ Zy. Pick a minimal x′–y separator S ⊆
(NGx

(z)∩NGx
(y)) \Z in Gx −Z (by definition of Zy there is such an S). Note

that S ⊆ NGx
(z′) for every other z′ ∈ Zy, too. Furthermore, as no claw in Gx

has its centre at z and as x′z ∈ E(Gx), S is a clique. Thus, Zy ∪ S is a clique
but Z ∪S cannot be one, by (9) and the fact that Z ∪S is an x′–y separator in
Gx. Hence

Zy ∪ S is a clique but not Z ∪ S. (12)

Moreover, this implies that Zx′ 6= ∅.
Next, we claim that

NG(Zy) ∩ Cx ⊆ NG(p). (13)

Consider z ∈ Zy and a neighbour v ∈ NG(z) ∩ Cx; see Figure 3. By (12) there
are non-adjacent r ∈ Zx′ and s ∈ S. As otherwise z, r, s, v is a claw it follows
that r and v are adjacent. From (11) we get that p is a neighbour of r. Since
r ∈ Z, r is also adjacent to y. So, for r, p, v, y not to induce a claw, we either
have py ∈ E(G) or pv ∈ E(G). The former, however, is impossible by (7). Thus,
p and v are adjacent, which proves (13).
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Figure 3: Illustration of (13)

An immediate consequence of (11) is that (K \ NG(y)) ∪ {p} is a clique.
This excludes that also in Gy we do not find an x–y′ hole as then we would
deduce in the same way that (K \NG(x)) ∪ {p} is a clique, too. Since x and y
have no common neighbours by (6) it would follow that K ∪ {p} is a clique, a
contradiction to (9). We conclude that

there is an induced p–K path Q through x.

Let us come to the final contradiction. Denote by q the endvertex of Q
in K, and observe that as Q is induced, (11) forces q to lie in Zy. Then, the
predecessor v of q on Q is, by (13), a neighbour of p, which necessitates that
Q = pxq. Now, however, we obtain a contradiction to (7) as p is a neighbour
of x.

3 Applications

We derive two applications, Theorems 5 and 6, from Theorem 2.

Theorem 5. Let x, y, z be three vertices in a graph G that is claw-free except
possibly at {x, y, z}. Then exactly one of the following two statements holds:

(i) There is an induced x–z path through y.

(ii) There is a clique other than {y} that separates {x, z} from {y}, or N(x) \
{y} separates y from z, or N(z) \ {y} separates x from y.

Given a graph G, let us call two subgraphs or vertex sets S, T non-touching
if S and T are disjoint and if there does not exist any edge with one endvertex
in S and the other in T .

Theorem 6. Let X,Y be two non-touching vertex sets of cardinality 2 in a
graph G that is claw-free except possibly at X ∪ Y . Then exactly one of the
following statements holds:

(i) There are two non-touching X–Y paths.
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(ii) There exists a clique separating X from Y in G; or there exists z ∈ X ∪Y
so that X is separated from Y by N(z).

We remark that the theorem becomes false if X and Y are allowed to touch.
Figure 4 shows a claw-free graph with X and Y touching where neither (i) nor
(ii) is satisfied.

X Y

Figure 4: Theorem 6 may fail if X and Y touch

We will obtain Theorem 5 from Theorem 2, with some extra effort, and
then deduce Theorem 6 from Theorem 5. In both these deductions we use an
argument that is encapsulated in the lemma below. (So, in some sense it is used
twice in the proof of Theorem 6.)

We say that two paths P and Q are non-touching except at their ends if P
and Q meet at most in their endvertices and if for any edge pq /∈ E(P ∪Q) with
p ∈ V (P ) and q ∈ V (Q) it follows that p is an endvertex of P and q one of Q.

Lemma 7. Let y1, y2 be not necessarily distinct vertices in a graph G, and let
x1, x2 be distinct vertices in G− {y1, y2}. Assume that

(1) x1, x2, y1, y2 are pairwise non-adjacent;

(2) G is claw-free except possibly at {x1, x2, y1, y2};

(3) for j = 1 or for j = 2 there exist an xj–y1 path P1 and an xj–y2 path P2, so
that P1 and P2 are non-touching except at their ends (if y1 = y2 this means
that there is a hole through xj and y1); and

(4) neither N(x1) nor N(x2) separates {x1, x2} from {y1, y2}.

