## *t*-perfection is always strong for claw-free graphs

Henning Bruhn Maya Stein

#### Abstract

A connected graph G is called *t*-perfect if its stable set polytope is determined by the non-negativity, edge and odd-cycle inequalities. Moreover, G is called strongly *t*-perfect if this system is totally dual integral. It is an open problem whether *t*-perfection is equivalent to strong *t*-perfection. We prove the equivalence for the class of claw-free graphs.

### 1 Introduction

For a graph G = (V, E) define the polytope TSTAB(G) as the set of all vectors  $x \in \mathbb{R}^V$  satisfying

$$0 \le x_v \le 1 \qquad \text{for every vertex } v \in V,$$
  

$$x_u + x_v \le 1 \qquad \text{for every edge } uv \in E, \qquad (1)$$
  

$$\sum_{v \in V(C)} x_v \le \lfloor \frac{|V(C)|}{2} \rfloor \qquad \text{for every odd cycle } C \text{ in } G.$$

The graph G is called *t-perfect* if TSTAB(G) coincides with the stable set polytope of G (the convex hull of characteristic vectors of stable sets in  $\mathbb{R}^V$ ). We call G strongly *t-perfect* if the system (1) is totally dual integral (TDI). Hence, by definition strong *t*-perfection implies *t*-perfection. Whether the converse is true is not known.

#### **Question 1.** Is every t-perfect graph also strongly t-perfect?

The question is briefly discussed in Schrijver [14, Vol. B, Ch. 68], where also more details about strong and ordinary *t*-perfection can be found. Our main theorem, which we prove in Section 4, answers Question 1 affirmatively for claw-free graphs. (A graph is *claw-free* if it does not contain  $K_{1,3}$  as an induced subgraph.)

#### **Theorem 2.** A claw-free graph is t-perfect if and only if it is strongly t-perfect.

The class of t-perfect graphs has been introduced by Chvàtal [3], and has been studied by Sbihi and Uhry [12], Shepherd [15], and Gerards and Shepherd [8], among others. Recently, we characterised claw-free t-perfect graphs in terms of forbidden substructures, see [2]. Strongly t-perfect graphs have been investigated by Gerards [7] and Schrijver [13].

The class of strongly t-perfect graphs includes bipartite, as well as almost bipartite graphs, that is, graphs whose odd cycles all share a common vertex. A graph that is neither t-perfect nor strongly t-perfect is  $K_4$ . The first can be seen by considering the vector with value  $\frac{1}{3}$  at every vertex of  $K_4$ . This vector belongs to  $\text{TSTAB}(K_4)$  but not to its stable set polytope. On the other hand, the weight vector  $w_v = 1$  for every  $v \in V(K_4)$  is a witness for the strong *t*-imperfection of  $K_4$ .

The  $K_4$  is also at the heart of the most wide-reaching certificate for strong *t*-perfection known so far. Call a subdivision of  $K_4$  odd if every triangle of  $K_4$  becomes an odd cycle in the subdivision.

**Theorem 3** (Gerards [7]). A graph without an odd- $K_4$ -subdivision as a subgraph is strongly t-perfect.

The theorem has been strengthened by Schrijver in [13]. See also Gijswijt and Schrijver [9] for a more general result.

As throughout the paper, the cycles and their squares will play a prominent role, let us quickly fix some notation in that respect. The (induced) cycle of length *i* is denoted  $C_i$ , and we assume  $C_i$  to have vertices  $\{v_1, \ldots, v_i\}$  occurring in this order on  $C_i$ . The square of  $C_i$  is  $C_i^2$ , and it is obtained from  $C_i$  by adding an edge between any two vertices of distance 2.

All graphs in this paper are finite and simple. For general graph theoretical notation and concepts, we refer to Diestel [5].

## 2 *t*-minors and strong *t*-perfection

We start by giving an alternative, and sometimes more convenient, definition of strong t-perfection. Then, we will describe substructures that are compatible with strong t-perfection.

Let G be a graph and let  $\mathcal{K} = \mathcal{V} \cup \mathcal{E} \cup \mathcal{C}$  be a family of vertices (set  $\mathcal{V}$ ), edges (set  $\mathcal{E}$ ) and odd cycles (set  $\mathcal{C}$ ) of G. We say  $\mathcal{K}$  has *cost* 

$$|\mathcal{V}| + |\mathcal{E}| + \sum_{C \in \mathcal{C}} \frac{|V(C)| - 1}{2}.$$

We say that  $\mathcal{K}$  covers a vertex v k times if v lies in at least k members of  $\mathcal{K}$ . For a weight function  $w \in \mathbb{Z}^{V(G)}$ , we call  $\mathcal{K}$  a *w*-cover of G if every vertex v is covered at least  $w_v$  times by  $\mathcal{K}$ .

Observe that every w-cover can be turned into an exact cover with the same or lower cost, i.e. into a cover that covers every vertex v exactly  $w_v$  times (provided  $w \ge 0$ ). Indeed, this can easily be achieved by replacing odd cycles incident with an overly covered vertex v by a maximal matching of the cycle that misses v, by replacing incident edges by the other endvertex and/or by omitting v itself from the cover, if present.

Furthermore, we can usually assume that any cycle in a *w*-cover is induced. To achieve this, suppose a *w*-cover  $\mathcal{K}$  contains an odd cycle C that has a chord. Then E(C) + e decomposes into the edge set of an odd cycle C' through e and the edge set of an odd subpath P of C between the endvertices of e. Replacing C by C' plus every other edge in P yields a cover of the same cost in which every vertex is as often covered as in  $\mathcal{K}$ .

For a subset S of V(G), write  $w(S) := \sum_{s \in S} w_s$ , and define the weighted stability number of G

$$\alpha_w(G) := \max\{w(S) : S \subseteq V(G) \text{ is stable}\}.$$

By linear programming duality, G is strongly t-perfect if and only if there is a w-cover of cost  $\alpha_w(G)$  for all  $w \in \mathbb{Z}^{V(G)}$ , see Schrijver [14] for more details. Moreover, it is easy to see that we need only consider non-negative w.

Let v be a vertex of a graph G so that its neighbourhood N(v) forms a stable set. Then  $\tilde{G}$  is obtained from G by a *t*-contraction at v if  $\tilde{G} = G/E(v)$ , i.e. if  $\tilde{G}$  is the result of contracting all the edges incident with v. We say that G' is a *t*-minor of G if G' can be obtained from G by a sequence of vertex deletions and *t*-contractions.

