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Abstract

A classical theorem by Tutte assures the existence of a Hamilton cycle
in every finite 4-connected planar graph. Extensions of this result to infi-
nite graphs require a suitable concept of an infinite cycle. Such a concept
was provided by Diestel and Kühn, who defined circles to be homeomor-
phic images of the unit circle in the Freudenthal compactification of the
(locally finite) graph. With this definition we prove a partial extension of
Tutte’s result to locally finite graphs.

1 Introduction

While Hamilton cycles have been investigated intensively in finite graphs, com-
paratively little attention has been paid to Hamilton cycles in infinite graphs.
One reason for this is that it is not entirely clear what the infinite analogon of
a cycle should be.

Adomaitis [1] avoided this question by defining a graph to be hamiltonian if
for every finite subset of the vertex set there is a spanning cycle. In contrast,
Nash-Williams [8] addressed the problem and proposed spanning double rays
as infinite analogons of Hamilton cycles. He noticed that for a spanning double
ray to exist the graph needs to be 3-indivisible. (A graph is k-indivisible if
the deletion of finitely many vertices leaves at most k − 1 infinite components.)
Generalising the following classical result by Tutte, Nash-Williams conjectured
that a 3-indivisible 4-connected planar graph contains a spanning double ray.

Theorem 1 (Tutte [11]). Every finite 4-connected planar graph has a Hamilton
cycle.

Recently, Yu [13, 14, 15, 16, 12] announced a proof of Nash-Williams’ con-
jecture.

The restriction to 3-indivisible graphs is a quite serious one that at first
appears unavoidable. Yet, while double rays are the obvious first choice for
an infinite analogon of cycles there is a more subtle alternative, which was
introduced by Diestel and Kühn [5, 6]. They call the homeomorphic image C
of the unit circle in the Freudenthal compactification of a locally finite graph
G a circle; the subgraph C ∩G is then a cycle—for finite graphs this definition
coincides with the usual one. In a series of papers it has been shown that this
notion is very successful and more suitable than double rays; see Diestel [3] for
an introduction and a survey.

These circles overcome the restriction to 3-indivisible graphs. Indeed, in
Figure 1 we see an infinite Hamilton cycle in a graph that is not k-indivisible for
any k. The example is due to Diestel and Kühn [5]. Bruhn (see [3]) conjectured
that, in this sense, Theorem 1 extends to locally finite graphs:
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Figure 1: A Hamilton circle (drawn bold)

Conjecture 2. Let G be a locally finite 4-connected planar graph. Then G has
a Hamilton cycle.

In this paper we will present a partial result in this direction:

Theorem 3. Let G be a locally finite 6-connected planar graph that is k-
indivisible for some finite k ∈ N. Then G has a Hamilton cycle.

Since submission of this paper there has been some further work on infinite
Hamilton cycles. Cui, Wang and Yu [2] proved that a locally finite 4-connected
planar graph has a Hamilton cycle, provided it has a VAP-free drawing, that is
a drawing without any vertex accumulation point. This is a substantial special
case of Conjecture 2. Furthermore, Georgakopoulos [7] extended Fleischner’s
theorem on Hamilton cycles in squares of graphs to locally finite graphs.

2 Definitions

In general, our notation will be that of Diestel [4]. If not otherwise noted, all
graphs will be simple. A 1-way infinite path is called a ray, a 2-way infinite
path is a double ray, and the subrays of a ray or double ray are its tails. Let
G = (V, E) be any locally finite graph. Two rays in G are equivalent if no finite
set of vertices separates them; the corresponding equivalence classes of rays are
the ends of G. In several places we will implicitly use that every connected
locally finite but infinite graph contains a ray, and thus an end.

We say that a finite vertex set S separates an end ω from a vertex set U if
every ray R ∈ ω that starts in a vertex of U meets S. In a similar manner, S
separates two ends ω and ω′ if every double ray with one tail in ω and the other
in ω′ goes through S.