Then G has

(i) an x1–y1 path Q1 and an x2–y2 path Q2; or

(ii) an x1–y2 path Q1 and an x2–y1 path Q2,

so that Q1 and Q2 are non-touching except at their ends.

Proof. Assume P1 and P2 and j ∈ {1, 2} to be chosen to have minimal total
length |E(P1)| + |E(P2)| subject to that P1 is an xj–y1 path, P2 is an xj–y2
path and subject to that P1 and P2 are non-touching except at their ends. In
particular, P1 and P2 are induced. By symmetry we may assume that j = 1.

Now, sinceN(x1) does not separate {x1, x2} from {y1, y2} there is an induced
x2–{y1, y2} path R that is disjoint from N(x1), and then also from x1. Let v be
the first vertex of R that has a neighbour on P1∪P2. Suppose that v is adjacent
to an interior vertex p1 of P1 and to an interior vertex p2 of P2. If v 6= x2, i.e.
if v has a predecessor u on R, then, since there is no claw with centre v, one of
the two non-adjacent vertices p1 and p2 is adjacent to u, which contradicts the
choice of v.
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So suppose that v = x2. Then if p1 is chosen as the last neighbour of x2 on
P1, and if p2 is chosen to be the last neighbour of x2 on P2 then P ′

1 := x2p1P1y1
and P ′

2 := x2p2P2y2 have shorter total length than P1 and P2 and are thus a
contradiction to the choice of P1 and P2 unless x1 is adjacent to both p1 and p2.
Then, however, p1, x1, x2 together with the successor of p1 on P1 induce a claw,
a contradiction. (Observe that p1 /∈ {y1, y2} as {x1, x2, y1, y2} are assumed to
be pairwise non-adjacent.)

Hence we may assume that v has no neighbours in the interior of P1. If v
has no neighbour at all on P2 then v has to be adjacent to y1, and Q1 := P2 and
Q2 := x2Rvy1 are as desired. So, let w be the last vertex on P2 from x1 to y2
that is adjacent to v, and put Q1 := P1 and Q2 := x2RvwP2y2. Suppose that
there is an edge e /∈ E(Q1 ∪Q2) with one endvertex in Q1 and the other in Q2.
By definition of Q1 and Q2 this is only possible if e = vy1. (Recall that R is
disjoint from N(x1), which implies vx1 /∈ E(G).) Furthermore, y1 and y2 need
to be distinct vertices as otherwise we would have chosen w = y2 = y1, which
implies e ∈ E(Q2). As x2 is not adjacent to y1 it follows that v 6= x2. Now,
however, we obtain a contradiction as v, y1, w together with the predecessor of
v on R induce a claw with centre v (note that y1 and y2 are required to be
non-adjacent, which takes care of the case when w = y2). Therefore, Q1 and
Q2 are non-touching except at their ends, as desired.

Proof of Theorem 5. Assume (ii) holds and let us see that then (i) cannot be
true. Let P be any x–z path through y. If there is a clique not equal to {y}
that separates {x, z} from {y} then P needs to go twice through the clique and
therefore cannot be induced. If, on the other hand, NG(x) \ {y} separates y
from z then yPz meets NG(x) \ {y}, and again P is not induced; we argue in a
similar way in the remaining case.

Now, assume that (ii) does not hold. We will show that this implies the
existence of an induced x–z path through y. Clearly, x and z cannot be adjacent
as otherwise xz is a clique separating {x, z} from {y}. Let us now deal with the
case when y is adjacent to x or z. If xy ∈ E(G) then there is an induced y–z
path in G− (NG(x)\{y}) as NG(x)\{y} does not separate y from z. This path
together with xy yields an induced x–z path through y.

Thus, we assume from now on that x, y, z are pairwise non-adjacent. Denote
by G̃ the graph obtained fromG by identifying x and z to a vertex x̃, and observe
that G̃ is claw-free except possibly at {x̃, y}.

Assume that there exists an x̃–y hole in G̃. Viewed in G, such a hole either
yields the desired induced x–z path through y, or it yields a hole through x and
y, or through z and y. The last two cases are symmetric, so assume that there
is a hole through x and y in G. Then, the theorem follows from Lemma 7 with
x, z, y, y in the roles of x1, x2, y1, y2.