It is not hard to check that t-perfection is stable under taking t-minors. Indeed, verifying that induced subgraphs of t-perfect graphs are t-perfect is easy, and in Gerards and Shepherd [8] it is shown that if G' is obtained from a t-perfect graph G by t-contraction then G' is t-perfect, too.

The same holds for strong t-perfection:<sup>1</sup>

#### **Proposition 4.** Every t-minor of a strongly t-perfect graph is strongly t-perfect.

*Proof.* Let G be strongly t-perfect. It is straightforward to see that induced subgraphs of G are strongly t-perfect, too. It remains to show, therefore, that for every vertex v with stable neighbourhood N(v) the graph  $\tilde{G} := G/E(v)$  is strongly t-perfect as well.

Denote the new vertex of  $\tilde{G}$  by  $\tilde{v}$ . Given a non-negative weight  $\tilde{w} \in \mathbb{Z}^{V(\tilde{G})}$ , we have to find a  $\tilde{w}$ -cover  $\tilde{K}$  of  $\tilde{G}$  that has cost  $\alpha_{\tilde{w}}(G)$ .

Set  $\beta := \tilde{w}(V(\tilde{G})) + 1$ , and define  $w \in \mathbb{Z}^{V(G)}$  as  $w_u := \tilde{w}_u$  for  $u \in V(\tilde{G} - \tilde{v})$ ,  $w_p := \beta$  for  $p \in N(v)$  and  $w_v := d(v) \cdot \beta - \tilde{w}_{\tilde{v}}$ . Note that by the choice of  $\beta$ , every stable set of maximal weight with respect to w either contains v, or all of N(v). In either case,

$$\alpha_w(G) \le \alpha_{\tilde{w}}(\tilde{G}) + d(v) \cdot \beta - \tilde{w}_{\tilde{v}} = \alpha_{\tilde{w}}(\tilde{G}) + w_v.$$
<sup>(2)</sup>

As G is strongly t-perfect, there exists a w-cover  $\mathcal{K}$  of cost  $\alpha_w(G)$ , which we may assume to cover v exactly  $w_v$  times. Moreover, we may require all the cycles in  $\mathcal{K}$  to be induced.

Let  $\mathcal{K}_v \subseteq \mathcal{K}$  consist of all  $K \in \mathcal{K}$  that are incident with v. For each cycle  $C \in \mathcal{K}_v$  contract the two edges incident with v. Note that this gives a cycle in  $\tilde{G}$  as C was induced by assumption. Denote the family of the thus obtained cycles by  $\tilde{\mathcal{K}}_v$ . Since we omit all the edges and vertices of  $\mathcal{K}_v$  in  $\tilde{\mathcal{K}}_v$ , and since every cycle in  $\tilde{\mathcal{K}}_v$  is two edges shorter than the corresponding cycle in  $\mathcal{K}_v$ , it follows that  $\tilde{\mathcal{K}}_v$  costs  $w_v$  less than  $\mathcal{K}_v$ .

Next, we turn  $\mathcal{K} \setminus \mathcal{K}_v$  into a family  $\tilde{\mathcal{K}}'$  of vertices, edges and odd cycles in  $\tilde{G}$ . For this, interpret all the elements of  $\mathcal{K} \setminus \mathcal{K}_v$  that do not meet N(v) as a subgraph of  $\tilde{G}$  and put them (with repetitions) in  $\tilde{\mathcal{K}}'$ . For every occurrence of a vertex in N(v) add  $\{\tilde{v}\}$  to  $\tilde{\mathcal{K}}'$ , and for every occurrence of an edge rs with  $s \in N(v)$  add the edge  $r\tilde{v}$  to  $\tilde{\mathcal{K}}'$ . For every cycle C in  $\mathcal{K} \setminus \mathcal{K}_v$  that is incident with a vertex in N(v), the edge set E(C) can be partitioned into the edge sets of cycles in  $\tilde{G}$ . Add all the odd cycles to  $\tilde{\mathcal{K}}'$  and every second edge from every even cycle. This yields a family  $\tilde{\mathcal{K}}'$  of the same cost as  $\mathcal{K} \setminus \mathcal{K}_v$  that covers every vertex in  $V(\tilde{G} - \tilde{v})$  as often as  $\mathcal{K} \setminus \mathcal{K}_v$ , and which covers  $\tilde{v}$  as often as N(v) is covered in total by  $\mathcal{K} \setminus \mathcal{K}_v$ .

 $<sup>^1\</sup>mathrm{While}$  this result was known before [6], it does not appear to have been published anywhere.

Thus the cost of  $\tilde{\mathcal{K}} := \tilde{\mathcal{K}}_v \cup \tilde{\mathcal{K}}'$  is at most the cost of  $\mathcal{K}$  minus  $w_v$ , that is,  $\alpha_w(G) - w_v$ . By (2), this is at most  $\alpha_{\tilde{w}}(\tilde{G})$ . Hence, it only remains to show that  $\tilde{\mathcal{K}}$  is a  $\tilde{w}$ -cover of  $\tilde{G}$ . By construction, every vertex  $u \neq \tilde{v}$  is covered adequately by  $\tilde{\mathcal{K}}$ , so we only have to check how often we covered  $\tilde{v}$ . Clearly  $\tilde{v}$  is covered by  $\tilde{\mathcal{K}}$  at least as often as  $\mathcal{K}$  covered N(v) minus  $|\mathcal{K}_v|$ , since all we lose are the edges in  $\mathcal{K}_v$ , and for each cycle  $C \in \mathcal{K}_v$  we observe that while C covered two vertices in N(v) its counterpart in  $\tilde{\mathcal{K}}$  still covers  $\tilde{v}$  once. As  $\mathcal{K}$  covers v exactly  $w_v$  times, it follows that  $|\mathcal{K}_v| = w_v$ . Hence,  $\tilde{\mathcal{K}}$  covers  $\tilde{v}$  at least  $d(v) \cdot \beta - w_v = \tilde{w}_{\tilde{v}}$  times, as desired.  $\Box$ 

## 3 Minimally strongly *t*-imperfect graphs

A graph G is minimally (strongly) t-imperfect if it is (strongly) t-imperfect but every proper t-minor of G is (strongly) t-perfect. An example of a minimally strongly t-imperfect graphs is  $K_4$ , which is also minimally t-imperfect. Thus, if a graph contains, for instance,  $K_4$  as a t-minor then it is strongly t-imperfect as well as t-imperfect. This observation enabled a succinct characterisation of t-perfection in claw-free graphs [2], and will be helpful in what follows.

