Clique or hole in claw-free graphs

Henning Bruhn

joint with Akira Saito

Équipe Combinatoire et Optimisation Université Pierre et Marie Curie

x-y path

two disjoint x-y paths

interference

two disjoint x-y paths without interference

x–y holes

x–y **Hole**

Given: G, x, yIs there a hole through x and y?

Theorem (Bienstock '91) *x*-*y* HOLE *is NP-complete.*

x–y holes

x–y **Hole**

Given: G, x, yIs there a hole through x and y?

Theorem (Bienstock '91) *x*-*y* HOLE *is NP-complete.*

Easy for line graphs G = L(H)

- just need to check for two disjoint paths
- simple polynomial time algorithm

Polynomial time algorithm

Existence of polynomial time algorithm...

Polynomial time algorithm

Existence of polynomial time algorithm...

the claw

Lévêque, Lin, Maffray and Trotignon:

- $O(n^4)$ -algorithm for G(n vertices)
- algorithm not very practical

Hole or clique

Given: non-adjacent vertices x and y

Naive conjecture

No clique that separates *x* from *y* \Rightarrow *x*-*y* hole

Hole or clique

Given: non-adjacent vertices x and y

Naive conjecture

No clique that separates *x* from *y* \Rightarrow *x*-*y* hole

Naive conjecture

no x-y hole...

no clique that separates x from y

Naive conjecture

■ no *x−y* hole...

- no clique that separates x from y
- but: claw

Theorem

Let G be claw-free and x, y non-adjacent and without common neighbours. Then there exists a hole through x and y iff there is no clique separating x and y.

false with common neighbours

With common neighbours

a hole through a common neighbour

Theorem

Let G be claw-free and x, y non-adjacent. Then:

There exists a hole through x and y; or

there exists a clique separating x and y in $G - N(x) \cap N(y)$, and for every $q \in N(x) \cap N(y)$: $q \cup N(q) \setminus \{x, y\}$ separates x and y in G.

x–y **HOLE**

Given G, x, y check whether G contains a hole through x and y.

 \exists hole through *x* and *y* iff $\nexists x-y$ clique separator

For claw-free G...

- Use Tarjan's clique decomposition algorithm
- x-y HOLE can be solved in $O(|E| \cdot |V|)$ -time previously $O(|V|^4)$ (Lévêque et al)

Three-in-a-Tree

THREE-IN-A-TREE

Given G, x, y, z check whether G contains an induced tree containing x, y and z.

Theorem (Chudnovsky & Seymour)

THREE-IN-A-TREE can be solved in $O(|V|^4)$ -time.

Three-in-a-Path

 $\label{eq:Glaw-free} \begin{array}{l} G \text{ claw-free} \rightarrow \\ \text{tree becomes induced path} \end{array}$

When is there an induced x-z path through y?

obstructions:

Theorem

Let G be claw-free and x, y, z non-adjacent. Then:

- There exists an induced x-z path through y; or
- there exists a clique separating $\{x, z\}$ and y, or N(x) separates z from y, or N(z) separates x from y.

- follows from x-y hole theorem
- allows for $O(|E| \cdot |V|)$ -algorithm

Extensions?

Given k vertices X in claw-free G, when is there a hole through all of X?

- \rightarrow in line graphs: search for cycle through *k* edges
- \rightarrow too ambitious

Lovász-Woodall Conjecture

Let *H* be *k*-connected, *F* set of *k* independent edges, and if *k* is odd, assume G - F to be connected. Then there is a cycle through *F*.

• true for k = 3, 4

full proof announced by Kawarabayashi

- When is there a hole through x, y, z in a claw-free graph?
- complexity?