We define a topology on G together with its ends, i.e. our topological space
consists of all vertices, all inner points of edges and all ends of G. On G the
topology will be that of a 1-complex. Thus, the basic open neighbourhoods of
an inner point on an edge are the open intervals on the edge containing that
point, while the basic open neighbourhoods of a vertex x are the unions of half-
open intervals containing x, one from every edge at x. For every end ω and any
finite set S ⊆ V there is exactly one component C = C(S, ω) of G − S which
contains a tail of every ray in ω. We say that ω belongs to C, and write C(S, ω)
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for the component C together with all the ends belonging to it. Then the basic
open neighbourhoods of an end ω are all sets of the form

Ĉ(S, ω) := C(S, ω) ∪ E̊(S, ω)

E̊(S, ω) is the set of all inner points of edges between S and C(S, ω). This
topological space will be denoted by |G|, and is also known as the Freudenthal
compactification of G.

We will freely view G either as an abstract graph or as a subspace of |G|, i.e.
the union of all vertices and edges of G with the usual topology of a 1-complex.
It is not difficult to see that if G is connected and locally finite, then |G| is
compact. Note that in |G| every ray converges to the end of which it is an
element.

A set C ⊆ |G| is a circle if it is homeomorphic to the unit circle. Then C
includes every edge of which it contains an inner point, and the graph consisting
of these edges and their endvertices is the cycle defined by C. Conversely, C∩G
is dense in C, so every circle is the closure in |G| of its cycle and hence defined
uniquely by it. Note that every finite cycle in G is also a cycle in this sense,
but there can also be infinite cycles; see Diestel [3, 4] for examples and for more
information. A Hamilton cycle is a cycle that contains every vertex of G; the
corresponding circle will then cover all ends.

G is called planar if there is an embedding of G (as a 1-complex) in the
sphere S2. Since we work in |G| rather than in G, the following fact is quite
convenient:

Theorem 4 (Richter and Thomassen [9]). Let G be a locally finite 2-connected
planar graph. Then |G| embeds in the sphere.

It should be noted that for an embedding ϕ : |G| → S2, the topological space
|G| coincides with the closure of ϕ(G) in the sphere. We call every connected
component of S2 \ ϕ(|G|) a face. Its boundary is a face boundary. It is not
difficult to see that each face boundary is (or, more precisely, corresponds to)
the closure of a subgraph of G. The following lemma follows immediately from
Proposition 3 in [9]:

Lemma 5. Let G be a locally finite 2-connected graph with an embedding ϕ :
|G| → S2. Then the face boundaries of ϕ(|G|) are circles of |G|.

For a subgraph H of G, an H-bridge is either a chord e /∈ E(H) together
with its endvertices both of which lie in V (H) or a component K of G − H
together with all edges between K and H , denoted by E(K, H), and their
incident vertices. We say that an H-bridge B is chordal if E(B) consists of a
single edge. All the vertices of an H-bridge B in H are attachments of B. For a
subgraph F of G, we call a path (resp. cycle) P an F -Tutte path (resp. cycle) in
G if every P -bridge of G has at most three attachments, and if every P -bridge
containing an edge of F has at most two attachments.

3 Discussion

The Herschel graph (see Figure 2) is a well-known example for a 3-connected
planar graph without a Hamilton cycle, which shows that in a sense Theorem 1
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Figure 2: The Herschel graph

is best possible. In this section, let us briefly demonstrate that Conjecture 2 is
also false for infinite graphs if we only assume 3-connectivity.

Consider Figure 3. There we have arranged copies of the Herschel graph
(greyed) in a hexagonal grid. The copies are glued together in such a way that
each copy of the vertex v in Figure 2 does not receive an extra edge and thus still
has degree 3. Now assume that the resulting graph has a Hamilton cycle C, and
consider a copy of the Herschel graph H in that graph. If the Hamilton cycle
enters H in u and leaves H in either x or y then C induces a Hamilton cycle of
H , which is impossible. Thus, C enters H in x and leaves it in y, which implies
that H has a Hamilton path between x and y. However, this is impossible since
both x and y belong to the smaller partition class in the odd bipartite graph H .

H
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Figure 3: An infinite 3-connected planar graph without a Hamilton cycle

4 Proof of main result

Before we start proving Theorem 3, let us reformulate the theorem slightly.
The notion of ends are central to the definition of infinite cycles, and we will
therefore express the theorem in terms of ends. It is straightforward to see that
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a locally finite graph is k-indivisible if and only if it has at most k − 1 ends.
Thus, we obtain the following alternative version of Theorem 3:

Theorem 6. Let G be a locally finite 6-connected planar graph with at most
finitely many ends. Then G has a Hamilton cycle.