Theorem 2 lends credibility to the conjecture that t-perfection is always strong. One way to prove the conjecture would consist in verifying whether the minimally t-imperfect graphs coincide with the minimally strongly t-imperfect graphs. Unfortunately, a complete list of minimal elements is neither known for t-perfection nor for strong t-perfection.



Figure 1: Minimally (strongly) *t*-imperfect graphs

Figure 1 shows some minimally *t*-imperfect graphs: the odd wheels and the even Möbius ladders (see Schrijver [14]), as well as two additional graphs, the squares  $C_7^2$  and  $C_{10}^2$  of the 7-cycle and the 10-cycle (see [2]). All these graphs are minimally strongly *t*-imperfect as well.

In fact, that the odd wheels and the even Möbius ladders are minimally

strongly t-imperfect can easily be deduced from the fact that almost bipartite graphs are strongly t-imperfect, which follows from Theorem 3. (A graph is almost bipartite if it can be made bipartite by deleting some vertex.)

The fact that  $C_7^2$  and  $C_{10}^2$  are minimally strongly *t*-imperfect will be proved in Lemma 5 below. We remark that these are the only squares of cycles that have this property.

One can obtain a few more minimally *t*-imperfect and minimally strongly *t*-imperfect graphs by adding any number of diagonals to  $C_{10}^2$  [1]. These graphs are depicted in Figure 2. To our knowledge, Figures 1 and 2 show all minimally (strongly) *t*-imperfect graphs known.



Figure 2: Some more minimally (strongly) *t*-imperfect graphs

# **Lemma 5.** The graphs $C_7^2$ and $C_{10}^2$ are minimally strongly-t-imperfect.

*Proof.* As  $C_7^2$  and  $C_{10}^2$  are t-imperfect (consider for example the vector x with  $x_v = \frac{1}{3}$  for each vertex v), they are also strongly t-imperfect. Hence, since no vertex in  $C_7^2$  and  $C_{10}^2$  has independent neighbourhoods, it suffices to prove that for  $j \in \{7, 10\}$  the graph  $C_j^2 - v_j$  is strongly t-perfect. In both cases, j = 7 and j = 10, we proceed by induction on the total weight w(V), where  $V := V(C_j^2 - v_j)$  and w is the given non-negative vector in  $\mathbb{Z}^V$  for which we have to find a w-cover. As the case when w(V) = 0 is trivial we will assume that w is given with w(V) > 0, and that the desired cover exists for all w' with w'(V) < w(V).

Recall that  $\{v_1, \ldots, v_j\}$  are the vertices of  $C_j$  in circular order, so that  $v_1, v_2, v_{j-2}$  and  $v_{j-1}$  have degree 3 in  $C_j^2 - v_j$ . Denote by S the set of all stable sets of weight  $\alpha_w := \alpha_w (C_j^2 - v_j)$ , and write  $w_i$  for  $w(v_i)$ . First of all, if there is a triangle T so that every  $S \in S$  meets T, then we

First of all, if there is a triangle T so that every  $S \in \mathcal{S}$  meets T, then we define w'(v) := w(v) - 1 for  $v \in T^+ := V(T) \cap \bigcup_{S \in \mathcal{S}} S$  and  $w'_i = w_i$  otherwise. As each  $v \in T^+$  has positive weight w(v)—otherwise  $S \setminus \{v\}$  would be in  $\mathcal{S}$  and miss T—we conclude that w' is non-negative. Since  $T^+ \neq \emptyset$  by assumption, the total weight w'(V) is smaller than w(V). Hence, by induction there is a w'-cover  $\mathcal{K}'$  of cost  $\alpha_{w'}$ . Since  $\alpha_{w'} = \alpha_w - 1$  the family  $\mathcal{K}' \cup T$  is a w-cover of cost  $\alpha_w$ , as desired.

We can argue in a similar way if every  $S \in S$  meets the edge  $v_1v_{j-1}$ . So, let us assume from now on that for each triangle T in  $C_j^2 - v_j$  there is a  $S_T \in S$ avoiding T, and that there exists an  $S_{v_1v_{j-1}} \in S$  that is disjoint from  $\{v_1, v_{j-1}\}$ .

avoiding T, and that there exists an  $S_{v_1v_{j-1}} \in \mathcal{S}$  that is disjoint from  $\{v_1, v_{j-1}\}$ . For  $C_7^2 - v_7$ , the stable set  $S_{v_4v_5v_6}$  of weight  $\alpha_w$  needs to consist of a single vertex  $v_k$  with  $k \in \{1, 2, 3\}$  as  $v_1v_2v_3$  forms a triangle in  $C_7^2 - v_7$ . Hence,  $w_k = \alpha_w$ . In the same way, we get that for some  $l \in \{4, 5, 6\}$  the vertex  $v_l$  has weight  $\alpha_w$ , too. Moreover,  $v_k$  and  $v_l$  have to be adjacent. If (k, l) = (1, 6), then all other vertices have weight 0, and  $\alpha_w$  times the edge  $v_1v_6$  is a w-cover of  $C_7^2 - v_7$ . On the other hand, if  $k \in \{2, 3\}$  and  $l \in \{4, 5\}$ , then  $w_1 = w_6 = 0$ . Furthermore, as  $\{v_2\} = S_{v_3v_4v_5}$  and  $\{v_5\} = S_{v_2v_3v_4}$  have weight  $\alpha_w$ , the stable set  $\{v_2, v_5\}$  has weight  $2\alpha_w$ , a contradiction.

Now, let us consider  $C_{10}^2 - v_{10}$ . Let K be a triangle in  $C_{10}^2 - v_{10}$ , or let K be the subgraph consisting of the edge  $v_1v_9$ . Suppose that  $k \in V(K)$ .