Therefore, it remains to deal with the case when

G̃ does not contain any x̃–y hole. (14)

We will show that (14) contradicts our assumption that (ii) does not hold, which
then concludes the proof of the theorem. In order to do so, we apply Theorem 2
and Lemma 4 to G̃, x̃, y. As a clique that separates x̃ from y in G̃ separates
{x, z} from {y} in G, it follows that Q := NG̃(x̃)∩NG̃(y) 6= ∅ and that for every
q ∈ Q one of NG̃(x̃) ∩NG̃(q) ∪ {q} and NG̃(y) ∩NG̃(q) ∪ {q} separates x̃ from

y in G̃.
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Denote by Qx those q ∈ Q that are adjacent to x, and let Qz ⊆ Q be those
q adjacent to z. Because no claw may have its centre in Q, we deduce that Qx

and Qz are disjoint, and consequently, Q is the disjoint union of Qx and Qz.
Moreover, we observe that Q is a clique. Indeed, otherwise we easily find an
x̃–y hole in G̃.

Next, we claim that

NG̃(y) ∩NG̃(q) ∪ {q} is an x̃–y separator in G̃ for every q ∈ Q. (15)

Suppose the contrary, and without loss of generality let us assume that some
qx ∈ Qx violates (15). As x and y are two non-adjacent neighbours of qx and as
there is no claw with centre qx it follows that NG(qx)\{x, y} ⊆ NG(x)∪NG(y).
In particular, we get that

NG̃(x̃) ∩NG̃(qx) = (NG(x) ∩NG(qx)) ∪ (NG(z) ∩NG(qx))

= (NG(x) ∩NG(qx)) ∪ (NG(y) ∩NG(z) ∩NG(qx))

⊆ (NG(x) ∩NG(qx)) ∪Qz. (16)

(In fact, we have equality in the last line since Q is a clique.)
Now, if Qz = ∅ then NG(x)∩NG(qx) = NG̃(x̃)∩NG̃(qx). However, the latter

set together with qx is an x̃–y separator, which means that NG(x) ∩NG(qx) ∪
{qx} ⊆ NG(x) separates {y} from {x, z} in G. Hence, we have a contradiction
to our assumption that (ii) does not hold. Thus,

Qz 6= ∅. (17)

By assumption, (NG(qx)∩NG(y))∪{qx} ⊇ Q does not separate {x, z} from
{y}. As a result, there is an induced {x, z}–y path P in G − Q that avoids
NG(qx) ∩ NG(y). On the other hand, NG̃(x̃) ∩ NG̃(qx) ∪ {qx} does separate
{x, z} from y in G, so NG(x) ∩ NG(qx) is an {x, z}–y separator in G − Q.
Therefore, P meets NG(x), and we may thus assume that P starts in x (rather
than in z). Moreover, as NG(x) separates z from y in G−Q, the only neigbour
on P that z could possibly have is the vertex of P in NG(x), which we denote
by x+. However, since x+, x, z together with the successor of x+ on P cannot
induce a claw we deduce z cannot be adjacent to x+ either, which means that

z has no neighbour on P . (18)

Since Qz 6= ∅ by (17), we may pick qz ∈ Qz, and consider the x–z path
R := P ∪ yqzz, which contains y. Clearly, we are done if R is induced (which,
in fact, constitutes a contradiction to (14)). So, suppose that R has a chord e,
and observe that because of NG(qz) ⊆ NG(y) ∩NG(z) ∪ {y, z} and since z has
no neighbour on P , it follows that e = qzy

−, where y− is the predecessor of y
on P . Let us check that qzy

− /∈ E(G).
As P is chosen to be disjoint from NG(qx)∩NG(y) we deduce that qx is not

adjacent to y−. Moreover, z cannot be a neighbour of y− either by (18), and
z and qx are non-adjacent as qx ∈ Qx = Q \ Qz. Consequently, as qz, z, qx, y

−

cannot induce a claw, qz and y− cannot be adjacent. This concludes the proof
of Claim (15).

Claim (15) asserts that for all q ∈ Q the set NG̃(y)∩NG̃(q)∪{q} separates x̃

from y in G̃. For some q′ ∈ Q choose a minimal x̃–y separator S in G̃−Q that
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is contained in NG̃(y) ∩NG̃(q
′), and observe that we must have S ⊆ NG̃(q) for

all q ∈ Q. Now, recall that Q is a clique, and note that S is a clique, too, since
there are no claws with centre q′. Thus, the fact that S ⊆ NG̃(q) for all q ∈ Q

implies that S ∪Q is a clique. As S ∪Q, furthermore, separates x̃ from y in G̃,
and then also {x, z} from y in G, we obtain a contradiction to our assumption
that (ii) does not hold.

