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Abstract

Degree constrained orientations are orientations of an (undirected)
graph where the in-degree function satisfies given lower and upper bounds.
For finite graphs Frank and Gyárfás (1976) gave a necessary and sufficient
condition for the existence of such an orientation. We extend their result
to countable graphs.

1 Introduction

Orientations of finite graphs are well-studied. An early result is the theorem of
Robbins [10] on the existence of a strongly connected orientation. This result
has been widely generalised by Nash-Williams [8] in 1960, who described orien-
tations satisfying global or (symmetric) local edge-connectivity requirements.
Ford and Fulkerson [4] investigated when a partial orientation can be completed
to a di-eulerian one. As a last example, let us cite Frank [5] who characterised
the graphs that can be oriented in such a way that there are k directed paths
between a specified vertex and every other vertex.

In contrast, not much is known about orientations of infinite graphs. An ex-
ception is an old result of Egyed [3] that extends Robbins’ theorem on strongly
connected orientations. We mention also Thomassen [11] who raised some re-
lated conjectures.

In this paper, we will focus on degree constrained orientations in infinite
(but countable) graphs. These are orientations where the in-degree function,
i.e. the function counting the number of ingoing edges at each vertex, satisfies
given lower and upper bounds. Degree constrained orientations have a close
relationship to Hall’s marriage theorem, and are also used by Berg and Jordán [1]
in the context of graph rigidity. For finite graphs, Frank and Gyárfás [7] gave
a necessary and sufficient condition for the existence of a degree constrained
orientation. In infinite graphs, however, their condition is no longer sufficient.
By strengthening the Frank-Gyárfás condition we will recover sufficiency while
maintaining necessity.

Let us briefly recall some standard notation. For subsets U, W of the vertex
set of a graph G = (V, E) denote by iG(U) the number of edges in G having both
endvertices in U and by dG(U, W ) the number of edges in G with one endvertex

in U \ W and the other in W \ U . For a directed graph ~G and X ⊆ V (~G) let
ρ~G

(X) (resp. δ~G
(X)) denote the number of edges entering (resp. leaving) the
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set X . If x is a vertex, we write ρ~G
(x) instead of ρ~G

({x}), and if no confusion

can arise we will omit the subscripts G and ~G. For a function m : V → R and
X ⊆ V we will use the notation m(X) to mean

∑
x∈X m(x). Unfortunately,

this notation is slightly inconsistent, in so far as ρ~G
(X) is, in general, not the

same as
∑

x∈X ρ~G
(x).

Theorem 1 (Frank and Gyárfás [7]). Let G = (V, E) be a finite graph, and let

l, u : V (G) → Z be such that l(v) ≤ u(v) for all v ∈ V . Then

(i) there exists an orientation ~G of G such that l(v) ≤ ρ~G
(v) ≤ u(v) for each

vertex v if and only if

(ii) l(X) ≤ i(X) + d(X, V \ X) and u(X) ≥ i(X) for all X ⊆ V (G).

For a proof see also Frank [6].
The result carries over to locally finite graphs (graphs that while possibly

infinite have finite degree in each vertex) by an easy compactness argument. For
non-locally finite graphs, however, the condition (ii) is too weak for the lower
bound, as can be seen by considering an infinite star and setting l ≡ 1. There
is no orientation satisfying the lower bounds while (ii) clearly holds.

Before we look at this example in more depth, let us rephrase Theorem 1.
If we define the surplus to be s(X) = i(X) + d(X, V \ X) − l(X) for a graph
G = (V, E) and a set X ⊆ V , then the theorem states that there is an orientation
satisfying the lower bounds if and only if there is no set of negative surplus. Our
aim is to find a condition in this vein.

Compare the infinite star with a finite star with the same lower bound of 1
everywhere. The whole finite star has negative surplus of −1, showing that
there is no orientation satisfying the lower bound. Instead of computing this
surplus directly let us do it in two steps. First, we observe that the set L of all
leaves has surplus s(L) = 0. Now, if we add the centre c to L we do not gain
any new edges since every edge is already incident with a leaf but since l(c) > 0
the demand for ingoing edges increases. Hence, L ∪ {c} has negative surplus.