If w(k) > 0 and k has only one neighbour s outside K then, as  $w(S_K) = \alpha_w$ ,  $S_K$  contains s, since otherwise we could increase the weight of  $S_K$  by including k. Since  $S_K \setminus \{s\} \cup \{k\}$  is stable, it follows that  $w(k) \le w(s)$ . Observe that this inequality trivially holds too, if w(k) = 0. We use this rule to obtain a number of inequalities that are listed in the table below.

| K             | $w(k) \le w(s)$   | $w(k) \le w(s)$    |
|---------------|-------------------|--------------------|
| $v_1 v_2 v_3$ | (a) $w_1 \le w_9$ | (b) $w_2 \le w_4$  |
| $v_7 v_8 v_9$ | (c) $w_9 \le w_1$ | (d) $w_8 \leq w_6$ |
| $v_2 v_3 v_4$ | (e) $w_2 \le w_1$ |                    |
| $v_6 v_7 v_8$ | (f) $w_8 \le w_9$ |                    |

Now assume that the vertex  $k \in V(K)$  has two adjacent neighbours s and t outside K (and then no other neighbours outside K). Because  $S_K$  can only contain one of s and t, we deduce as above that  $w(k) \leq \max\{w(s), w(t)\}$ . Using this argumentation, we obtain

| K             | $w(k) \le \max\{w(s), w)t)\}$  |
|---------------|--------------------------------|
| $v_3 v_4 v_5$ | (g) $w_3 \le \max\{w_1, w_2\}$ |
| $v_5 v_6 v_7$ | (h) $w_7 \le \max\{w_8, w_9\}$ |
| $v_1 v_9$     | (i) $w_1 \le \max\{w_2, w_3\}$ |
| $v_1 v_9$     | (j) $w_9 \le \max\{w_7, w_8\}$ |

From (a) and (c), we get that  $w_1 = w_9$ , and (g) together with (e) yields  $w_3 \leq w_1$ . Symmetrically, we obtain  $w_7 \leq w_9$ , and with (e), (f), (i) and (j) this results in

$$\max\{w_2, w_3\} = w_1 = w_9 = \max\{w_7, w_8\}.$$
(3)

By definition,  $S_{v_4v_5v_6}$  avoids  $v_4v_5v_6$  but has weight  $\alpha_w$ . Since  $S_{v_4v_5v_6}$  meets both of the triangles  $v_1v_2v_3$  and  $v_7v_8v_9$  at most once we obtain from (3) that  $w(S_{v_4v_5v_6}) = 2w_1$ . Thus, (3) allows us to choose  $s \in \{v_7, v_8\}$  and  $s' \in \{v_2, v_3\}$ so that  $S := \{v_1, s\}$  and  $S' := \{v_9, s'\}$  have weight  $\alpha_w$ .

Comparing the stable set  $\{v_1, s, v_4\}$  to S we get  $w_1 + w(s) + w_4 \le w(S) = w_1 + w(s)$  and thus  $w_4 = 0$ . Hence,  $w_2 = 0$  too, by (b), and  $w_3 = w_1$ , by (3). Symmetrically, comparing  $\{v_9, s', v_6\}$  to S', we get that  $w_6 = w_8 = 0$ .

To sum up, we have discovered that  $w_1 = w_3 = w_7 = w_9$  and that  $w_2 = w_4 = w_6 = w_8 = 0$ . Furthermore,  $\alpha_w = w(S) = 2w_1$ . Finally, as  $\{v_1, v_5\}$  is stable, it follows that  $w_5 \leq w_1$ . We conclude the proof by choosing a *w*-cover consisting of  $w_1$  times the 5-cycle  $v_1v_3v_5v_7v_9$  at a cost of  $2w_1$ .

## 4 Strongly *t*-perfect claw-free graphs

In order to prove Theorem 2, we only have to show that every claw-free strongly t-imperfect graph is t-imperfect. In fact, it suffices to prove this for all minimally strongly t-imperfect graphs G. Our first step in this direction is to show that G is 3-connected:

**Lemma 6.** Let G be a minimally strongly t-imperfect graph. If G is claw-free then G is 3-connected.

We postpone the lengthy proof of this lemma to the end of the section. Once equipped with Lemma 6 we may apply the following tool from [2].

**Lemma 7.**  $[2]^2$  Let G be a 3-connected claw-free graph. If G is t-perfect then one of the following statements holds true:

(i) G is a line graph;

 $\epsilon$ 

(ii)  $G \in \{C_6^2 - v_1 v_6, C_7^2 - v_7, C_{10}^2 - v_{10}\}.$ 

We need one further ingredient for the proof of Theorem 2. The following theorem describes a TDI system for the matching polytope of a graph G – this polytope is the convex hull in  $\mathbb{R}^{E(G)}$  of the characteristic vectors of matchings in G. A graph F is factor-critical if F - v has a perfect matching for every  $v \in V(F)$ .

**Theorem 8** (Cook [4]). For every graph H the following system of inequalities is TDI:

$$y \in \mathbb{R}^{E(H)}, y \ge 0$$

$$\sum_{e \in E(v)} y_e \le 1 \qquad \text{for every } v \in V(H) \qquad (4)$$

$$\sum_{e \in E(F)} y_e \le \lfloor \frac{|V(F)|}{2} \rfloor \quad \text{for every 2-connected factor-critical } F \subseteq H.$$

We denote by  $\mathbf{1}_Z$  the characteristic vector of the set  $Z \subseteq V(G)$ , where we abbreviate  $\mathbf{1}_{\{z\}}$  by  $\mathbf{1}_z$ .

Proof of Theorem 2. We only need to show that a claw-free graph G that is minimally strongly t-imperfect is also t-imperfect. By Lemma 6, G is 3-connected. Thus, Lemma 7 is applicable and therefore, G is either t-imperfect (as desired), or G is a line graph, or  $G \in \{C_6^2 - v_1v_6, C_7^2 - v_7, C_{10}^2 - v_{10}\}$ . Since  $C_7^2$  and  $C_{10}^2$  are minimally strongly t-imperfect by Lemma 5, we only need to consider the cases when  $G = C_6^2 - v_1v_6$  or when G is a line graph. Suppose that  $G = C_6^2 - v_1v_6$ , and pick a weight  $w \in \mathbb{Z}^{V(G)}$  so that G has no

Suppose that  $G = C_6^2 - v_1 v_6$ , and pick a weight  $w \in \mathbb{Z}^{V(G)}$  so that G has no w-cover of cost  $\alpha_w(G)$  of minimal total weight w(V(G)). Since G is supposed to be minimally strongly t-imperfect it follows that w > 0, i.e. that every entry of w is positive. Then for  $w' := w - \mathbf{1}_{v_1 v_2 v_3}$  there exists a w'-cover  $\mathcal{K}'$  of cost  $\alpha_{w'}(G)$ . However, every stable set of S of weight  $w(S) = \alpha_w(G)$  meets the triangle  $v_1 v_2 v_3$ , which implies that  $\mathcal{K}' \cup \{v_1 v_2 v_3\}$  is a w-cover of cost  $\alpha_w(G)$ , a contradiction.

<sup>&</sup>lt;sup>2</sup>The lemma is the direct consequence of Lemma 9 in [2].

