
Supplementary material

Proof of main result from NW’s Hall-theorem

For a graph G = (V, E) and a subset U ⊆ V , denote by EG(U) (or simply by E(U), if G is clear from the
context) the set of edges with at least one endvertex in U . For a single vertex v, we abbreviate E({v}) to E(v).
Let H be a bipartite graph with partition classes M and W , and define for X ⊆ W the demand-set DH(X) to
be {m ∈ M : N(m) ⊆ X}. We will often simply write D(X) if it is obvious which is the underlying graph H .

Theorem 1 (Hall [2]). Let H be a bipartite graph with partition classes M and W . Assume that every vertex

in M has only finitely many neighbours. Then there is a matching of M if and only if |D(X)| ≤ |X | for every

finite set X ⊆ W .

Let Wθ = (Wλ)λ≤θ be a queue in W . Set q(W0) = −|D(W0)| = −|D(∅)| and define

(i) q(Wλ) := q(Wκ) + |Wλ \ Wκ| − |D(Wλ) \ D(Wκ)| if λ = κ + 1 is a successor ordinal; and

(ii) q(Wλ) := lim infµ<λ q(Wµ) − |D(Wλ) \
⋃

µ<λ D(Wµ)| otherwise.

If confusion may arise we will write qH to indicate the graph H in which we are measuring q.

Theorem 2 (Nash-Williams [3]). Let H be a countable bipartite graph with partition classes M and W . Then

there is a matching of M if and only if q(W) ≥ 0 for each queue W in W .

We deduce our main theorem from Nash-Williams’ theorem. For this, let a countable graph G = (V, E) and
bounds l and u be given. Assume that there are no deficient and no faulty sets.

For each v ∈ V , set Xv := {(v, i) : i = 1, . . . , u(v)} (if u(v) = ∞ we choose countably infinitely many copies
of v) and Vu :=

⋃

v∈V Xv. So Vu consists of u(v) copies of each v ∈ V . Define a bipartite graph H with partition
classes Vu and E. Let v′ ∈ Xv and e ∈ E be adjacent in H if and only if v is incident with e in G. For each
v ∈ V pick l(v) of its copies in Xv, denote the set of those by Yv and set Vl :=

⋃

v∈V Yv.
We will find a matching Ml of Vl and a matching Mu of E in H . From these two we shall construct a

common matching M of Vl and E. Once we have done this, we orient an edge e ∈ E towards its endvertex
v ∈ V if e is matched with some v′ ∈ Xv. This yields the desired orientation.

So, let us first find the matching Ml, for which we work within the graph H ′ := H [Vl ∪ E]. Considering an
arbitrary queue W = (Wλ)λ≤θ in E, we want to show that qH′(W) ≥ 0.

Put Uλ := {v ∈ V : EH′ (v) ⊆ Wλ} (observe that U0 = ∅, since there are no deficient sets). Now, at this stage
we would like to see that the sets Uλ form a queue U in the graph G and that qH′ (W) ≥ ηG(U , l). Unfortunately,
this is only almost true. However, the only reason this fails is a small technical detail, namely that we had
required in our definition for a queue in the context of degree constrained orientations that Uλ =

⋃

µ<λ Uµ for

any limit ordinal λ. So, we will turn the chain U into a queue Ũ by padding it, that is, for every limit ordinal
λ we will insert the set

⋃

µ<λ Uµ into the chain. For this, we introduce a funtion σ on the ordinals that will
provide the needed space, so that we can insert the new sets.

More precisely, we define inductively sets Ũλ and a function σ on the ordinals. Start with Ũ0 = ∅ and
σ(0) = 0. For a successor ordinal λ = κ + 1 put σ(λ) = σ(κ) + 1. If λ is a limit ordinal set ν =

⋃

µ<λ σ(µ),

Ũν =
⋃

µ<ν Ũµ and σ(λ) = ν + 1. In any case we define Ũσ(λ) = Uλ. The resulting Ũ = (Ũλ)λ≤σ(θ) is indeed a
queue.

Claim. We claim that for all λ it holds that

qH′ (Wλ) ≥ ηG(Ũσ(λ), l) + |Wλ \ EG(Ũσ(λ))|. (1)

Proof. In the proof of the claim, q and D are always with respect to H ′, while E and η are always measured in
G, so we will omit these subscripts. As every vertex v ∈ Vl has a neighbour in H ′ we obtain q(W0) = 0. Since
we also have that W0 = ∅ and η(Ũ0, l) = 0, (1) holds for λ = 0.

