Supplementary material

Proof of main result from NW’s Hall-theorem

For a graph G = (V, E) and a subset U C V, denote by £ (U) (or simply by £(U), if G is clear from the
context) the set of edges with at least one endvertex in U. For a single vertex v, we abbreviate £({v}) to £(v).
Let H be a bipartite graph with partition classes M and W, and define for X C W the demand-set Dy (X) to
be {m e M : N(m) C X}. We will often simply write D(X) if it is obvious which is the underlying graph H.

Theorem 1 (Hall [2]). Let H be a bipartite graph with partition classes M and W. Assume that every vertex
in M has only finitely many neighbours. Then there is a matching of M if and only if |D(X)| < |X| for every
finite set X C W.

Let Wy = (Wx)a<e be a queue in W. Set ¢q(Wy) = —|D(Wo)| = —|D(0)] and define
(i) gqWn) :=qW,) + W \ W,| — |[D(Wx) \ D(W,,)| if A = k+ 1 is a successor ordinal; and
(i) ¢qOWa) = liminf,cx qOWu) — [D(WA) \ U, <\ D(W,.)| otherwise.

If confusion may arise we will write g to indicate the graph H in which we are measuring q.

Theorem 2 (Nash-Williams [3]). Let H be a countable bipartite graph with partition classes M and W. Then
there is a matching of M if and only if (W) > 0 for each queue W in W.

We deduce our main theorem from Nash-Williams’ theorem. For this, let a countable graph G = (V, E) and
bounds [ and u be given. Assume that there are no deficient and no faulty sets.

For each v € V, set X, := {(v,i) :i=1,...,u(v)} (if u(v) = co we choose countably infinitely many copies
of v) and Vi, := J,cy Xv. So V, consists of u(v) copies of each v € V. Define a bipartite graph H with partition
classes V,, and E. Let v/ € X, and e € FE be adjacent in H if and only if v is incident with e in G. For each
v € V pick [(v) of its copies in X,,, denote the set of those by Y, and set V; := Uvev Y,.

We will find a matching M; of V; and a matching M, of F in H. From these two we shall construct a
common matching M of V; and E. Once we have done this, we orient an edge e € F towards its endvertex
v € V if e is matched with some v' € X,,. This yields the desired orientation.

So, let us first find the matching M;, for which we work within the graph H' := H[V, U E]. Considering an
arbitrary queue W = (Wy)a<p in E, we want to show that gg (W) > 0.

Put Uy :={v € V: Epr(v) C Wi} (observe that Uy = 0, since there are no deficient sets). Now, at this stage
we would like to see that the sets Uy form a queue U in the graph G and that ¢z (W) > ng(U,1). Unfortunately,
this is only almost true. However, the only reason this fails is a small technical detail, namely that we had

required in our definition for a queue in the context of degree constrained orientations that Uy = |J LA U, for

any limit ordinal A. So, we will turn the chain U into a queue u by padding it, that is, for every limit ordinal
A we will insert the set |J u<x Uy into the chain. For this, we introduce a funtion ¢ on the ordinals that will
provide the needed space, so that we can insert the new sets.

More precisely, we define inductively sets Uy and a function ¢ on the ordinals. Start with Uy = @ and
0(0) = 0. For a successor ordinal A = k + 1 put o(A) = o(k) + 1. If A is a limit ordinal set v = {J,,_, o(n),
U, = UH<V ﬁu and o(A) = v+ 1. In any case we define Ua(/\) = Uy. The resulting U = (UA))\SU(()) is indeed a
queue.

Claim. We claim that for all X it holds that

qr'Wx) 2 naUsny, 1) + WA\ Ea(Usn))|- (1)

Proof. In the proof of the claim, g and D are always with respect to H’, while £ and 7 are always measured in
G, so we will omit these subscripts. As every vertex v € V; has a neighbour in H' we obtain ¢(W,) = 0. Since
we also have that Wy = @ and 1(Up,1) = 0, (1) holds for A = 0.

So, let A > 0 and assume first A = k + 1 to be a successor ordinal. We observe that

IDWONDW =] |J Yol= D U0)=UU\Us) = Uz \ Usiy).
veUN\Us veUN\Uy
Next, since Wy D W, D E(Ua(,_i)) and Wy D 5((70()\)) D E(Ua(,,i)), we get that

WA\ Wl + W\ EWo(m))| = [Wa\ EUs ()|
|W>\ \ E(UU(A))l + |£(Uo()\)) \5(00(5)”



Thus, by induction hypothesis, we get

a(W») (W) + [Wx \ We| = [D(Wx) \ D(W,)|

nU o(): D)+ Wi \ EWUo(m)| + [Wa \ Wi = [D(Wx) \ D(W,,))|

77( O'(H)’ )+|W)\\5( o’()\))|+|5( O'()\))\g( G’H))|_l( O'()\)\UO'(N))
( a(N)