So assume that G is a line graph, of a graph H say. First of all, note that H has maximal degree  $\leq 3$  since G, as a minimally strongly t-imperfect graph, cannot contain  $K_4$  as a proper subgraph. Now, if the only 2-connected factorcritical subgraph F of H are odd cycles, then system (1) becomes (4) – which is TDI by Theorem 8, a contradiction to the strong t-perfection of G. So, assume H to contain a 2-connected factor-critical subgraph F that is not an odd cycle. By a result of Lovász [10], F then has a proper odd ear-decomposition, that is, there is a sequence of subgraphs  $F_0 \subseteq \ldots \subseteq F_k = F$ , so that  $F_0$  is an odd cycle and so that  $F_{i+1}$  is obtained from  $F_i$  by adding an odd  $F_i$ -path. Then,  $F_1 \subseteq F$  consists of three internally disjoint paths with common endvertices, so that exactly two of the paths have odd length. Viewed in G, the induced subgraph on the vertex set  $E(F_1)$  can be t-contracted to  $K_4$ . Thus,  $K_4$  is a t-minor of G, which shows that G is t-imperfect.

The only missing link in our proof of Theorem 2 is Lemma 6, i.e. the fact that every claw-free minimally strongly *t*-imperfect graph G is 3-connected. We will show this in two steps. In the first step, accomplished in Lemmas 9–13, we ensure that G is 2-connected and that every 2-separation (see the next paragraph) has a side that is a path. In the second step, for which we need Lemmas 14 and 15, we will prove that the minimum degree of G is at least three.

For the first step we make use of the notion of k-separations. We say that  $(G_1, G_2)$  is a separation of order k of a graph G, or a k-separation of G, if  $G_1, G_2$  are proper induced subgraphs of G with  $G = G_1 \cup G_2$  and  $|V(G_1 \cap G_2)| = k$ .

We use the following notation due to Gerards [7]. Let  $(G_1, G_2)$  be a 2separation of an arbitrary graph G, and denote by u and v the two vertices contained in both  $G_1$  and  $G_2$ . Given  $w \in \mathbb{Z}^{V(G)}$ , define  $s_w^i(X)$  to be the maximum w(S) among all stable sets S in  $G_i$  with  $S \cap \{u, v\} = X$ . If no confusion is possible we omit the subscript w. Moreover, we denote by  $G_i + P_2$ the graph  $G_i$  with an u-v path of length 2 added, and by  $G_i + P_3$  the graph  $G_i$  plus an u-v path of length 3. (Following Diestel [5] we denote the path on k edges by  $P_k$ .)

The next two lemmas exclude already a good number of types of 2-separations in a minimally strongly *t*-imperfect graph. We mention that the lemmas do not appear explicitly in [7] but may, without effort, be extracted from the proof of Theorem 1.8.

**Lemma 9** (Gerards [7]). Let G be a graph, and let  $(G_1, G_2)$  be a separation of order  $\leq 2$ . If  $G_1 \cap G_2$  forms a complete subgraph, and if  $G_1$  and  $G_2$  are strongly t-perfect, then G is strongly t-perfect.

**Lemma 10** (Gerards [7]). Let G be a graph, and let  $(G_1, G_2)$  be a 2-separation so that  $V(G_1) \cap V(G_2)$  consists of two non-adjacent vertices u and v. Then for every non-negative weight  $w \in \mathbb{Z}^{V(G)}$  it holds thats:

- (i) If  $s^2(u,v) + s^2(\emptyset) \ge s^2(u) + s^2(v)$  and if  $G_1 + P_2$  as well as  $G_2 + P_3$  are strongly t-perfect then G has a w-cover of cost  $\alpha_w(G)$ .
- (ii) If  $s^2(u, v) + s^2(\emptyset) \le s^2(u) + s^2(v)$  and if  $G_1 + P_3$  as well as  $G_2 + P_2$  are strongly t-perfect then G has a w-cover of cost  $\alpha_w(G)$ .

Next, we relate the inequalities in (i) and (ii) in the previous lemma with the existence of odd or even induced u-v paths.

**Lemma 11.** Let  $(G_1, G_2)$  be a 2-separation of a graph G, and denote the two vertices common to both  $G_1$  and  $G_2$  by u, v. For every  $w \in \mathbb{Z}^{V(G)}$  it holds that:

- (i) If every induced u-v path in  $G_2$  has even length then  $s^2(u,v) + s^2(\emptyset) \ge s^2(u) + s^2(v)$ .
- (ii) If every induced u-v path in  $G_2$  has odd length then  $s^2(u,v) + s^2(\emptyset) \le s^2(u) + s^2(v)$ .

*Proof.* (i) Pick a stable set  $S_u$  in  $G_2$  with  $u \in S_u$  but  $v \notin S_u$  so that  $w(S_u) = s^2(u)$ , and choose a stable set  $S_v$  in  $G_2$  with  $v \in S_v$ ,  $u \notin S_v$  and  $w(S_v) = s^2(v)$ . Denote by K the vertex set of the component of  $G_2[S_u \cup S_v]$  containing u. Then, as every induced u-v path in  $G_2$  has even length, it follows that  $v \notin K$ . The symmetric difference  $S_u \triangle K$  is a stable set, and hence misses  $\{u, v\}$ , while the stable set  $S_v \triangle K$  contains  $\{u, v\}$ . Since no vertex from K lies in both of  $S_u$  and  $S_v$ , we get

$$s^{2}(u) + s^{2}(v) = w(S_{u}) + w(S_{v}) = w(S_{u} \triangle K) + w(S_{v} \triangle K) \le s^{2}(\emptyset) + s^{2}(u, v).$$

(ii) We proceed in a similar way as in (i), only starting with stable sets  $S_{\emptyset}$  and  $S_{u,v}$  that miss, respectively contain,  $\{u, v\}$ .

For a 2-separation  $(G_1, G_2)$  of a graph G, there is one case that is not addressed by Lemma 10, namely the case that every induced u-v path in  $G_1$ and in  $G_2$  is even, or that every such path is odd.

**Lemma 12.** Let  $(G_1, G_2)$  be a 2-separation of a graph G so that  $V(G_1 \cap G_2) = \{u, v\}$ , and let  $G_1$  and  $G_2$  be strongly t-perfect. If every induced u-v path in G is even, or if every such path is odd, then also G is strongly t-perfect.

*Proof.* Given a non-negative weight function  $w: V(G) \to \mathbb{Z}$  we shall show for i = 1, 2 that there are non-negative weights  $w^i: V(G) \to \mathbb{Z}$  with  $w^i | V(G_{3-i} - G_i) = 0$  so that

- (i)  $w^1 + w^2 = w$ , and
- (ii)  $\alpha_{w^1}(G_1) + \alpha_{w^2}(G_2) \le \alpha_w(G).$

This then establishes the lemma, as we can combine the  $w^i$ -covers of G that are given by the strong *t*-perfection of the  $G^i$  to a *w*-cover of G of cost  $\alpha_w(G)$ .