Our main tool in the proof will be the following result of Thomassen, which
itself implies Tutte’s theorem:

Theorem 7 (Thomassen [10]). Let G be a finite 2-connected plane graph with
a face boundary C. Assume that u ∈ V (C), e ∈ E(C) and v ∈ V (G) \ {u}.
Then G contains a C-Tutte path from u to v and through e.

In order to make use of Thomassen’s theorem, we need to chop off of the
graph all infinite parts, so that a finite part remains, in which we may apply
Theorem 7. We then extend this finite Hamilton cycle to a finite part of the
chopped off infinite components. For this to work, we need that we can separate
off 3-connected infinite components from some arbitrary finite vertex set. This
is the task of our next lemma, and, in particular, of its consequence, Lemma 10.

Lemma 8. Let G be a 4-connected locally finite planar graph with minimum
degree at least 6, let Y ⊆ V (G) be a finite vertex set, and let ω be an end of G.
Then, there is a finite vertex set S such that for Cω := C(S, ω) holds

(i) Cω is disjoint from Y ; and

(ii) if X ⊆ V (Cω) with |X | ≤ 2, then every component of Cω − X is infinite.

Proof. We view G as a plane graph. Choose a finite vertex set S such that
Cω := C(S, ω) is disjoint from Y , and such that |E(Cω , G − Cω)| is minimal
with that property.

Suppose there is a set X ⊆ V (Cω) with |X | ≤ 2 such that there is a finite
component K of Cω − X . Denote by K ′ the subgraph obtained by adding to
K the vertices in X and the edges between X and K. In particular, note that
any possibly existing edges between vertices in X are not included in K ′. Put
r := |E(K, G − Cω)|, and s := |E(X, K)|. We will show that s < r. Then
S′ := S ∪ V (K) leads to a smaller cut between C(S′, ω) and the rest of the
graph, a contradiction.

First, assume that K ′ is not a triangulation. Thus, putting n := |V (K)|,
Euler’s formula implies |E(K ′)| < 3(n + |X |) − 6 ≤ 3(n + 2) − 6 = 3n. On the
other hand,

2|E(K ′)| =
∑

v∈V (K′)

dK′(v) = |E(X, K)| +
∑

v∈V (K)

dK(v) ≥ s + 6n− r.

For the last inequality recall that the minimum degree of G is at least 6. Hence,
3n + (s − r)/2 ≤ |E(K ′)| < 3n and thus s < r, as desired.

Second, let K ′ be a triangulation. We may assume that some vertices in S
lie in the outer face of K ′. Since G is 4-connected and since the face boundary
of the outer face of K ′ is a triangle, T , say, no vertices of G can be contained
in the interior face of T . Thus, T = K ′, and consequently the set X consists
of exactly one vertex as there are no edges between vertices of X in K ′. This
implies that there are exactly two edges between X and K, i.e. s = 2. Since
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the minimum degree is at least 6 in G, and as the exactly two vertices in K
can have at most one edge between them, it follows that r ≥ 3. Again, we get
s < r, as desired.

Lemma 9. Let G be a k-connected graph, and let V (G) = A∪B be a partition
such that G[B] is l-connected. Consider X ⊆ A with |X | ≤ k − l. Then, for
every component K of G[A] − X the graph G[K ∪ B] is still l-connected.

Proof. Suppose there is a vertex set Y ⊆ V (K) ∪ B with |Y | < l, so that
G[K∪B]−Y has (at least) two distinct components C and D. If both C and D
contain vertices of B then Y ∩ B separates two vertices of G[B], contradicting
that G[B] is l-connected. So we may assume that C ⊆ K. Then, X∪Y separates
C from B in G, but |X ∪ Y | < (k − l) + l = k, a contradiction.

Lemma 10 will be used in each of the induction steps of the proof of Theo-
rem 6.

Lemma 10. Let G be a locally finite planar 6-connected graph, let Y be a
finite vertex set and ω an end of G. Let S ⊆ V (G) be a finite vertex set such
that C := C(S, ω) is 2-connected and such that no end other than ω belongs
to C(S ∪ Y, ω). Then there is a finite vertex set S′ such that C(S′, ω) ⊆ C is
3-connected and disjoint from Y , and such that C − C(S′, ω) is 2-connected.