Let us try to do the same for the infinite star. We immediately encounter the
problem that the set L of all leaves is incident with infinitely many edges but has
infinite demand for ingoing edges, i.e. l(L) = ∞. This results in s(L) = ∞−∞,
for which it is not clear which value this should be. So, let us compute the
surplus of L in a similar stepwise fashion as above. Indeed, enumerate the
leaves of the infinite star and denote by Ln the set of the first n leaves, which
then has surplus 0. As L is the limit of the sets Ln it seems justified to define
the surplus of L as the limit of s(Ln), which therefore yields 0. Now, adding
the centre c to L we see as for the finite star that the set L ∪ {c} has negative
surplus. Consequently, the set L ∪ {c} is a witness for the non-existence of an
orientation respecting the lower bounds.

We will now turn the ad hoc reasoning in the preceding paragraph into a
formal condition. Fix a graph G = (V, E), and for an ordinal number θ call a
family Uθ := (Uµ)µ≤θ of subsets of V a queue in G if

• U0 = ∅;

• Uµ ⊆ Uλ for all µ ≤ λ ≤ θ;

• Uλ =
⋃

µ<λ Uµ for each limit ordinal λ ≤ θ.
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We write Uλ for the initial segment up to λ of Uθ, i.e. Uλ = (Uµ)µ≤λ.
Let l : V → Z be a non-negative function, and let Uθ = (Uλ)λ≤θ be a queue

in G. Putting η(U0, l) = 0, we define by transfinite induction a function η such
that

η(Uλ+1, l) = η(Uλ, l) + i(Uλ+1 \ Uλ) + d(Uλ+1 \ Uλ, V \ Uλ+1) − l(Uλ+1 \ Uλ)

and such that η(Uλ, l) = lim infµ<λ η(Uµ, l) for limit ordinals λ. In the com-
putation of η we might need to calculate with ∞; we use the convention that
∞−∞ = ∞. Sometimes, if confusion can arise, we will write ηG to specify the
underlying graph. We remark that for a finite vertex set the η-function provides
merely an overly complicated way of computing its surplus. For infinite sets,
however, η can be seen as a refinement of the surplus.

A set U ⊆ V will be called l-deficient (or simply deficient if l is clear from
the context) if there exists a queue Uθ = (Uλ)λ≤θ with U = Uθ and η(Uθ, l) < 0.
Deficient sets will play the same role as sets of negative surplus in the finite
case.

We can now state our main result, which we will prove in the next section:

Theorem 2. Let G = (V, E) be a countable graph, and let l, u : V → Z∪{∞} be

non-negative functions with l ≤ u. Then the following statements are equivalent:

(i) there exists an orientation ~G of G such that l(v) ≤ ρ~G
(v) ≤ u(v) for each

vertex v; and

(ii) there are no l-deficient sets and u(X) ≥ i(X) for all finite X ⊆ V (G).

We mention that the theorem is very much in spirit of [9], in which Nash-
Williams extends Hall’s marriage theorem to countable graphs. This is perhaps
not at all surprising since for finite graphs Theorem 1 can be reduced to the
marriage theorem and vice versa. For infinite graphs, there are several versions
of Hall’s theorem. From the one in [9] one can indeed obtain our main result.
However, as our proof is not a simple translation of Nash-Williams’ arguments
and as the reduction of Theorem 2 to Nash-Williams’ theorem is not at all
immediate (it takes about two pages), we see merit in providing a direct proof.

Nash-Williams’ idea to refine a finite condition by using transfinite sequences
is also used in Wojciechowski [12], who investigates when an infinite family of
matroids on the same ground set has a system of disjoint bases.

2 Proof of main result

The graphs we consider are allowed to have parallel edges and loops and may
be infinite. For general graph theoretic notation and terms we refer the reader
to Diestel [2]. In this section G will always denote a graph with vertex set V
and edge set E, and l, u : V → Z ∪ {∞} will always be non-negative functions
such that l ≤ u.

We shall prove the main result in the course of this section. Let us start with
the observation that the function η satisfies a submodularity-type inequality (a
set function b : 2V → R is called submodular if b(X)+b(Y ) ≥ b(X∩Y )+b(X∪Y )
for any X, Y ⊆ V ). More precisely, it is easy to see that for the surplus function
it holds that

s(U) + s(W ) = s(U ∪ W ) + s(U ∩ W ) + d(U \ W, W \ U),
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where U, W are vertex sets. (Clearly, this implies that s is submodular.) The
lemma below states that a similar relation is true for η.