In order to prove that such  $w^i$  exist, we proceed by induction on the sum  $w_u + w_v$ . Clearly, if  $w_u + w_v = 0$ , then the restrictions of w to  $G^i$  satisfy (i) and (ii). So assume w.l.o.g. that  $w_u > 0$ , and set  $\tilde{w} := w - \mathbf{1}_u$ , where  $\mathbf{1}_u$  denotes the characteristic vector of  $\{u\}$ . By induction, we know that there exist  $\tilde{w}^1$  and  $\tilde{w}^2$  satisfying (i) and (ii).

In particular, there is a set  $X \subseteq \{u, v\}$  such that  $\alpha_{\tilde{w}_1}(G_1) = s_{\tilde{w}^1}^1(X)$  and  $\alpha_{\tilde{w}_2}(G_2) = s_{\tilde{w}^2}^2(X)$ . Now, if  $\alpha_{\tilde{w}_1+\mathbf{1}_u}(G_1) = s_{\tilde{w}^1+\mathbf{1}_u}^1(X)$  then we may set  $w_1 := \tilde{w}^1 + \mathbf{1}_u$  and  $w^2 := \tilde{w}^2$  and are done. Hence we may assume that  $\alpha_{\tilde{w}^1+\mathbf{1}_u}(G_1) \neq s_{\tilde{w}^1+\mathbf{1}_u}^1(X)$ . This can only happen if  $u \notin X$ , and if, moreover, there is a set  $Y_1 \subseteq \{u, v\}$  which contains u, such that  $\alpha_{\tilde{w}^1}(G_1) = s_{\tilde{w}^1}^1(Y_1)$ . (Then, we have that  $\alpha_{\tilde{w}_1+\mathbf{1}_u}(G_1) = s_{\tilde{w}_1+\mathbf{1}_u}^1(Y_1)$ .) Arguing in the same way for  $\tilde{w}^2$ , we find that

there is a set  $Y_2 \subseteq \{u, v\}$  which contains u, such that  $\alpha_{\tilde{w}^2}(G_2) = s_{\tilde{w}^2}^2(Y_2)$ . By symmetry of  $G_1$  and  $G_2$ , we may suppose that  $Y_1 = \{u\}$  and  $Y_2 = \{u, v\}$ , since we are done if  $Y_1 = Y_2$ .

So, depending on whether  $X = \emptyset$  or  $X = \{v\}$ , we arrive at one of the following two cases:

(a)  $\alpha_{\tilde{w}^1}(G_1) = s_{\tilde{w}^1}^1(\emptyset) = s_{\tilde{w}^1}^1(u)$  and  $\alpha_{\tilde{w}^2}(G_2) = s_{\tilde{w}^2}^2(\emptyset) = s_{\tilde{w}^2}^2(u, v)$ , or (b)  $\alpha_{\tilde{w}^1}(G_1) = s_{\tilde{w}^1}^1(v) = s_{\tilde{w}^1}^1(u)$  and  $\alpha_{\tilde{w}^2}(G_2) = s_{\tilde{w}^2}^2(v) = s_{\tilde{w}^2}^2(u, v)$ .

First, assume that case (a) holds. Now, if every induced u-v path in G is odd, then Lemma 11 (ii) implies that  $\alpha_{\tilde{w}^2}(G_2) = s_{\tilde{w}^2}^2(u) = s_{\tilde{w}^2}^2(v) = s_{\tilde{w}^2}^2(\emptyset) = s_{\tilde{w}^2}^2(u, v)$ . Thus, setting  $w^1 := \tilde{w}_1 + \mathbf{1}_u$  and  $w^2 := \tilde{w}^2$  will ensure (i) and (ii), as  $s_{w^1}^1(u) = \alpha_{w^1}(G_1)$  and  $s_{w^2}^2(u) = \alpha_{w^2}(G_2)$ . So, in case (a), we may restrict our attention to the situation that every induced u-v path in G is even.

Then, by Lemma 11 (i), we have

$$s_{\tilde{w}^{1}}^{1}(v) \le s_{\tilde{w}^{1}}^{1}(u,v).$$
(5)

Furthermore, as we may otherwise set  $w^1 := \tilde{w}_1$  and  $w^2 := \tilde{w}^2 + \mathbf{1}_u$ , we see that

$$s_{\tilde{w}^2}^2(u) < \alpha_{\tilde{w}^2}(G_2).$$
 (6)

Set

$$w^1 := \tilde{w}^1 + \mathbf{1}_v$$
 and  $w^2 := \tilde{w}^2 + \mathbf{1}_u - \mathbf{1}_v$ .

Note that  $\tilde{w}_v^2 > 0$  since  $s_{\tilde{w}^2}^2(u) < \alpha_{\tilde{w}^2}(G_2) = s_{\tilde{w}^2}^2(u, v)$ . By (6), it is clear that  $\alpha_{w^2}(G_2) = s_{w^2}^2(\emptyset) = s_{w^2}^2(u, v)$ . On the other hand, (5) together with the fact that  $s_{\tilde{w}^1}^1(u) = s_{\tilde{w}^1}^1(\emptyset)$  implies that  $\alpha_{w^1}(G_1) \in \{s_{w^1}^1(\emptyset), s_{w^1}^1(u, v)\}$ . Hence, our choice of  $w^1$  and  $w^2$  ensures (i) and (ii), as desired.

Now assume that case (b) above holds. If every induced u-v path in G is even, then Lemma 11 (i) implies that  $\alpha_{\tilde{w}^1}(G_1) = s_{\tilde{w}^1}^1(\emptyset) = s_{\tilde{w}^1}^1(u,v)$ . Thus, setting  $w^1 := \tilde{w}_1$  and  $w^2 := \tilde{w}^2 + \mathbf{1}_u$  will ensure (i) and (ii). So, we will suppose from now on that every induced u-v path in G is odd.

By Lemma 11 (ii), we have

$$s_{\tilde{w}^2}^2(\emptyset) \le s_{\tilde{w}^2}^2(u),$$
 (7)

and (as we may otherwise set  $w^1 := \tilde{w}_1 + \mathbf{1}_u$  and  $w^2 := \tilde{w}^2$ ) we see that

$$s_{\tilde{w}^1}^1(u,v) < \alpha_{\tilde{w}^1}(G_1) \text{ and } s_{\tilde{w}^2}^2(u) < \alpha_{\tilde{w}^2}(G_2).$$
 (8)

Observe that  $\tilde{w}_v^2 > 0$  by (8) and (b). Hence, setting

$$w^1 := \tilde{w}^1 + \mathbf{1}_u + \mathbf{1}_v \text{ and } w^2 := \tilde{w}^2 - \mathbf{1}_v.$$

resolves our problem, as (8) implies that  $\alpha_{w^1}(G_1) = s_{w^1}^1(u) = s_{w^1}^1(v)$ , and (7) implies that  $\alpha_{w^2}(G_2) \in \{s_{w^2}^2(u), s_{w^2}^2(v)\}$ .