Proof. By adding finitely many vertices from C to the set (Y ∪ N(S)) ∩ V (C),
we can ensure that for the resulting finite set Y ′ ⊆ V (C), the subgraph G[Y ′]
of C is 2-connected. Applying Lemma 8 to Y ′ and ω yields a finite vertex set
S̃. Clearly, as D := C(S̃, ω) is disjoint from Y ′ it is also disjoint from Y . Since
Y ′ ⊇ N(S) ∩ V (C) it follows that D ⊆ C. Moreover, D is 3-connected because
of (ii) in Lemma 8 and the fact that there is only end, namely ω, belonging
to D. Next, observe that since G[Y ′] ⊆ C is 2-connected, there is a block B of
C − D containing Y ′.

We claim that N(C − B) =: S′ is finite and that C(S′, ω) = C − B is 3-
connected. As C − B is disjoint from Y , because of Y ′ ⊆ V (B), the statement
of the lemma follows from this claim.

S
~

G−C

S

B

D

K

C

Figure 4: Illustration of the proof of Lemma 10

So, let us prove the claim. The vertex set of C −B consists of vertices in D
and of vertices from components of C−D−B. Let us consider such a component
K of C−D−B. Observe that K may have at most one neighbour in B since any
path between two vertices of a block lies entirely in the block. Also, K cannot
have neighbours outside C as K is disjoint from Y ′ ⊇ N(S) ∩ V (C). Thus, all
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neighbours of K in G, except possibly one, lie in D. Consequently, Lemma 9
(set X = N(K)∩V (B)) implies that G[D∪K] is 3-connected. Moreover, as G is
2-connected, K has a neighbour in D, and thus meets the finite set S̃ ⊇ N(D).
Therefore, C − D − B has only finitely many components. Now, enlarging D,
one by one, by the components of C −D−B we see that C −B is 3-connected.

Finally, it remains to show that |S′| < ∞. But this is easy: a vertex in S′ is
either contained in N(D) ⊆ S̃ (which is finite) or it is the single neighbour in B
of a component of C −D −B, of which, as shown above, there are only finitely
many.

We will construct our Hamilton cycle in a piecewise manner. Slightly more
precise, we will construct finite nested subgraphs Gi of our locally finite graph
G in which the application of Theorem 7 will yield subgraphs Hi that are finite
approximations of the desired infinite Hamilton cycle. The following definition
and lemma make sure that these subgraphs Hi indeed tend to a cycle, ie. that⋃∞

i=1 Hi is a cycle.
If G′ is a subgraph of G then denote by G′+ the subgraph obtained by adding

to G′ the edges in E(V (G′), V (G−G′)) together with their incident endvertices.
We call a sequence (G1, H1), . . . , (Gk, Hk) of finite induced subgraphs G1 ⊆
. . . ⊆ Gk ⊆ G and subgraphs H1 ⊆ . . . ⊆ Hk ⊆ G good, if for i = 1, . . . , k holds

(i) G+
i−1 ⊆ Gi for i ≥ 2;

(ii) E(Hi ∩ G+
i−1) = E(Hi−1) for i ≥ 2;

(iii) V (Gi) ⊆ V (Hi) ⊆ V (G+
i );

(iv) if K is an infinite component of G− Gi then |E(K, G − K) ∩ E(Hi)| = 2;
and

(v) there is a finite cycle Z such that Z ∩ Gi = Hi ∩ Gi.

Lemma 11. Let G be a locally finite connected graph with at most finitely many
ends, and let every finite initial segment of (G1, H1), (G2, H2), . . . be good. Then
H :=

⋃∞

i=1 Hi is a Hamilton cycle of G.

Proof. By (i) it holds that V (G) =
⋃∞

i=1 V (Gi), and hence (iii) implies V (H) =
V (G). Therefore, H is a Hamilton cycle if we can prove that it is a cycle at all.
For this, we first show that no finite cut F ⊆ E(G) avoiding E(H) separates
two vertices of H . Suppose, that on the contrary there is such a cut F , and
that it separates u, v ∈ V (H), say. Because of (i) we can choose N large enough
so that F ⊆ E(GN ) and u, v ∈ V (GN ). Then a cycle Z as in (v) contains a
u–v path in G that is disjoint from F as E(Z) ∩ F = E(Z) ∩ F ∩ E(GN ) =
E(HN ) ∩ E(GN ) ∩ F = ∅, a contradiction.