So, let λ > 0 and assume first λ = κ + 1 to be a successor ordinal. We observe that

|D(Wλ) \ D(Wκ)| =

∣

∣

∣

∣

∣

∣

⋃

v∈Uλ\Uκ

Yv

∣

∣

∣

∣

∣

∣

=
∑

v∈Uλ\Uκ

l(v) = l(Uλ \ Uκ) = l(Ũσ(λ) \ Ũσ(κ)).

Next, since Wλ ⊇ Wκ ⊇ E(Ũσ(κ)) and Wλ ⊇ E(Ũσ(λ)) ⊇ E(Ũσ(κ)), we get that

|Wλ \ Wκ| + |Wκ \ E(Ũσ(κ))| = |Wλ \ E(Ũσ(κ))|

= |Wλ \ E(Ũσ(λ))| + |E(Ũσ(λ)) \ E(Ũσ(κ))|

1



Thus, by induction hypothesis, we get

q(Wλ) = q(Wκ) + |Wλ \ Wκ| − |D(Wλ) \ D(Wκ)|

≥ η(Ũσ(κ), l) + |Wκ \ E(Ũσ(κ))| + |Wλ \ Wκ| − |D(Wλ) \ D(Wκ)|

= η(Ũσ(κ), l) + |Wλ \ E(Ũσ(λ))| + |E(Ũσ(λ)) \ E(Ũσ(κ))| − l(Ũσ(λ) \ Ũσ(κ))

= η(Ũσ(λ), l) + |Wλ \ E(Ũσ(λ))|,

which is (1).
So, assume λ to be a limit ordinal. Then, by definition of σ, σ(λ) = ν + 1 where ν =

⋃

µ<λ σ(µ). We get

|D(Wλ) \ (
⋃

µ<λ

D(Wµ))| = |
⋃

v∈Uλ\(
S

µ<λ Uµ)

Yv| = |
⋃

v∈Ũν+1\Ũν

Yv| = l(Ũν+1 \ Ũν),

and thus

q(Wλ) = lim inf
µ<λ

q(Wµ) − |D(Wλ) \ (
⋃

µ<λ

D(Wµ))|

≥ lim inf
µ<λ

(η(Ũσ(µ), l) + |Wµ \ E(Ũσ(µ))|) − l(Ũν+1 \ Ũν)

≥ η(Ũν , l) + lim inf
µ<λ

|Wµ \ E(Ũσ(µ))| − l(Ũν+1 \ Ũν).

Now, lim infµ<λ |Wµ \ E(Ũσ(µ))| ≥ lim infµ<λ |Wµ \ E(Ũν)|, and since Wλ =
⋃

µ<λ Wµ it follows that

lim inf
µ<λ

|Wµ \ E(Ũσ(µ))| ≥ |Wλ \ E(Ũν)| = |Wλ \ E(Ũν+1)| + |E(Ũν+1) \ E(Ũν)|.

(Note that E(Ũν+1) ⊆ Wλ.) Substituting in the above estimation for q(Wλ) we obtain

q(Wλ) ≥ η(Ũν , l) + |Wλ \ E(Ũν+1)| + |E(Ũν+1) \ E(Ũν)| − l(Ũν+1 \ Ũν)

= η(Ũν+1, l) + |Wλ \ E(Ũν+1)|.

Since ν + 1 = σ(λ) this shows (1) when λ is a limit ordinal.

Having proved Claim (1), we see that qH′ (W) ≥ 0 as there are no deficient sets in G. Therefore, we can
apply Theorem 2 and obtain a matching Ml of Vl in H .

Next, we find a matching Mu of E in H . For this, pick a vertex v of V (G) with u(v) = ∞. Hence, its set
Xv of copies in H is infinite and we can easily match all incident edges to a separate copy of v in H . Delete Xv

and all those already matched edges from H and pick the next v′ with |Xv′ | = ∞. Continuing in this manner,
we arrive at a subgraph H ′′ of H in which all the sets Xv are finite.

In order to use Theorem 1, we consider a finite set X ⊆ Vu ∩ V (H ′′). If there is a v ∈ V (G) such that Xv

meets X but is not completely contained in X then we may delete Xv ∩X from X : Indeed, |X | will get smaller
while DH′′(X) stays the same, making our task of showing |DH′′(X)| ≤ |X | only more difficult. Thus, we may
assume that for each v either Xv ⊆ X or Xv and X are disjoint. Denoting by VX the set of vertices in G with
Xv ⊆ X we obtain u(VX) = |X | and iG(VX) = |DH′′ (X)|. Since, by assumption, u(VX) ≥ iG(VX) we find with
Theorem 1 a matching of the remaining edges of G in H ′′, which together with the already matched edges gives
us the desired Mu.