We summarise the results obtained so far in the following lemma.

**Lemma 13.** Let G be a minimally strongly t-imperfect graph. Then G is 2connected, and if  $(G_1, G_2)$  is a 2-separation of G then one of  $G_1$  and  $G_2$  is a path. *Proof.* It follows from Lemma 9 that G is 2-connected. Suppose that G has a 2-separation  $(H_1, H_2)$  with  $V(H_1) \cap V(H_2) = \{u, v\}$ . By Lemma 9, u and v are not adjacent.

If every induced u-v path in G is even or if every such path is odd then Lemma 12 implies that one of  $H_1$  or  $H_2$  is strongly t-imperfect, a contradiction, since G is minimally strongly t-imperfect.

So we may assume that  $H_1$  contains an even induced u-v path, and  $H_2$  contains an odd induced u-v path. By minimality of G, this implies that  $H_1+P_3$  and  $H_2+P_2$  are strongly t-perfect. Now, pick a non-negative weight  $w \in \mathbb{Z}^{V(G)}$  so that G has no w-cover of cost  $\alpha_w(G)$ .

Applied to  $(G_1, G_2) := (H_1, H_2)$ , Lemma 11 (ii) together with Lemma 10 (ii) imply that  $H_2$  also contains an even induced u-v path. Moreover, Lemma 11 (i) and Lemma 10 (i) applied to  $(G_1, G_2) := (H_2, H_1)$  yield that  $H_1$  contains an odd induced u-v path. Hence, for all i = 1, 2 and j = 2, 3 the graph  $H_i + P_j$  is a tminor of G. For contradiction, assume that the  $H_i + P_j$  are proper t-minors of G, and thus strongly t-perfect. Now, whichever value  $s^2(u, v) + s^2(\emptyset)$  takes, either Lemma 10 (i) or (ii) is applicable in order to obtain the final contradiction.  $\Box$ 

We now turn to the second step in our proof of Lemma 6, that is, to proving that claw-free minimally strongly t-imperfect graphs have minimum degree at least three.

**Lemma 14.** Let G = (V, E) be a graph, let  $w \in \mathbb{Z}^V$ , and assume v to be a vertex with exactly two neighbours, p and q. Let p and q be non-adjacent, and assume that  $w_p = w_v = w_q$ . Set  $\tilde{G} = G/E(v)$ , denote the new vertex by  $\tilde{v}$  and define  $\tilde{w} \in \mathbb{Z}^{V(\tilde{G})}$  by setting  $\tilde{w}_u := w_u$  for  $u \in V(\tilde{G} - \tilde{v})$  and  $\tilde{w}_{\tilde{v}} := w_v$ . If  $\tilde{G}$  has a  $\tilde{w}$ -cover of cost  $\alpha_{\tilde{w}}(\tilde{G})$  then G has a w-cover of cost  $\alpha_w(G)$ .

*Proof.* Consider a stable set  $\tilde{S}$  in  $\tilde{G}$  with  $\tilde{w}(\tilde{S}) = \alpha_{\tilde{w}}(\tilde{G})$ . If  $\tilde{v} \in \tilde{S}$  then  $S := (\tilde{S} \setminus \{\tilde{v}\}) \cup \{p,q\}$  is a stable set in G with  $w(S) = \alpha_{\tilde{w}}(\tilde{G}) + w_v$ . If, on the other hand,  $\tilde{v} \notin \tilde{S}$  then  $S := \tilde{S} \cup \{v\}$  is stable in G, and  $w(S) = \alpha_{\tilde{w}}(\tilde{G}) + w_v$ . Thus, we get

$$\alpha_{\tilde{w}}(\tilde{G}) + w_v \le \alpha_w(G). \tag{9}$$

By assumption, there is a  $\tilde{w}$ -cover  $\tilde{\mathcal{K}}$  of  $\tilde{G}$ , which we may choose to cover  $\tilde{v}$  exactly  $\tilde{w}_{\tilde{v}} = w_v$  times. Observe that we may view  $E(\tilde{G})$  as a subset of E(G); for an edge  $x\tilde{v}$  so that x is a neighbour of p as well as of q we arbitrarily pick one of xp and xq and identify it with  $x\tilde{v}$ . Thus, viewed in G, the subfamily of  $\tilde{\mathcal{K}}$  consisting of edges and odd cycles becomes a family of edges, odd cycles and odd p-q paths; denote the latter subfamily of  $\tilde{\mathcal{K}}$  by  $\tilde{\mathcal{P}}$ . By completing every  $P \in \tilde{\mathcal{P}}$  to an odd cycle through v, and by replacing every occurrence of  $\{\tilde{v}\}$  in  $\tilde{\mathcal{K}}$  by one of  $\{p\}$  and  $\{q\}$  we obtain from  $\tilde{\mathcal{K}}$  a family  $\mathcal{K}'$  of vertices, edges and odd cycles in G.

Set  $\tilde{\gamma} := |\tilde{\mathcal{P}}|$  and observe that as  $\tilde{\mathcal{K}}$  covers  $\tilde{v}$  exactly  $w_v$  times, we get that  $\tilde{\gamma} \leq w_v$ . Moreover, it follows that each of p and q is covered by  $\mathcal{K}'$  at most  $w_v$  times, while together they are covered  $w_v + \tilde{\gamma}$  times since every  $P \in \tilde{\mathcal{P}}$  leads to a cycle in  $\mathcal{K}'$  that meets p as well as q. Since v is contained in these cycles as well, it is covered  $\tilde{\gamma}$  times. Hence, by adding  $w_v - \tilde{\gamma}$  edges, vp or vq, we can complete  $\mathcal{K}'$  to a w-cover  $\mathcal{K}$ .

The cost of  $\mathcal{K}$  is the cost of  $\tilde{\mathcal{K}}$  plus the cost of extending the  $P \in \tilde{\mathcal{P}}$  to cycles plus the cost of the additional edges incident with v. In other words,  $\mathcal{K}$  costs

$$\alpha_{\tilde{w}}(\tilde{G}) + \tilde{\gamma} + w_v - \tilde{\gamma} = \alpha_{\tilde{w}}(\tilde{G}) + w_v \le \alpha_w(G),$$

where the last inequality follows from (9).