Assume that one of the components of H , C say, is a finite cycle. Since
the edges between V (C) and V (G − C) then constitute a finite cut that avoids
E(H) but separates C from the rest of the graph, we obtain that H = C, and
we are done.

So, as (v) implies that H is 2-regular, we may assume that H is the disjoint
union of double rays. Let the set of these be D. We define a multigraph H ′ with
Ω(G) as vertex set and D as edge set: each D ∈ D will be incident with the
ends it contains tails of. In particular, if all tails of D lie in the same end ω then
D becomes a loop at ω. Conditions (ii) and (iv) ensure that H ′ is 2-regular.
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Suppose that H ′ is not connected. Let X be a component of H ′, and set
Y := H ′ − X . Choose N large enough so that no component of G − GN has
more than one end belonging to it. Because of (iv) this prevents any infinite
component of G−GN from meeting both a double ray from E(X) and of E(Y ).
Contracting each infinite component of G − GN (keeping parallel edges but
deleting loops) yields a finite minor G′ of G, in which no edge belonging to a
double ray in E(X) is adjacent with an edge lying in a double ray in E(Y ).
Therefore, there is a cut F of G′ separating these two sets of edges. This cut
then also separates two vertices of H in G, contradicting what we have shown
earlier. Consequently, H ′ is a cycle, and hence H is an infinite cycle in G.

Let us introduce one useful definition before we finally start with the proof.
We call a vertex set U in a graph G externally k-connected, if |U | ≥ k and if for
every set X ⊆ V (G) with |X | < k there is a path between any two vertices of
U \ X in G − X .

Proof of Theorem 6. By Theorem 4, |G| can be embedded in the sphere. We
will identify |G| with that embedding, and thus view G as a plane graph.

Inductively, we will construct connected finite induced subgraphs G1 ⊆ G2 ⊆
. . . ⊆ G and subgraphs H1 ⊆ H2 ⊆ . . . ⊆ G such that for every i ≥ 1 it holds
that

(a) (G1, H1), . . . , (Gi, Hi) is good;

(b) if Ci is the set of components of G−Gi then each C ∈ Ci is 3-connected and
there is exactly one end belonging to C; and

(c) for each C ∈ Ci it follows that |V (C) ∩ V (Hi)| = 2.

If this can be achieved, then, by Lemma 11,
⋃∞

i=1 Hi is a Hamilton cycle.

Before we proceed, let us give a rough outline over the proof. Ideally, we
would like to perform infinitely many steps as follows. In the first step, our
foremost task is to separate all the ends. For this, we will find a finite subgraph
G1, so that all components of G−G1 are 3-connected and have exactly one end
belonging to them. By contracting these components we will obtain a minor
of G, in which the application of Theorem 7 will deliver us the initial piece
H1 of the Hamilton cycle. Slightly more precisely, Theorem 7 yields a Tutte-
path in the minor—its edges, viewed as edges of G, together with the incident
vertices in G form H1. In the second step, we need to extend H1 into each
of the components of G − G1. We will treat one component after each other,
starting with C, say. In C we will find a finite subgraph G′

C , so that the unique
component D of C − G′

C is 3-connected. We will use Theorem 7 in the minor
obtained from C by contracting D. As we will require the resulting Tutte-path
H ′

C to start in one of the two vertices in H1 ∩ C and end in the other (here,
note (c)), H ′

C and H1 will fit together. Doing this for all components of G−G1

we will construct H2; G2 will be defined to be the (induced subgraph of the)
union of G1 and all the G′

C . Then, we will repeat the second step infinitely
often. See Figure 5 for an illustration.