For a set X ⊆ V , we will denote its complement V \X by X if the base set V
is clear from the context. To ease notation further, we will say that U = (Uλ)λ≤θ

is a queue for a set U if U = Uθ. For a successor ordinal λ, we write (slightly
abusing notation) λ−1 for the ordinal µ for which λ = µ+1. We also introduce
the notation U ′

λ := Uλ \ Uλ−1.

Lemma 3. Let U = (Uλ)λ≤θ be a queue for U and W = (Wλ)λ≤κ be a queue

for W . Define queues X = (Xλ)λ≤κ with Xλ = U ∩ Wλ for every λ ≤ κ and

Y = (Yλ)λ≤θ+κ with Yλ = Uλ for λ ≤ θ and Yθ+λ = U ∪ Wλ for λ ≤ κ. Then

η(U , l) + η(W , l) ≥ η(X , l) + η(Y, l) + d(W \ U, U \ W ).

Proof. We shall show that

η(U , l) + η(Wλ, l) ≥ η(Xλ, l) + η(Yθ+λ, l) + d(Wλ \ U, U \ Wλ) (1)

for all λ ≤ κ, which will give the statement with λ = κ.
We have η(W0, l) = η(X0, l) = 0, η(Yθ, l) = η(U , l) and d(W0 \U, U \W0) = 0

since W0 = ∅. Therefore, (1) holds with equality for λ = 0. We proceed by
transfinite induction. Let λ be the smallest ordinal for which (1) is not yet
shown.

λX’

W’λ
Y’θ+λ

Wλ

U

...

Figure 1: Relevant sets in Lemma 3

First, assume λ to be a successor ordinal. Observe that

dx := d(X ′
λ, Xλ) = d(X ′

λ, Wλ \ U) + d(X ′
λ, Wλ).

and

dy := d(Y ′
θ+λ, Yθ+λ) = d(W ′

λ \ U, U ∪ Wλ).

We use these two relations in what follows:

d(X ′
λ, Wλ \ U) + d(W ′

λ, Wλ)

= d(X ′
λ, Wλ \ U) + d(Y ′

θ+λ, Yθ+λ)

+d(Y ′
θ+λ, U \ Wλ) + d(X ′

λ, Wλ)

= dx + dy + d(Y ′
θ+λ, U \ Wλ)
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Noting that
i(W ′

λ) = i(X ′
λ) + i(Y ′

θ+λ) + d(X ′
λ, Y ′

θ+λ),

and that
d(X ′

λ, Wλ \ U) = d(X ′
λ, Y ′

θ+λ) + d(X ′
λ, Wλ−1 \ U),

we obtain

d(X ′
λ, Wλ−1 \ U) + d(W ′

λ, Wλ) + i(W ′
λ)

= dx + i(X ′
λ) + dy + i(Y ′

θ+λ) + d(Y ′
θ+λ, U \ Wλ)

(2)

Using this and the induction hypothesis for λ − 1 we get

η(U , l) + η(Wλ, l) = η(U , l) + η(Wλ−1, l) + d(W ′
λ, Wλ) + i(W ′

λ) − l(W ′
λ)

(1)

≥ η(Xλ−1, l) + η(Yθ+(λ−1), l) + d(Wλ−1 \ U, U \ Wλ−1)

+d(W ′
λ, Wλ) + i(W ′

λ) − l(W ′
λ)

= η(Xλ−1, l) + η(Yθ+(λ−1), l) + d(Wλ−1 \ U, U \ Wλ)

+d(Wλ−1 \ U, X ′
λ) + d(W ′

λ, Wλ) + i(W ′
λ) − l(W ′

λ)

(2)
= η(Xλ−1, l) + dx + i(X ′

λ) − l(X ′
λ)

+η(Yθ+(λ−1), l) + dy + i(Y ′
θ+λ) − l(Y ′

θ+λ)

+d(Wλ−1 \ U, U \ Wλ) + d(Y ′
θ+λ, U \ Wλ)

= η(Xλ, l) + η(Yθ+λ, l) + d(Wλ \ U, U \ Wλ).