The following lemma, which is quite similar to Lemma 20 in [2], uses an idea of Mahjoub [11]. For two vectors  $w, w' \in \mathbb{Z}^{V(G)}$  we write  $w \leq w'$  if  $w_v \leq w'_v$  for all  $v \in V(G)$ .

**Lemma 15.** Let G be a graph, and let  $w \in \mathbb{Z}^{V(G)}$ , w > 0, so that there is no w-cover of  $\cos \alpha_w(G)$  but for every  $w' \leq w$  with one strictly smaller entry there is a w'-cover with  $\cos \alpha_{w'}(G)$ .

- (i) If G contains a path pvq so that d(v) = 2 then  $w_v \leq w_q$ .
- (ii) If G contains a triangle prs and a neighbour  $v \notin \{r, s\}$  of p so that d(p) = 3 then  $w_p \leq w_v$ .

*Proof.* Suppose there is an edge or triangle X that is hit by every stable set S of weight  $w(S) = \alpha_w(G)$ . Set  $w' := w - \mathbf{1}_X$ , and observe that  $\alpha_{w'}(G) = \alpha_w(G) - 1$ . Hence, by assumption there is a w'-cover  $\mathcal{K}'$  of cost  $\alpha_w(G) - 1$ , which together with X yields a w-cover of cost  $\alpha_w(G)$ , a contradiction. This proves that for every edge or triangle X there is a stable set  $S_X$  of weight  $\alpha_w(G)$  that misses X.

(i) Consider the stable set  $S_{pv}$  of weight  $\alpha_w(G)$  that misses the edge pv. Since  $w_v > 0$ , it follows that  $q \in S_{pv}$ . Then  $S := S_{pv} \setminus \{q\} \cup \{v\}$  is a stable set with weight  $w(S) = \alpha_w(G) - w_q + w_v \le \alpha_w(G)$ , which implies  $w_v \le w_q$ , as desired.

(ii) Consider the stable set  $S_{prs}$  of maximal weight that misses the triangle prs, and note that  $v \in S_{prs}$ . Then the stable set  $S_{prs} \setminus \{v\} \cup \{p\}$  has weight  $\alpha_w(G) - w_v + w_p \le \alpha_w(G)$ , which implies  $w_p \le w_v$ , as desired.  $\Box$ 

We are finally prepared to prove Lemma 6.

Proof of Lemma 6. By Lemma 13, we only need to convince ourselves that a minimally strongly t-imperfect graph G = (V, E) does not contain any vertices of degree 2. So suppose otherwise, i.e. suppose that G has vertices of degree 2. As every cycle is strongly t-perfect, not all vertices may have degree 2, and we may hence suppose that there is a path  $P = u \dots v$  in G with all interior vertices of degree 2 in G but with endvertices u, v of higher degree. Furthermore, we may suppose that P does indeed contain an interior vertex.

By Lemma 9 and the minimality of G, u and v cannot be adjacent. Since  $K_4$  is strongly *t*-imperfect and G minimal, G cannot contain  $K_4$  as a proper subgraph. Thus, it follows from the fact that G is claw-free that both u and v have degree 3 and are incident with a triangle.

Among all non-negative  $w \in \mathbb{Z}^V$  for which there is no *w*-cover of cost  $\alpha_w(G)$  choose one, *w* say, so that w(V) is minimal. Since *G* is strongly *t*-imperfect there is such a *w* and, moreover, it holds that w > 0 by the minimality of *G*. We may now apply Lemma 15 to the vertices in *P* plus the two triangles incident with *u* and *v*. This yields that *w* is constant on *P*. Let *r* be an interior vertex of *P* and set  $\tilde{G} := G/E(r)$ . Define  $\tilde{w}$  as in Lemma 14 with *r* in the role of *v*. Then,  $\tilde{G}$  is a proper *t*-minor of *G* and has thus a  $\tilde{w}$ -cover of cost  $\alpha_{\tilde{w}}(\tilde{G})$ . Now, however,

Lemma 14 asserts that G has a w-cover of cost  $\alpha_w(G)$ , a contradiction to the choice of w.

## References

- [1] H. Bruhn and M. Stein, unpublished.
- [2] \_\_\_\_\_, On claw-free t-perfect graphs, Preprint 2009.
- [3] V. Chvátal, On certain polytopes associated with graphs, J. Combin. Theory (Series B) 18 (1975), 138–154.
- W. Cook, A minimal totally dual integral defining system for the b-matching polyhedron, SIAM J. Discrete Math. 4 (1983), 212–220.
- [5] R. Diestel, *Graph theory* (3rd edition), Springer-Verlag, 2005.
- [6] A.M.H. Gerards, personal communication.
- [7]  $\_$ , A min-max relation for stable sets in graphs with no odd- $K_4$ , J. Combin. Theory (Series B) 47 (1989), 330–348.
- [8] A.M.H. Gerards and F.B. Shepherd, The graphs with all subgraphs t-perfect, SIAM J. Discrete Math. 11 (1998), 524–545.
- [9] D. Gijswijt and A. Schrijver, On the b-stable set polytope of graphs without bad K<sub>4</sub>, SIAM J. Discrete Math. 16 (2003), 511–516.
- [10] L. Lovász, A note on factor-critical graphs, Studia Scientiarum Mathematicum Hungarica 7 (1972), 279–280.
- [11] A. R. Mahjoub, On the stable set polytope of a series-parallel graph, Math. Programming 40 (1988), 53–57.
- [12] N. Sbihi and J.P. Uhry, A class of h-perfect graphs, Disc. Math. 51 (1984), 191–205.
- [13] A. Schrijver, Strong t-perfection of bad-K<sub>4</sub>-free graphs, SIAM J. Discrete Math. 15 (2002), 403–415.
- [14] \_\_\_\_\_, Combinatorial optimization. Polyhedra and efficiency, Springer-Verlag, 2003.
- [15] F. B. Shepherd, Applying Lehman's theorems to packing problems, Math. Prog. 71 (1995), 353–367.

Version 29th March 2010

Henning Bruhn <hbruhn@gmx.net> Department of Computer Science and System Analysis Nihon University Sakurajosui 3-25-40 Setagaya-Ku Tokyo 156-8550 Japan Maya Stein <mstein@dim.uchile.cl> Centro de Modelamiento Matemático Universidad de Chile Blanco Encalada, 2120 Santiago Chile