NUsx), 1) + WA\ ETs);

Y

which is (1).
So, assume A to be a limit ordinal. Then, by definition of o, 0(A) = v + 1 where v = J,,_, o(n). We get

DWW\ (| DW,)| = | U Y=l U Yl=U0\l)

H<A veUNN(U, < Un) v€U,41\U,
and thus
qW) = hmﬁnf q(W,) — [IDW)\ (| DW,))|
<A

> hmigg(n(b}o(u)a l) + |WH \g(Ud(#))l) - l( v+1 \ U )

> (1) + tim i (W, \ EQn)| = U0 \ 01

Now, liminf, <) |W, \ €([Uyu)| = liminf,<x |W, \ £(U,)|, and since W = |J ., it follows that

u<)\

lim inf W\ £( Usu)l 2 WA\ EO)] = Wi\ EUp11)| + 1E(0p41) \ E(TL))-

(Note that £(U,41) € W.) Substituting in the above estimation for g(W,) we obtain

qWx) = W(L:{Vvl)+|w>\\g( Up1)l +[ECv41) \ EWUL)| = U(Tu11\ U)
= Ups1,) + WA\ EUp41)l-

Since v + 1 = o(A) this shows (1) when A is a limit ordinal. O

Having proved Claim (1), we see that gg/(W) > 0 as there are no deficient sets in G. Therefore, we can
apply Theorem 2 and obtain a matching M; of V} in H.

Next, we find a matching M, of E in H. For this, pick a vertex v of V(G) with u(v) = co. Hence, its set
X, of copies in H is infinite and we can easily match all incident edges to a separate copy of v in H. Delete X,
and all those already matched edges from H and pick the next v" with | X, | = oco. Continuing in this manner,
we arrive at a subgraph H” of H in which all the sets X, are finite.

In order to use Theorem 1, we consider a finite set X C V,, NV (H"). If there is a v € V(G) such that X,
meets X but is not completely contained in X then we may delete X,, N X from X: Indeed, | X| will get smaller
while Dy (X) stays the same, making our task of showing |Dp(X)| < |X| only more difficult. Thus, we may
assume that for each v either X,, C X or X, and X are disjoint. Denoting by Vx the set of vertices in G with
X, C X we obtain u(Vx) = |X| and ig(Vx) = |Dg~(X)|. Since, by assumption, u(Vx) > ic¢(Vx) we find with
Theorem 1 a matching of the remaining edges of G in H”, which together with the already matched edges gives
us the desired M,,.

Finally, we construct a common matching M of V; and E in H. Put L := (V(H), M; U M,,) where we put
in a double edge if an edge of H lies in M; and M,,. Clearly, L has maximum degree 2, and every vertex in
Vi U E has degree at least one. Thus components of L are cycles, finite or infinite paths. Consider a component
P that is a finite path starting in a vertex of V;. Then the first edge of P is necessarily an edge of M;. Since we
reach every vertex on P in F via an edge in M; and since each vertex in F is incident with an edge in M,, P
ends in a vertex w € V,,. The last edge of P lies in M,; therefore, w ¢ V.

Now in every component pick every other edge; if the component is a path (finite or infinite) starting in a
vertex v in V; start picking edges from v. In this way we get a matching M that covers all of V; U E.

Proof of Lemma 6

Lemma 6. Let there be neither deficient sets nor faulty sets in G, and let U be a taut set and L be a tight set.
Then U \ L is taut and L\ U is tight.



Proof. Let £ = (Lx)x<g be a queue with n(£,1) =0 and Ly = L, and define M = (L \ U)r<p. By transfinite
induction, we show that for any ordinal A < @ it holds that

(L, 1) > n(Mx, 1) +i(LaNU) = 1(LxNU) +d(LxNU,Ly). (2)

This is trivially true for A = 0. Let A be such that the induction hypothesis holds for all < A. First, assume
that A is a successor ordinal. We use the induction hypothesis for A — 1 in what follows:

n(Lx,1) = n(La_1,1)+i(LY) +d(LA, Ty) —I(LY)

NMx-1,0) +i(Lx—1 NU) = (Lx—1 NT)

+d(Lyx—1 NU,Ix21) + (L) +d(Lh, Ty) — 1(L4)

= pMr_1,1)+i(La s NU) +d(Lr_1 NU,Ly_1 \ M})
d(Lx_1 NU, M) +i(LY) +d(L5, Ly)

—U(LxNU) = 1(My)

With
= d(Lx-1NUMY) +i(L5\NU)+d(L\NU, My) ;
(M) + d(Ly N U TR + d(M}, T) ¥
= i(M}) +d(M5, My)+i(L\NU) +d(L5\NU,Ly)
we get

n(Lal) > p(Maor )+ i(Lao NU) + d(Lyy N U, Taoy \ M})

i(MY) + d(M5, My) +i(L\NU) +d(L5\ NU,Ly)
—U(LxNU) = 1(M])