We wrote “ideally” at the beginning of this outline, and that was for a
reason: in one aspect the procedure has to be amended in order to work. It is
crucial that the Hi cover all vertices of the Gi—otherwise

⋃
Hi will never be a
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Figure 5: Outline: bridge K is not covered by H2

Hamilton cycle. However, H ′
C will, in general, miss some vertices of G′

C , and
thus produce nonchordal H ′

C -bridges in G′
C . Fortunately, and here the fact that

the components of G − Gi are 3-connected will come in handy, we will be able
to force such a nonchordal bridge to have all its neighbours in G′

C ∪D. This will
allow us to “put the bridge back”: it will be merged with D and, thus, covered
in later steps.

Let us continue with the proof. As the construction of the base case, i.e.
when i = 1, is quite similar to the general case, i.e. when i ≥ 2, we will treat both
at once. However, for some of the steps we will need to make case distinctions.
Put G0 := ∅, H0 := ∅ and C0 = {G}, and assume (Gi−1, Hi−1) to be constructed
for some i ≥ 1. Consider a component C ∈ Ci−1.

First, let i = 1, and note that as C = G has only finitely many ends, we
can choose a finite vertex set W such that no two ends belong to the same
infinite component of G − W . Denote by FC a face boundary of |G|, and pick
an edge xCyC ∈ E(FC), a vertex uC ∈ V (FC) with uC /∈ {xC , yC}, and a vertex
vC /∈ {uC, xC , yC} that is adjacent to uC . Put UC := W ∪ {uC, vC , xC , yC}.

For i ≥ 2, observe that, by (c), Hi−1 contains exactly two vertices of C, uC

and vC say. By (iii), uC and vC are neighbours of Gi−1. In the embedding of
C induced by |G| all the neighbours of the connected graph Gi−1 that lie in C
are contained in the same face boundary FC of C. Pick an edge xCyC ∈ E(FC)
such that xCyC 6= uCvC , and let UC be the union of {uC , vC , xC , yC} together
with all neighbours of Gi−1 in C. Thus, UC ⊆ V (FC) separates C from the rest
of G.

For later use, we note that

if i = 1 then UC separates the ends of G, and if i ≥ 2 then
UC ⊆ V (FC) separates C from G − C

(1)

and
uC 6= vC and |{uC , vC , xC , yC}| ≥ 3 (resp. = 4 for i = 1). (2)

Since C is 3-connected (resp. 4-connected for i = 1) there are three (resp.
four) internally disjoint paths in C between any two vertices in UC . Denote
by YC the vertex set of the union of three (resp. four) such paths for each
pair of vertices in UC . Clearly, UC is externally 3-connected (resp. externally
4-connected for i = 1) in C[YC ].
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Let ω1, . . . , ωn be the ends belonging to C. (Note that if n ≥ 2 then i = 1.)
Setting S1 := N(C) we apply Lemma 10 to YC , ω1, S1, which yields a finite
vertex set S′

1, so that C(S′
1, ω1) is 3-connected and disjoint from YC , and so that

C−C(S′
1, ω1) is 2-connected. Now, proceeding by induction, we set Sj := Sj−1∪

(N(S′
j−1) ∩ V (C(S′

j−1, ωj−1))), and denote by S′
j the finite vertex set that the

application of Lemma 10 to YC , ωj, Sj yields. Note that C(S′
j , ωj) is 3-connected

and disjoint from YC , and that C(Sj , ωj) − C(S′
j , ωj) = C −

⋃j

l=1 C(S′
l , ωl) is

2-connected. Having done this for j = 1 . . . n, we set G′
C := C −

⋃n

j=1 C(S′
j , ωj)

and observe that G′
C is a finite graph: it is connected but cannot contain any

ray, since each ray has a tail in one of the C(S′
j , ωj). Since C[YC ] ⊆ G′

C it holds
therefore that

G′
C is a finite 2-connected graph, and UC is externally 3-

connected (resp. externally 4-connected for i = 1) in G′
C .

(3)

Moreover, as UC ⊆ V (G′
C) contains all neighbours of Gi−1 in C it follows that

G′
i := G[V (Gi−1 ∪

⋃
B∈Ci−1

G′
B)] is connected, and every com-

ponent of G − G′
i is 3-connected and has exactly one end of G

belonging to it.

(4)

The graph G′
i will serve as a precursor to Gi. Note that each component of

G − G′
i is of the form C(S′

j , ωj) for some j and C ∈ Ci−1, and vice versa. To
avoid several indices we will from now on denote the set of components of G−G′

i

that lie in a C ∈ Ci−1 by DC . Observe that for i > 1 it holds that |DC | = 1.