Proof of Theorem 6. Assume that (ii) does not hold. Let X = {x1, x2} and
Y = {y1, y2}, and observe that we may assume that {x1, x2, y1, y2} are pairwise
non-adjacent. Indeed, since X and Y are non-touching, we may only have x1x2

or y1y2 as edges in G. Both edges, however, constitute a clique as in (ii).
Denote by G̃ the graph obtained by identifying x1 and x2 to a vertex x̃.

Application of Theorem 5 to G̃ and y1, x̃, y2 in the roles of x, y, z yields an
induced y1–y2 path P̃ through x̃ in G̃. Viewed in G, P̃ either splits into two
disjoint induced X–Y paths R1 and R2, or we obtain an induced path y1–y2
path P through x1 or through x2; let us say through x1. In the former case, as
P̃ is induced R1 and R2 are non-touching, except when the second vertex v of
R1 or of R2 is adjacent to both of x1 and x2. Then, however, v, x1, x2 and the
successor of v induce a claw.

So, let us consider the case when we obtain an induced path y1–y2 path P
through x1. Then application of Lemma 7 to the x1–y1 and x1–y2 subpaths of
P finishes the proof.

4 Algorithmic consequences

Lévêque, Lin, Maffray and Trotignon’s algorithm [7] for detecting a hole through
two given vertices x and y in a claw-free graph G (the Hole-through-two-

Vertices problem) has a running time of O(|V (G)|4)—provided x and y have
degree 2. By performing the algorithm once for each pair of a neighbour of x
and of y while deleting all others, we trivially can always reduce to the degree 2
case, at the cost of incurring an even higher running time. (We should point
out, though, that the algorithm given in [7] covers more general inputs than
claw-free graphs.)

In contrast, the structure result in Theorem 2 allows us to check for a hole
in O(|E(G)| · |V (G)|)-time without any requirements on the degree of x and
y. As a tool we use that clique decompositions as introduced by Wagner [12]
can be computed efficiently, for instance with the algorithm of Tarjan [11] or of
Whitesides [13].

Given a graph G, if there is a clique separator K we can decompose G
into two parts G1, G2, where G1, G2 are induced subgraphs of G each properly
containing K so that G = G1∪G2 and K = G1∩G2. By repeating this process
as long as possible we arrive at a set of induced subgraphs of G that do not
contain any clique separator anymore; these are the atoms of the concrete clique
decomposition. We note the following:

for two vertices x and y there exists an atom containing them
both if and only if there does not exist any x–y clique separator
in G.

(19)

Let G be a claw-free graph on n vertices and m edges, and let x and y be two
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non-adjacent vertices of G. We now describe an algorithm that decides whether
there is a hole containing x and y.

(1) Check whether x and y are in the same component C of G. If they are not,
output no; otherwise replace G by C.

(2) Set Z := N(x) ∩ N(y) and for each z ∈ Z check whether x and y are in
different components of G − N(z) − z. If this is not the case for some z
output yes.

(3) Use Tarjan’s algorithm [11] in order to compute a clique decomposition in
at most n− 1 atoms G1, . . . , Gk of G− Z.

(4) Check whether there is a Gi that contains both x and y—if that is the case
output yes, else output no.

Theorem 2 in conjunction with (19) asserts that the algorithm is correct.
Let us turn to the running time. The only purpose of Step (1) is to take care of
the exceptional case when we have far fewer edges than vertices as replacing G
by C ∪ {y} allows us to assume that m ≥ n− 2. Checking whether two vertices
are in the same component can be done in O(m+n)-time, so that Step (1) takes
O(m+n) time and Step (2) at most O(mn) time. The running time of Tarjan’s
algorithm is O(mn), and every of the ≤ n− 1 Gi of Step (3) contains at most n
vertices, which means we need at most O(n2)-time for this step. In conclusion,
we have proved the following:

Theorem 8. Let a claw-free graph G and two non-adjacent vertices x and y be
given. If G has n vertices and m edges then it can be checked in O(mn)-time
whether there is a hole containing x and y.

The algorithm by Lévêque et al rests on Chudnovsky and Seymour’s algo-
rithm [2] for the Three-in-a-Tree problem:

Three-in-a-Tree. Given a graph G and three vertices x, y, z decide whether
there exists an induced subtree of G containing x, y, z.