Finally, we construct a common matching M of Vl and E in H . Put L := (V (H), Ml ∪ Mu) where we put
in a double edge if an edge of H lies in Ml and Mu. Clearly, L has maximum degree 2, and every vertex in
Vl ∪E has degree at least one. Thus components of L are cycles, finite or infinite paths. Consider a component
P that is a finite path starting in a vertex of Vl. Then the first edge of P is necessarily an edge of Ml. Since we
reach every vertex on P in E via an edge in Ml and since each vertex in E is incident with an edge in Mu, P
ends in a vertex w ∈ Vu. The last edge of P lies in Mu; therefore, w /∈ Vl.

Now in every component pick every other edge; if the component is a path (finite or infinite) starting in a
vertex v in Vl start picking edges from v. In this way we get a matching M that covers all of Vl ∪ E.

Proof of Lemma 6

Lemma 6. Let there be neither deficient sets nor faulty sets in G, and let U be a taut set and L be a tight set.

Then U \ L is taut and L \ U is tight.
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Proof. Let L = (Lλ)λ≤θ be a queue with η(L, l) = 0 and Lθ = L, and define M = (Lλ \ U)λ≤θ. By transfinite
induction, we show that for any ordinal λ ≤ θ it holds that

η(Lλ, l) ≥ η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ). (2)

This is trivially true for λ = 0. Let λ be such that the induction hypothesis holds for all µ < λ. First, assume
that λ is a successor ordinal. We use the induction hypothesis for λ − 1 in what follows:

η(Lλ, l) = η(Lλ−1, l) + i(L′
λ) + d(L′

λ, Lλ) − l(L′
λ)

(2)

≥ η(Mλ−1, l) + i(Lλ−1 ∩ U) − l(Lλ−1 ∩ U)

+d(Lλ−1 ∩ U, Lλ−1) + i(L′
λ) + d(L′

λ, Lλ) − l(L′
λ)

= η(Mλ−1, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ−1 \ M ′
λ)

d(Lλ−1 ∩ U, M ′
λ) + i(L′

λ) + d(L′
λ, Lλ)

−l(Lλ ∩ U) − l(M ′
λ)

With

d(Lλ−1 ∩ U, M ′
λ) + i(L′

λ) + d(L′
λ, Lλ)

= d(Lλ−1 ∩ U, M ′
λ) + i(L′

λ ∩ U) + d(L′
λ ∩ U, M ′

λ)

+i(M ′
λ) + d(L′

λ ∩ U, Lλ) + d(M ′
λ, Lλ)

= i(M ′
λ) + d(M ′

λ, Mλ) + i(L′
λ ∩ U) + d(L′

λ ∩ U, Lλ)

(3)

we get

η(Lλ, l)
(3)

≥ η(Mλ−1, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ−1 \ M ′
λ)

i(M ′
λ) + d(M ′

λ, Mλ) + i(L′
λ ∩ U) + d(L′

λ ∩ U, Lλ)

−l(Lλ ∩ U) − l(M ′
λ)

= η(Mλ, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ−1 \ M ′
λ)

+i(L′
λ ∩ U) + d(L′

λ ∩ U, Lλ) − l(Lλ ∩ U)

= η(Mλ, l) + i(Lλ−1 ∩ U) + d(Lλ−1 ∩ U, Lλ)

+d(Lλ−1 ∩ U, L′
λ ∩ U) + i(L′

λ ∩ U) + d(L′
λ ∩ U, Lλ) − l(Lλ ∩ U)

= η(Mλ, l) + i(Lλ ∩ U) + d(Lλ−1 ∩ U, Lλ)

+d(L′
λ ∩ U, Lλ) − l(Lλ ∩ U)

= η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ)

So, let λ be a limit ordinal. Then observe that lim infµ≤λ d(Lµ ∩ U, Lµ) = d(Lλ ∩ U, Lλ) as U is finite.
Furthermore, l(Lµ ∩ U) is bounded for the same reason. Thus

η(Lλ, l) ≥ lim inf
µ≤λ

(

η(Mµ, l) + i(Lµ ∩ U) − l(Lµ ∩ U) + d(Lµ ∩ U, Lµ)
)

≥ η(Mλ, l) + i(Lλ ∩ U) − l(Lλ ∩ U) + d(Lλ ∩ U, Lλ).