= (M, 1) +i(La1 NU) +d(La_1 NU,Tx_1 \ M)
+i(LANU) +d(L\NU,Ly) — (LxNU)

= M, 1) +i(La_1NU)+d(Lx_1NU,Ly)
+d(Lyx-1NU, L\NU) +i(LA\NU) +d(L\NU, Ly) — (LxNU)

= My, 1) +i(LaNU)+d(Lx_1 NU,Ly)
+d(L\NU,Ly) = (LxNU)

= My, ) +i(LxNU) = 1(LxNU)+d(LxNU,Ly)

So, let A be a limit ordinal. Then observe that liminf,<xd(L, NU,L,) = d(Lx NU,L,) as U is finite.
Furthermore, {(L, NU) is bounded for the same reason. Thus

n(Lx,1)

v

lim inf (M, 1) +i(L,NU) = U(L,NU)+d(L,NU,Ly,))
p<

Y]

U(MA,Z) +i(L>\ N U) — l(L)\ N U) + d(LA N U,L_A).
Now, for A = @ this yields

0

(L, 1) +u(U) —i(U)
> M) +i(LNU) = ULNU)+uU)—i(U)+d(LNU,L)
> M, ) +uw(U\NL)—«(U\L)+ (u—=0)(LNU)

Since n(M,1) >0, u > [ and since u(U \ L) > i(U \ L) it follows that U \ L is taut. This then also implies that
n(M,l) =0, and hence L\ U is tight. O

Wojciechowski’s conjecture

Wojciechowski calls a queue P := (Py)g<x of partitions Py of V(G) (with the obvious order) proper if
(i) Po={V(&)};
(ii) Poy1 = (Po \ Vo) U{Vy,Vy'} where Vi € Py and {Vj, Vy'} is a partition of Vj for all 6 +1 < X; and



(iii) P, is the least upper bound of the chain (Pp)y<.

For a partition P of V(G) denote by E(P) the set of cross-edges, i.e. those edges with their endvertices in
different partition classes of P. Now, assuming that P is proper define by transfinite induction for k € N the so
called k-margin &, (P,) € Z U {—o00,00}:

(i) &(Po) = 0;
(i) &k (Pu) = &k(Po) + |E(Py) \ E(Pp)| — k if p =60 + 1; and
(ili) &k (Py) = liminfg<, & (Py) if p is a limit ordinal.
Motivated by Nash-Williams’ version of the Hall theorem Wojciechowki conjectured:

Conjecture 7 (Wojciechowski [4]). Let G be countable, and k € N. Then G has a spanning tree if and only if
for every queue P of vertex partitions it holds that & (P) > 0.

It is easy to see that necessity holds.
Using Aharoni and Thomassen’s [1] result that for any k € N there is a countable 2k-edge-connected graph
without k edge-disjoint spanning trees, the following lemma shows that Wojciechowski’s conjecture is false.

Lemma 8. Let G be a countable 2k-edge-connected graph. Then for every queue P of vertex partitions it holds
that &, (P) > 0.

Proof. Let P = (Pyp)o<x. We define v(Py) = ZUGPB(%d(U) — k). As d(U) > 2k for every nonempty subset
U CV(G), v(Ps) € NU{0,00} is well-defined. We claim that
&k(Pu) > v(Py) for every p < A. (4)

Since v(Pp) is never negative, the assertion of the lemma follows.
So, let us prove the claim, which we do by transfinite induction. For this, consider first the case when
pw=0+1. Let Vp be the partition class of Py that is split up into Vj and V' in P,. Then

&(Pu) = &(Po) +d(Vy, V5') — k
v(Po) + (d(V5)/2 = k) + (d(Vy)/2 = k) = (d(Vo) /2 = k) = v(Py).

V

Next, let p be a limit ordinal. It suffices to show that v(P,) < liminfg., v(Pp). In order to do so, let K € N be
an integer with v(P,) > K. Since K is finite, there is a finite subset @ C P, so that > ;.o (d(U)/2 — k) > K.
For each U € @ pick min{2(K + k),d(U)} < oo edges in D(U,V(G) \ U), denote the set of these by Fy.
Furthermore, since P, is the least upper bound, in each Py, for 6 < pu, there is a unique set Uy with Uy 2 U.
Choose uy < p large enough so that Fy € D(Uy, V(G) \ Up) for all ordinals 6 with uy < 6 < p. Put
1 =max{py : U € Q} < u. Then, for any 0 with p/ < 6 < p, it holds that

v(Pe) = 3 (dU)/2— k) > 3 (dU)/2— k) > K

UePy Uve@

(note that since G is 2k-edge-connected no cancellation takes place). This shows that liminfe., v(Pp) > K. O
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