This proves the induction step when λ is a successor ordinal.
Second, assume that λ is a limit ordinal. Then

η(U , l) + η(Wλ, l) = η(U , l) + lim inf
µ<λ

η(Wµ, l)

≥ lim inf
µ<λ

(η(Xµ, l) + η(Yθ+µ, l) + d(Wµ \ U, U \ Wµ))

≥ η(Xλ, l) + η(Yθ+λ, l) + lim inf
µ<λ

d(Wµ \ U, U \ Wµ).

Furthermore, for any µ < λ we get

d(Wµ \ U, U \ Wµ) = d(Wµ \ U, U \ Wλ) + d(Wµ \ U, U ∩ (Wλ \ Wµ))

≥ d(Wµ \ U, U \ Wλ).

It is easy to see that lim infµ<λ d(Wµ \ U, U \ Wλ) = d(Wλ \ U, U \ Wλ) since
Wλ =

⋃
µ<λ Wµ. Putting all this together we obtain (1).

We call a vertex set U l-tight if (it is not l-deficient and) there exists a queue
(Uλ)λ≤θ for U with η(Uθ, l) = 0. If it is clear in regard to which function l a
set is tight, we will suppress the l. Tight sets are the most critical sets, and it
can be seen that in an orientation respecting the lower bound l there can be no
edge leaving a tight set.

Lemma 3 immediately implies that the intersection and the union of two
tight sets is tight, too. We will need a little bit more, namely that this also
holds for the union of countably many tight sets:

Lemma 4. Assume that there are no deficient sets in G, and let U1, U2, . . . be

countably many tight sets. Then also their union is tight.
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Proof. Let U i = (U i
λ)λ≤θi

be queues witnessing the tightness of Ui for each i, i.e.
η(U i, l) = 0 and U i

θi
= Ui. For any n ∈ N, set κn =

∑n
i=1 θi and κ =

∑∞

i=1 θi.
Then we can define the queue Y = (Yλ)λ≤κ with Yκn−1+λ = Yκn−1

∪Un
λ if λ ≤ θn

(where κ0 = 0 and Y0 = ∅) and Yκ =
⋃∞

n=1 Yκn
. By Lemma 3 and induction we

get η(Yκn
, l) = 0 for all n ≥ 0:

η(Yκn
, l) ≤ η(Yκn−1

, l) + η(Un, l) = 0 + 0.

(Note, that there are no deficient sets.) From this it follows that η(Y, l) =
lim infλ<κ η(Yλ, l) ≤ 0. Again, as there are no deficient sets, this implies that
Yκ =

⋃∞

i=1 Ui is tight.

As for the lower bound we will define deficiency and tightness of sets with
respect to the upper bound, too. We call a finite vertex set X u-faulty, if
u(X) − i(X) < 0, and we call it u-taut if u(X) − i(X) = 0. Again, if u is clear
from the context, we will omit it.

In the last lemma we saw that the union of tight sets is tight. In contrast,
for taut sets we will need that their intersection is taut:

Lemma 5. If there are no faulty sets in G then the following is true:

(i) if X and Y are two taut sets then X ∩ Y is taut and there is no edge

between X \ Y and Y \ X; and

(ii) the intersection of arbitrarily many taut sets is taut.

Proof. (i) On the one hand, we get

i(X) + i(Y ) = u(X) + u(Y ) = u(X ∪ Y ) + u(X ∩ Y ) ≥ i(X ∪ Y ) + i(X ∩ Y )

and on the other hand, i is supermodular, i.e. it holds that:

i(X) + i(Y ) ≤ i(X ∪ Y ) + i(X ∩ Y ).

Thus, we have equality everywhere. In particular, if there was an edge between
X \Y and Y \X then i(X)+ i(Y ) < i(X ∪Y )+ i(X∩Y ), which is not the case.

(ii) Let Xi, i ∈ I be taut sets. Since by definition each of the Xi is finite, their
intersection is also finite. Hence, there are already finitely many Xj, j ∈ J ⊆ I
with

⋂
i∈I Xi =

⋂
j∈J Xj. Therefore, we only need to check that the intersection

of two taut sets is taut, which is true by (i).

In Theorem 2 (ii) the conditions regarding the lower and the upper bound
are independent of each other. The following lemma provides a link between
tight and taut sets.

Lemma 6. Let there be neither deficient sets nor faulty sets in G, and let U be

a taut set and L be a tight set. Then U \ L is taut and L \ U is tight.