Chudnovsky and Seymour show that Three-in-a-Tree can be solved in
O(|V (G)|4)-time. In a claw-free graph every induced tree is a path, so appli-
cation of Theorem 5 permits to reduce the running time for claw-free graphs
considerably.

Theorem 9. Three-in-a-Tree can be solved in O(mn)-time in claw-free
graphs, where m is the number of edges and n the number of vertices.

Proof. As in Theorem 8 Tarjan’s algorithm can be used to check whether The-
orem 5 (ii) holds or not.

5 Open Questions

We conclude the paper with several open questions. The first one concerns a
natural generalisation of Theorem 1.

Question 10. Given a claw-free graph G, and three pairwise non-adjacent ver-
tices x, y, z, when is there a hole through x, y and z?
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Which conditions would be necessary or at least sufficient to force the exis-
tence of such a hole? For a hole through just two predetermined vertices, the
absence of common neighbours made for a simpler statement. So, it appears
prudent to first focus on the case when there are no vertices adjacent to two of
x, y, z. Next, if G does contain a hole through x, y and z then it also contains
an induced u–v path through w for any permutation (u, v, w) of (x, y, z). Thus,
the obstructions described in Theorem 5 become relevant here. These are: a
clique that separates two of {x, y, z} from the third, and a permutation (u, v, w)
of (x, y, z) so that N(u) separates v and w.

Excluding these two obstructions is not enough to guarantee the desired hole,
not even when G is the line graph of some graph H. Then the problem reduces
to the question whether there is a (not necessarily induced) cycle through three
independent edges in H. Therefore, the case of k = 3 of the Lovász-Woodall
conjecture might suggest additional conditions:

Conjecture 11 (Lovász [8]; Woodall [14]). Let F be a set of k independent
edges in a k-connected graph. If k is even or G−F is connected, then G admits
a cycle containing every edge of F .

Several partial results are known. In particular, the case k = 3 can be found
in Lovász [9, Ex. 6.67]. Recently, Kawarabayashi announced a full proof of the
conjecture, the first part of which appeared in [6].

Returning to Question 10, let us translate the assumptions of the conjecture
on H to its line graph G. The condition that x, y, z should not form an edge
cut in H, turns into the requirement that {x, y, z} should not be a cut-set of
G, a requirement that can easily be seen to be necessary for arbitrary claw-free
graphs G. Assuming that H is 3-connected means that G = L(H) is 3-clique-
connected, that is, there are no two cliques K,L so that G − K − L has two
non-singleton components.

To sum up, is it true that any claw-free graph G contains a hole through
any non-adjacent vertices x, y, z, provided that no vertex is adjacent to two of
{x, y, z}, that N(u) does not separate v from w for any permutation (u, v, w) of
(x, y, z), that G− {x, y, z} is connected and that G is 3-clique-connected?

There is another quite obvious direction in which Theorem 1 could possibly
be extended. Our initial motivation stemmed from the polynomial time algo-
rithm of Lévêque et al [7] for the Hole-through-two-vertices problem in
claw-free graphs. In fact, Lévêque et al prove the existence of such an algorithm
not only for claw-free graphs but for H-free graphs, where H is any subdivision
of a claw. Does Theorem 1 likewise generalise to H-free graphs? Naturally, the
obstructions to the existence of a hole would become more general.

Secondly, how (if at all) does Theorem 6 generalise to larger path systems?

Question 12. Let X and Y be two non-touching sets of cardinality k in a
claw-free graph G. When does G admit k pairwise non-touching X–Y paths in
G?

Considering Theorem 6, we can immediately think of two extremal types of
obstructions:

• an X–Y separator that consists of at most k − 1 cliques, and

• a subset Z ofX∪Y of cardinality < k such that N(Z) separatesX from Y .
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However, there exists a number of obstructions which fall between the above
two extremes. An example would be a set Z ⊆ X ∪ Y of cardinality r together
with s < k − r cliques K1 . . . ,Ks so that N(Z) ∪

⋃s

i=1
Ki separates X from Y .

We have discussed possible extensions of two of the main results. What about
the third, Theorem 5? Under what circumstances does there exist an induced
path through k given vertices in a claw-free graph? While Fiala, Kamiński,
Lidický and Paulusma [5] prove that there is a polynomial-time algorithm to
decide whether such a path exists if k is fixed, it appears doubtful that a nice
and simple structural result can be obtained.
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