As stated in the outline above, we now want to use Theorem 7 in the minor
obtained from C by contracting all elements of DC . Working in this minor,
instead of in G′

C , say, has the advantage that we can force the resulting Tutte-
path H̃C to go through each contraction vertex. If E(H̃C) is viewed as a subset of
E(G) then this means that E(H̃C) uses exactly two edges in the cut E(G−D, D)
for every D ∈ DC , which is (iv). However, we need slightly more: we need that
these two edges are not incident with the same vertex in D—see Condition (c).
To achieve this, we will delete some edges from E(G−D, D) before forming the
minor. This is what we will do next.

So, consider a D ∈ DC . Let MD be obtained from E(D, G−D) by deleting
for each vertex in D all but one of the incident edges in E(D, G − D). Thus,

every neighbour of G′
C in D is incident with exactly one edge of MD. (5)

Starting from G′
C define a 2-connected finite plane graph G̃C as follows: for

every D ∈ DC put a vertex zD into the face of G′
i that contains D and link zD

to the vertices in G′
C that are incident with an edge in MD. We will identify

these linking edges with the edges in MD. Note that the resulting graph, which
is a minor of G, may have parallel edges. Then, since, for i = 1, FC is a face
boundary of |G| such that uC , xC , yC ∈ V (FC) and since, for i ≥ 2, UC ⊆ V (FC)
this also holds for a face boundary F̃C of G̃C , i.e.

for i = 1 we have uC , xC , yC ∈ V (F̃C), and for i ≥ 2 it holds
that UC ⊆ V (F̃C).

(6)

We apply Theorem 7 to G̃C , and obtain an F̃C -Tutte path (resp. cycle for i = 1)
H̃C from uC to vC (resp. through uCvC) and through xCyC . (More precisely,
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if G̃C has parallel edges we first subdivide these before using Theorem 7; the
obtained Tutte-path then induces a Tutte-path in G̃C .) From (2) it follows that

|V (H̃C) ∩ UC | ≥ 3 (resp. ≥ 4 for i = 1). (7)

xC
yC

vC

G’C
uC

UC

MD

D

C

H

Gi−

i−1

1

Figure 6: Claims (1)–(5)

Next, we show that

for every nonchordal H̃C-bridge K in G̃C , K − H̃C is disjoint
from UC , and all its neighbours in G lie in G′

C ∪ D for some
D ∈ DC .

(8)

Suppose that K−H̃C meets UC . If i ≥ 2 then K contains an edge of F̃C , as UC ⊆
V (F̃C), by (6). Thus, K has at most two (resp. three for i = 1) attachments as
H̃C is an F̃C -Tutte path (resp. cycle). Since UC is externally 3-connected (resp.
externally 4-connected) in G′

C by (3), this implies UC ⊆ V (K). Thus, by (7),
K − H̃C contains a vertex in V (H̃C)∩UC , a contradiction. Therefore, K − H̃C

is disjoint from UC .
To prove the second assertion, first assume that i = 1. Then C = G con-

sists of G′
C and

⋃
D∈DC

D (plus edges between these graphs). Let there be a

neighbour of K − H̃C in D ∈ D (i.e. zD ∈ V (K)). As UC ⊆ V (G′
C), all the

D′ ∈ DC are disjoint from UC . On the other hand, UC separates the ends of
G, by (1), and thus D from all D′ ∈ DC , D′ 6= D. Consequently, K − H̃C ,
which is disjoint from UC , cannot have neighbours in any D′ ∈ DC other than
D. If, on the other hand, i ≥ 2 then DC consists of only one element, D say. As
G′

C = C −D and as K − H̃C is disjoint from UC , the assertion follows from (1).
It holds that

zD ∈ V (H̃C) for every D ∈ DC . (9)

Indeed, suppose there is a D ∈ DC with zD /∈ V (H̃C). Thus, zD ∈ V (K − H̃C)
for some H̃C -bridge K. Denote by fD the face of G − D that contains D.
Then there exists a vertex a in the face boundary of fD that does not lie in
V (K). Indeed, otherwise the at most three attachments of K separate D from
UC \ V (K) 6= ∅ in G, contradicting that G is 6-connected. (Note here, that
because of (8) and as zD ∈ V (K − H̃C), all vertices of attachment of K are
indeed vertices of G.)