Proof. Since the proof is technical but not too hard, we only give an indication
of how the lemma is proved.

Let L = (Lλ)λ≤θ be a queue with η(L, l) = 0 and Lθ = L, and define
M = (Lλ \ U)λ≤θ. Using transfinite induction and arguments similar to those
in the proof of Lemma 3, one can show that for any ordinal λ ≤ θ we have

η(Lλ, l) ≥ η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ).
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Now, for λ = θ this yields

0 = η(L, l) + u(U) − i(U)

≥ η(M, l) + i(L ∩ U) − l(L ∩ U) + u(U) − i(U) + d(L ∩ U, L)

≥ η(M, l) + u(U \ L) − i(U \ L) + (u − l)(L ∩ U)

Since η(M, l) ≥ 0, u ≥ l and since u(U \ L) ≥ i(U \ L) it follows that U \ L is
taut. This then also implies that η(M, l) = 0, and hence L \ U is tight.

Lemma 7. Let there be no u-faulty sets. Assume that for an edge e with

endvertices v, w there is no u-taut set U with v ∈ U but w /∈ U . Then, setting

u′(x) = u(x) for all vertices x 6= v and u′(v) = u(v) − 1, there are no u′-faulty

sets in G − e.

Proof. If u(v) = ∞ then for every set X ⊆ V we get u(X) = ∞, and thus
there cannot be any u′-faulty set in G − e. So, let u(v) < ∞, and suppose U is
u′-faulty in G − e. Clearly, v ∈ U but w /∈ U since there are no u-faulty sets
in G. But then U is u-taut in G, a contradiction.

We can finally prove our main result:

Proof of Theorem 2. (ii)⇒(i) Let v1, v2, . . . be a sequence of the vertices of G
such that every vertex v appears exactly l(v) times in it. Putting l0 = l and
u0 = u we recursively

(a) set ln(v) = ln−1(v) if v 6= vn and ln(vn) = ln−1(vn) − 1;

(b) set un(v) = un−1(v) if v 6= vn and un(vn) = un−1(vn) − 1; and

(c) find distinct edges e1, e2, . . . such that Gn := G − {e1, . . . , en} has no ln-
deficient and no un-faulty sets and such that en is incident with vn.

Assume that this has been achieved for i < n. It is not difficult to check directly
that picking any loop at vn for en we satisfy (a)–(c). However, if we agree that
vn is a neighbour of itself if there is a loop at vn then what follows covers also
loops.

For each neighbour w of vn in Gn−1 for which this is possible pick an ln−1-
tight set X with w ∈ X but vn /∈ X , and consider the union L of these sets. By
Lemma 4, L is still ln−1-tight. In a similar way, consider a minimal un−1-taut
set U that contains vn (where we set U = ∅ if there is no such set). From
Lemma 5 (ii) it follows that for a neighbour w of vn in Gn−1 for which there is
an un−1-taut set Y with vn ∈ Y but w /∈ Y it holds that w /∈ U . By Lemma 6,
U \ L is un−1-taut, too. As U is minimal this implies U = U \ L and therefore
that U and L are disjoint.

Next, if U 6= ∅ then there is a neighbour wn of vn in Gn−1 with wn ∈ U .
For if that was not the case, then, recalling that u(vn) > 0 by definition of vn,
we would have

i(U \ {vn}) = i(U) = u(U) > u(U \ {vn}),

which is a contradiction, as there are no un−1-faulty sets. Note that wn /∈ L
since U and L are disjoint. If, on the other hand, U = ∅ then there is a
neighbour wn /∈ L of vn in Gn−1. Indeed, suppose not. Let L := (Lλ)λ≤θ be a
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queue with η(L, ln−1) = 0 and Lθ = L (recall, that L is ln−1-tight). Put Lθ+1 =
L ∪ {vn}, and observe that i(Lθ+1 \ Lθ) = 0 (since there is no loop at vn) and
dGn−1

(Lθ+1 \ Lθ, V (Gn−1) \ Lθ+1) = 0. Thus, η(Lθ+1, ln−1) = −ln−1(vn) < 0,
(from the definition of our sequence v1, v2, . . . it follows that ln−1(vn) > 0).
Consequently, Lθ+1 is ln−1-deficient, contrary to our induction hypothesis. In
any case, let en be any edge between vn and wn and observe that, by Lemma 7,
there are no un-faulty sets in Gn. In addition, by construction of L and because
of wn /∈ L we get

there is no ln−1-tight set X in Gn−1 with wn ∈ X but vn /∈ X (3)

