
Periodical states and marching groups

in a closed owari

Henning Bruhn∗

Abstract

Owari is an old African game that consists of cyclically ordered pits
that are filled with pebbles. In a sowing move all the pebbles are taken
out of one pit and distributed one by one in subsequent pits. Repeated
sowing will give rise to recurrent states of the owari. Bouchet studied such
periodical states in an idealised setup, where there are infinitely many pits.
We characterise periodical states in owaris with finitely many pits. Our
result implies Bouchet’s result.

1 Introduction

Owari is an over 1000 years old game of African origin that is now played
worldwide. It and its variants are known under many names, some of which are
oware, awalé, warri and awari. Its gameboard consists of a number of cyclically
arranged pits or “houses”, typically twelve of them, each of which is filled with 4
seeds or pebbles at the beginning of the game. In a turn, one of the two players
takes all pebbles out of one pit and distributes them one by one in subsequent
pits in counterclockwise direction. This is called sowing. After having sown the
player captures certain pebbles. The player who captures more than half of all
pebbles wins. For precise rules see [1].

Owari is not only a very popular game in certain parts of Africa but has also
attracted some interest in the scientific community. The strategical aspect was
studied by Bal and Romein [2], who have determined by use of computer that
the game is always a draw if both players play optimally. Erickson [7] considered
similar games from a more combinatorial perspective. In contrast, Eglash [5, 6]
and Bouchet [3, 4] focussed on the sowing operation and, in particular, on
recurrent constellations of pebbles under repeated sowing. This will be our
main interest too.

Let us make this more precise. A state of the owari is described by the
number h of the pit from which we will sow next, this is called the active pit,
and a tuple with the numbers of pebbles in the respective pits. In the sowing
move, we sow from the active pit, which means that we remove all pebbles from
pit h and distribute them one by one in subsequent pits. Then we advance to
pit h + 1, i.e. pit h + 1 becomes active (here, we take the index h + 1 modulo
the number of pits). In the next sowing move, we sow from pit h + 1 and so on.
We call a state periodical if after p sowing moves the number of pebbles in pit
i + p equals the number of pebbles in pit i of the starting state, for all i.
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Figure 1: A period of length 2; the active pit is drawn in bold

A periodical state of period length 2 is illustrated in Figure 1. We start
with the pit to the bottom of the left owari, sow from it and advance one pit in
counterclockwise direction. After two steps we have regained our starting state
(modulo a rotation of the owari).

In Figure 1 we can witness another phenomenon. Since the first pit contains
at least as many pebbles as there are pits, we make a complete tour when sowing
from it and thus put a pebble in it.1 Whenever this happens we say that the
sowing overlaps.

In order to avoid overlapping Bouchet considered open owaris. While a closed
owari has finitely many pits arranged in a cycle as described in the previous
paragraphs, an open owari comprises infinitely many pits, layed out so that each
pit has a successor. An open owari may be seen as the limit of closed owaris.

... ...

Figure 2: A marching group in an open owari

Sowing is done as in closed owaris. An example of a periodical state in an
open owari is given in Figure 2. In contrast, adding two more pebbles to the
first (non-empty) pit would yield a non-periodical state. The constellation as in
the figure is of special interest as it is invariant to sowing; such a state is called
a marching group (of an open owari). It is easy to see that marching groups
always have the following form: the first non-empty pit is active and contains
r ∈ N pebbles, the pit following it contains r− 1 pebbles, and so on, to the last
non-empty pit containing exactly one pebble. The integer r is called the order
of the marching group.

We define an augmented marching group as follows: starting from a marching
group we can decide for every non-empty pit independently whether to add a
pebble or not. In addition, we are allowed (but do not need to do so) to put
one pebble in the first empty pit following the marching group. As an example,
consider Figure 3, where the marching group of order 3 is augmented by putting

1We should point out that the standard rules are slightly different. When sowing from
pit h it is not allowed to put a pebble in pit h. Rather, if necessary, pit h is skipped and the
pebble put in the next pit. Our rule bending, however, is not substantial. It is not hard to see
that there is a natural bijection between periodical states under standard rules and periodical
states under our simplified rules.
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one extra pebble in the first non-empty pit, and one pebble in the empty pit
succeeding the marching group.

... ...

... ...

... ...

Figure 3: Marching group of order 3, augmented by two pebbles

Bouchet [3] characterises the periodical states in an open owari:

Theorem 1 (Bouchet [3]). A state in an open owari is periodical if and only if
it is an augmented marching group.

Bouchet also determined the period lengths in an open owari:

Theorem 2 (Bouchet [3]). In an open owari, an integer p is the period of a
marching group of order r augmented by m ≤ r pebbles if and only if p = r+1

d
where d is divisor of r + 1 and of m.

We prove in the next section an extension of Theorem 1 to closed owaris.
Our result will imply Theorem 1. We remark that our proof is quite different
from the one given by Bouchet.