Next, observe that a is not incident with any edge in MD as zD ∈ V (K−H̃C).
Therefore, there is a unique face f ⊆ fD of (the closure of) (G − D) ∪ D ∪ MD
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whose face boundary F contains a. Furthermore, F contains exactly two edges
of MD, let these be uc and bw, where u, b ∈ V (D); see Figure 7. As G is 6-
connected there is then a path P between a vertex v ∈ V (D) and a that avoids
u, b and the at most three vertices of attachment of K (which are vertices of G,
as above). We may assume that v is the only vertex on P in D. We note that
v /∈ V (F ): as the first edge on P lies in E(D, G−D), v is incident with an edge
in MD, by (5), but the only two vertices in V (F ) incident with edges in MD

are u, b.

a

b

v’
uv

f

c

w

D

P

G−D

⊆ K

Figure 7: Subdivision of K3,3 in (9)

We claim now that by adding some (non-crossing) edges in the plane graph
(G−D)∪D ∪ {uc, bw, vv′}, we obtain a subdivision of K3,3 with partition sets
{a, b, c} and {u, v, w}, which clearly contradicts planarity. We already have the
edges uc and bw, and the v–a path P . Since all of a, u, w lie in F we can add
new edges, drawn in f , between a and each of u, w. We add another new edge,
between v and c, which will be drawn in fD \ f ; this is possible since v /∈ V (F ).
As D is 3-connected, there are two disjoint paths in D, one from b to u and the
second from b to v; these yield two more subdivided edges in the K3,3. All that
remains now is to find a path from c to w. As endvertices of edges in MD, both
c and w lie in K (because zD ∈ V (K − H̃C)). Thus, if K − zD is connected (in
G) there will be c–w path in K − zD avoiding all the other subdivided edges—
note that P is disjoint from K − zD as it could only leave K through one of its
vertices of attachment.

So, suppose that K − zD has two components. Because of (8), each com-
ponent must contain a vertex in the boundary of fD. As K has at most three
vertices of attachment, one of the components, K ′ say, has at most one vertex
in the boundary of fD. But then this single vertex separates K ′ from the rest
of G, a contradiction. This establishes (9).

Consider E(H̃C) as a subset of E(G), and let HC be the subgraph of G
consisting of the edges E(H̃C) and the incident vertices. Put Hi := Hi−1 ∪⋃

C∈Ci−1
HC , and observe that the pair (G′

i, Hi) already satisfies almost all of

the desired properties. Clearly, (b) is (4), and (c) holds because of (9) and the
definition of MD. Moreover, for (a), (G1, H1), . . . , (Gi−1, Hi−1), (G

′
i, Hi) should

be a good sequence, and indeed, it at least satisfies (i), (ii), (iv), (v): (i) holds
because of UC ⊆ V (G′

C) for every C ∈ Ci−1 (for i ≥ 2), (ii) because no HC

uses edges of G+
i−1, and (iv) because of (9). To see (v), add a path through D
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between the two vertices of Hi in D for every D ∈ DC , and denote the resulting
subgraph by Z. Clearly, Z is connected, and every w ∈ V (Z) has degree two:
if w ∈ V (Gi−1) then because of (v) for i − 1, if w ∈ {uC , vC} then because
uC 6= vC , if w ∈ V (Hi −Hi−1) because Hi is a disjoint union of paths for every
C, and finally if w ∈ V (Z − Hi) because Z − Hi is a disjoint union of paths.
Thus, Z is a cycle.

However, (iii) may fail. To fix this, consider a nonchordal Hi-bridge K in
G′

i. By (iii) for i−1, we deduce that K−Hi is disjoint from Gi−1. Observe that
for each C ∈ Ci−1, K ∩ G′

C is either empty, a chord or a union of HC -bridges.
Thus, K − Hi is disjoint from UC , by (8), which implies with Lemma 9 that
G′

i − (K −Hi) still satisfies (i) and (b), and then also (i), (ii), (iv), (v) and (c).
Thus, putting Gi := G′

i − (G′
i −Hi) we see that for the pair (Gi, Hi) conditions

(a)–(c) hold.
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