Let us check that there are also no ln-deficient sets in Gn. So, suppose there
is a ln-deficient set M in Gn, and let Mθ = (Uλ)λ≤θ be a queue in Gn with
M = Mθ and ηGn

(Mθ, ln) < 0. Since Gn differs from Gn−1 only in the edge en

we get, if neither vn ∈ M nor wn ∈ M , that ηGn−1
(Mθ, ln−1) = ηGn

(Mθ, ln),
which is impossible since M is not ln−1-deficient in Gn−1. In a similar way, if
ln−1(vn) < ∞ we can exclude the case when vn ∈ M as we lose an edge but
also have less demand of ingoing edges. If, on the other hand, ln−1(vn) = ∞
we can get rid of this case, too: Denote by λ the smallest ordinal for which
vn ∈ Mλ, which is a successor ordinal, by definition of a queue. Then as
ηGn−1

(Mλ, ln−1) ≥ 0 and as

ηGn−1
(Mλ, ln−1) = ηGn−1

(Mλ−1, ln−1) + i(M ′
λ) + d(M ′

λ, Mλ) −∞

it follows that ηGn−1
(Mλ, ln−1) = ∞, and hence ηGn−1

(Mθ, ln−1) = ∞. Be-
cause ηGn−1

and ηGn
can differ by at most one, we obtain ηGn

(Mθ, ln) = ∞, a
contradiction.

Therefore, we may assume that wn ∈ M but vn /∈ M (independent of the
value of ln−1(vn)). Now, let λ be the smallest ordinal for which wn ∈ Mλ, which
is a successor ordinal. Then,

dGn−1
(Mλ \ Mλ−1, Mλ) = dGn

(Mλ \ Mλ−1, Mλ) + 1,

and thus ηGn−1
(Mλ, ln−1) = ηGn

(Mλ, ln) + 1 (since vn /∈ Mλ implies that
ln−1(Mλ \Mλ−1) = ln(Mλ \Mλ−1)). Hence, ηGn−1

(Mθ, ln−1) = ηGn
(Mθ, ln)+

1. Now, since ηGn
(Mθ, ln) < 0 but ηGn−1

(Mθ, ln−1) ≥ 0 we obtain that
ηGn−1

(Mθ, ln−1) = 0. Therefore, M is an ln−1-tight set with vn /∈ M but
wn ∈ M , contradicting (3). Thus, there are no ln-deficient sets in Gn, as re-
quired.

Having terminated the transfinite induction, we put G0 = G − {e1, e2, . . .}.
We think of each edge en as already directed towards vn. In this way, each vertex
v has an indegree of exactly l(v) (by definition of the vertex enumeration). So,
what remains is to direct the edges in G0 in such a way, that the reduced upper
bound u0 := u − l is respected.

First, let us show that there are no u0-faulty sets in G0. Indeed, consider
a finite vertex set U in G0. Then there is an N such that uN(U) = u0(U)
and iGN

(U) = iG0(U), and thus u0(U) ≥ iG0(U) since uN (U) ≥ iGN
(U). As a

u0-faulty set is by definition finite, there is therefore no such set.
Second, let f1, f2, . . . be an enumeration of the edges of G0. Denote the

endvertices of f1 by x and y, and observe that if there is a u0-taut set X with
x ∈ X but y /∈ X then there is no u0-taut set Y with x /∈ Y but y ∈ Y , by
Lemma 5 (i).
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Now, if there is such a set X , then direct f1 towards y, and define u1(v) =
u0(v) for v 6= y and u1(y) = u0(y) − 1. If not, direct f1 in the other way, and
define u1 accordingly. Lemma 7 ensures that G1 = G0 − f1 has no u1-faulty
sets. Continuing in this way, we obtain the desired orientation. Indeed, suppose
a vertex v receives more ingoing edges than u(v). Then there is an N such that
uN (v) < 0, which implies that {v} is uN -faulty, a contradiction.