2 Closed owaris

We will deal with closed owaris, which consist of a finite number, n say, of
cyclically ordered pits. We consider the number n of pits to be fixed. A state
of the owari will be represented by a tuple O := [w0, . . . , wn−1] of non-negative
integers, the first of which corresponds to the pebbles in the active pit, i.e. the
pit from which we will sow next. Let w0 = qn+r with 0 ≤ r ≤ n−1. The process
of sowing can then be modelled by the sowing operator S, which we define as
follows: SO := [w′0, . . . , w

′
n−1] where w′i = wi+1 + q + 1 for i = 0, . . . , r − 1 and

w′j = wj+1 + q for j = r, . . . , n− 1 (setting wn = 0).
Since we are working in a closed owari rather than an open one, we need

to amend the definition of a marching group. For non-negative integers q, r
with r ≤ n − 1 we call the state [m0, . . . , mn−1] a marching group (in a closed
owari) and denote it by Mq,r if mi = (n − i)q + r − i for i = 0, . . . , r − 1 and
mj = (n− j)q for j = r, . . . , n− 1.

It is easy to see, but will formally be proved in the next lemma nevertheless,
that, again, a marching group is invariant under sowing. Indeed, Mq,r can be
seen as the sum of the two marching groups Mq,0 and M0,r. In Mq,0, sowing
simply means putting q pebbles in each pit. On the other hand, as r ≤ n−1, no
overlap occurs when sowing in M0,r and so, M0,r behaves as a marching group
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in an open owari. See Figure 4 for an example of a marching group in a closed
owari.

Figure 4: Marching group M2,1 in an owari with 3 pits

Lemma 3. A state in a closed owari is invariant under S if and only if it is a
marching group.

Proof. Let W = [w0, . . . , wn−1] be a state in a closed owari, and put SW =
[w′0, . . . , w

′
n−1].

First, let W = Mq,r be a marching group. Then w′i = wi+1 + q + 1 =
(n− (i+1))q + r− (i+1)+ q +1 = (n− i)q + r− i for i = 0, . . . , r−1 (note that
also wi = (n−i)q+r−i for r = i) and w′j = wj+1+q = (n−(j+1))q+q = (n−j)q
for j = r, . . . , n− 1.

Second, assume SW = W , and let w0 = qn + r where 0 ≤ r ≤ n − 1.
Thus, wi = w′i = wi+1 + q + 1 and wj = w′j = wj+1 + q for 0 ≤ i ≤ r − 1
and r ≤ j ≤ n − 1. Starting with wn−1 = q we can easily solve this system of
equations, whose solution is the marching group Mq,r.

We call a state [m0 +a0, . . . ,mr +ar, mr+1, . . . , mn−1] an augmented march-
ing group (in a closed owari) if [m0, . . . , mn−1] = Mq,r for some integer q ≥ 0
and if ai ∈ {0, 1} for all i. As an example, we remark that Figure 1 shows the
marching group M1,1 augmented by one pebble in pit 1. Note that the augmen-
tation of the marching group M0,r can be viewed as an augmented marching
group in an open owari.

A state W of a closed owari is periodical if there is an integer p ≥ 1 so
that SpW = W . The smallest such p is the period of W . Marching groups are
precisely the states that have period 1.

Let us now finally state and prove our main result:

Theorem 4. A state in a closed owari is periodical if and only if it is an
augmented marching group.

Proof. To check sufficiency, let W = [m0 + a0, . . . , mr + ar,mr+1, . . . , mn−1] be
an augmented marching group, i.e. let Mq,r = [m0, . . . , mn−1] for some q, and
let a0, . . . , ar ∈ {0, 1}. Then

SW = [m0 + a1, . . . ,mr−1 + ar,mr + a0, mr+1, . . . , mn−1],

and clearly, SrW = W .
So, let us prove that every periodical state, W = [w0, . . . , wn−1] say, is an

augmented marching group. For j ≥ 0, put [wj
0, . . . , w

j
n−1] := SjW . Choose

m0 maximal such that there is an integer j ≥ 0 and a marching group Mq,r =
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[m0, . . . , mn−1] with mi ≤ wj
i for all i. Put di = wi −mi for all i. Since W is

periodical, and since wj
i −mi ≥ 0 for some j, it follows that di ≥ 0 as well for

all i.
We will reduce the sowing operation on W to an operation on the tuple D =

[d0, . . . , dn−1]. More generally, define an operation Sr on a state [e0, . . . , en−1]
as follows:

(I) [0, e1, . . . , en−1] → E, e0 → pebbles and r → position

(II) While pebbles > 0 do
increase E at position by 1
decrease pebbles by 1
increase position by 1 (modulo n)

(III) if E = [e′0, . . . , e
′
n−1] then output [e′1, . . . , e

′
n−1, e

′
0]

With this operation we get that SW = M + SrD, where addition is taken
componentwise. Since W is periodical under S so is, therefore, D under Sr.

Let dj
i be such that Sj

rD = [dj
0, . . . , d

j
n−1]. We will prove the theorem in four

steps. First, we claim that

for all integers j ≥ 0 there is an index i ∈ {0, . . . , r} such that dj
i = 0. (1)

Suppose that dj
i ≥ 1 for i = 0, . . . , r for some j. Put m′

0 = m0 + 1, and
assume first that r < n − 1. Then, m′

0 = qn + (r + 1), and we put m′
i :=

(n− i)q + (r + 1)− i = mi + 1 for i = 0, . . . , r− 1, m′
r := (n− r)q + 1 = mr + 1

and m′
i := (n − i)q = mi for i = r + 1, . . . , n − 1. Thus, the m′

i form the
marching group Mq,r+1. Then, m′

i = mi + 1 ≤ mi + dj
i = wj

i for i = 0, . . . , r

and m′
i = mi ≤ wj

i for i ≥ r + 1, contradicting our maximal choice of m0. If
r = n−1 we see in a similar way that m′

0 and the marching group Mq+1,0 would
have been a better choice. This proves (1).

Secondly, we show that

there is a constant c ≤ r such that for all integers j ≥ 0 the number cj

of non-zeros among dj
0, . . . , d

j
r is exactly c.

(2)

Observe that cj ≤ cj+1 for all j. Indeed, sowing or, more precisely, application
of Sr can only introduce a new zero at position r. Since dj+1

r = dj
r+1 + e where

e ≥ 1 if dj
0 ≥ 1, this can only happen if dj

0 = 0. But then the gain of the zero at
position r is balanced by the loss of a zero at the first position. Thus, cj ≤ cj+1.
Since D is periodical under Sr we deduce c0 = cj =: c for all j. Claim (1)
implies c ≤ r.

Thirdly, we claim that

for all integers j ≥ 0 it holds that dj
i ≤ 1 for i = 0, . . . , r. (3)

Suppose not. Let s be the smallest positive integer for which there exist an
integer j and k ∈ {0, . . . , r} such that dj

k ≥ 2 and dj
k+s = 0 where the index

is taken mod (r + 1) (such an s exists, by (1)). By applying Sr k more times,
we may assume that k = 0. Thus, Sj

rD starts with an element ≥ 2, which
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is followed by s entries of 1, which, in turn, precede a 0. Assume first that
r < n− 1. Then, further applications of Sr yield the following:

[≥ 2,

s times︷ ︸︸ ︷
1, . . . , 1, 0, ∗, . . . , ∗] → [

s times︷ ︸︸ ︷
1, . . . , 1, 0, ∗, . . . , ∗,

pos r

≥ 1 ,≥ 1, ∗, . . . , ∗]

→ [

s−1 times︷ ︸︸ ︷
1, . . . , 1 , 0, ∗, . . . , ∗,≥ 1,

pos r

≥ 2 , ∗, . . . , ∗]
→ s−1 applications of Sr. . . →

→ [0, ∗, . . . , ∗,≥ 1,≥ 2,

s−2 times︷ ︸︸ ︷
≥ 1, . . . ,≥ 1,

pos r

≥ 1 , ∗, . . . , ∗]

→ [∗, . . . , ∗,≥ 1,≥ 2,

s−1 times︷ ︸︸ ︷
≥ 1, . . . ,≥ 1,

pos r

≥ 0 , ∗, . . . , ∗].

The entry of ≥ 0 at position r in the last state cannot be larger than zero, since
in that case cj would increase, which is impossible, by (2). Then, however,
there at most s − 1 ones between an entry of ≥ 2 and the zero at position r,
contradicting our choice of s. For r = n− 1 the argumentation is similar. This
proves (3).

In order to finish the proof of the theorem it suffices, in view of (3), to
establish the following claim:

dr+1 = . . . = dn−1 = 0. (4)

Suppose there is an i ≥ r + 1 for which di ≥ 1. Then dj+1
r ≥ di + e for

j = i − r and e = 1 if dj
0 ≥ 1 and e = 0 otherwise. From (3) it follows that

e = 0 as otherwise dj+1
r ≥ 2. However, e = 0 and thus dj

0 = 0 entails the
introduction of a new non-zero among dj

0, . . . , d
j
r in step j + 1, i.e. cj < cj+1,

which contradicts (2).

We note that Theorem 1 follows easily from our main result. Indeed, let Q
be a finite tuple representing consecutive pits of a periodical state in an open
owari such that every pit outside this range is empty, and let n− 1 be the total
number of pebbles the state contains. By appending 0-entries we can turn Q
into a state W of a closed owari with n pits. Because of the size of the owari
an overlap will never occur, and W will be periodical too. Therefore, W is a
marching group Mq,r augmented by m pebbles. As W contains only n pebbles,
it follows that q = 0. Since M0,r can be seen as a marching group in an open
owari it follows that Q represents an augemented marching group in an open
owari.

With the same reduction we can use Theorem 1 to characterise the periods
of closed owaris too.
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