(i)⇒(ii) Let ~G be an orientation as in (i). Then trivially u(X) ≥
∑

v∈X ρ~G
(v) ≥

i(X) holds for any finite set X ⊆ V . In order to prove that there is no l-deficient
set, pick any queue Uθ := (Uλ)λ≤θ. We will show by transfinite induction that
η(Uλ, l) ≥ δ~G

(Uλ) for every λ ≤ θ. (Recall that δ~G
(U) denotes the number of

edges leaving U .) This is true for λ = 0. Let λ be the smallest ordinal for which
this is not yet shown.

First, let λ be a successor ordinal, and assume that
∑

v∈U ′

λ

ρ~G
(v) < ∞. Then

η(Uλ, l) = η(Uλ−1, l) + i(U ′
λ) + d(U ′

λ, Uλ) − l(U ′
λ)

≥ δ~G
(Uλ−1) + i(U ′

λ) + d(U ′
λ, Uλ) −

∑

v∈U ′

λ

ρ~G
(v)

= δ~G
(Uλ−1) + d(U ′

λ, Uλ) − ρ~G
(U ′

λ) = δ~G
(Uλ).

If, on the other hand,
∑

v∈U ′

λ

ρ~G
(v) = ∞ then either there are infinitely many

edges directed from Uλ−1 to U ′
λ, in which case η(Uλ−1, l) ≥ δ~G

(Uλ−1) = ∞, or

i(U ′
λ) = ∞, or there are infinitely many edges directed from Uλ towards U ′

λ,
which implies d(U ′

λ, Uλ) = ∞. In all of these cases we obtain

η(Uλ, l) = η(Uλ−1, l) + i(U ′
λ) + d(U ′

λ, Uλ) − l(U ′
λ) ≥ ∞−∞ = ∞.

Next, let λ be a limit ordinal. Denoting by A(X, Y ) the edges directed from
X ⊆ V to Y ⊆ V we obtain

η(Uλ, l) = lim inf
µ<λ

η(Uµ, l) ≥ lim inf
µ<λ

(δ~G
(Uµ))

≥ lim inf
µ<λ

|A(Uµ, Uλ)| = δ~G
(Uλ).

Finally, with λ = θ we get η(Uθ, l) ≥ δ~G
(Uθ) ≥ 0, as desired.

3 Open questions

Let us formulate two directions for future research. First, Theorem 2 treats
only countable graphs, and indeed our proof does not seem to be adaptable to
higher cardinalities. On the other hand, we do not have any example showing
that our condition fails in uncountable graphs.

Problem 8. Can Theorem 2 be extended to uncountable graphs?

Second, in finite graphs, Theorem 1 allows to impose lower bounds on the
in-degree and the out-degree at the same time. Indeed, d(v) − u(v) gives a
lower bound on the out-degree of a vertex v. In contrast, for a vertex v of
infinite degree we can only demand all or nothing. Setting u(v) to a finite value
in Theorem 2 is the same as requiring infinitely many outgoing edges at v,
whereas putting u(v) = ∞ will not impose any restrictions on the out-degree at
all. To regain a finer control, we propose the following conjecture:

9



Conjecture 9. Let G be a countable graph, and let l, r : V (G) → N ∪ {∞} be

two non-negative functions with l(v) + r(v) ≤ d(v) for all vertices v. Then

(i) there exists an orientation ~G of G such that ρ~G
(v) ≥ l(v) and δ~G

(v) ≥ r(v)
for each vertex v if and only if

(ii) there are no l-deficient sets and no r-deficient sets.

References

[1] A.R. Berg and T. Jordán, Algorithms for graph rigidity and scene analysis,
Preprint 2003.

[2] R. Diestel, Graph theory (3rd edition), Springer-Verlag, 2005.

[3] L. Egyed, Ueber die wohlgerichteten unendlichen Graphen, Math. phys.
Lapok 48 (1941), 505–509, in Hungarian with German summary.

[4] L.R. Ford and D.R. Fulkerson, Flows in networks, Princeton Univ. Press,
1962.

[5] A. Frank, On disjoint trees and arborescences, Algebraic Methods in Graph
Theory (Szeged 1978), vol. 25, Soc. J. Bolyai, 1978, pp. 402–412.

[6] , Applications of submodular functions, Surveys in Combinatorics
(K. Walker, ed.), Cambridge Univ. Press, 1993.
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