Now, for λ = θ this yields

0 = η(L, l) + u(U) − i(U)

≥ η(M, l) + i(L ∩ U) − l(L ∩ U) + u(U) − i(U) + d(L ∩ U, L)

≥ η(M, l) + u(U \ L) − i(U \ L) + (u − l)(L ∩ U)

Since η(M, l) ≥ 0, u ≥ l and since u(U \L) ≥ i(U \L) it follows that U \L is taut. This then also implies that
η(M, l) = 0, and hence L \ U is tight.

Wojciechowski’s conjecture

Wojciechowski calls a queue P := (Pθ)θ≤λ of partitions Pθ of V (G) (with the obvious order) proper if

(i) P0 = {V (G)};

(ii) Pθ+1 = (Pθ \ V0) ∪ {V ′
0 , V ′′

0 } where V0 ∈ Pθ and {V ′
0 , V ′′

0 } is a partition of V0 for all θ + 1 < λ; and
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(iii) Pγ is the least upper bound of the chain (Pθ)θ<γ .

For a partition P of V (G) denote by E(P ) the set of cross-edges, i.e. those edges with their endvertices in
different partition classes of P . Now, assuming that P is proper define by transfinite induction for k ∈ N the so
called k-margin ξk(Pµ) ∈ Z ∪ {−∞,∞}:

(i) ξk(P0) = 0;

(ii) ξk(Pµ) = ξk(Pθ) + |E(Pµ) \ E(Pθ)| − k if µ = θ + 1; and

(iii) ξk(Pµ) = lim infθ<µ ξk(Pθ) if µ is a limit ordinal.

Motivated by Nash-Williams’ version of the Hall theorem Wojciechowki conjectured:

Conjecture 7 (Wojciechowski [4]). Let G be countable, and k ∈ N. Then G has a spanning tree if and only if

for every queue P of vertex partitions it holds that ξk(P) ≥ 0.

It is easy to see that necessity holds.
Using Aharoni and Thomassen’s [1] result that for any k ∈ N there is a countable 2k-edge-connected graph

without k edge-disjoint spanning trees, the following lemma shows that Wojciechowski’s conjecture is false.

Lemma 8. Let G be a countable 2k-edge-connected graph. Then for every queue P of vertex partitions it holds

that ξk(P) ≥ 0.

Proof. Let P = (Pθ)θ≤λ. We define ν(Pθ) =
∑

U∈Pθ
(1
2d(U) − k). As d(U) ≥ 2k for every nonempty subset

U ( V (G), ν(Pθ) ∈ N ∪ {0,∞} is well-defined. We claim that

ξk(Pµ) ≥ ν(Pµ) for every µ ≤ λ. (4)

Since ν(Pθ) is never negative, the assertion of the lemma follows.
So, let us prove the claim, which we do by transfinite induction. For this, consider first the case when

µ = θ + 1. Let V0 be the partition class of Pθ that is split up into V ′
0 and V ′′

0 in Pµ. Then

ξk(Pµ) = ξk(Pθ) + d(V ′
0 , V ′′

0 ) − k

≥ ν(Pθ) + (d(V ′
0 )/2 − k) + (d(V ′′

0 )/2 − k) − (d(V0)/2 − k) = ν(Pµ).

Next, let µ be a limit ordinal. It suffices to show that ν(Pµ) ≤ lim infθ<µ ν(Pθ). In order to do so, let K ∈ N be
an integer with ν(Pµ) ≥ K. Since K is finite, there is a finite subset Q ⊆ Pµ so that

∑

U∈Q(d(U)/2 − k) ≥ K.
For each U ∈ Q pick min{2(K + k), d(U)} < ∞ edges in D(U, V (G) \ U), denote the set of these by FU .
Furthermore, since Pµ is the least upper bound, in each Pθ, for θ < µ, there is a unique set Uθ with Uθ ⊇ U .
Choose µU < µ large enough so that FU ⊆ D(Uθ, V (G) \ Uθ) for all ordinals θ with µU ≤ θ < µ. Put
µ′ := max{µU : U ∈ Q} < µ. Then, for any θ with µ′ ≤ θ < µ, it holds that

ν(Pθ) =
∑

U∈Pθ

(d(U)/2 − k) ≥
∑

U∈Q

(d(U)/2 − k) ≥ K

(note that since G is 2k-edge-connected no cancellation takes place). This shows that lim infθ<µ ν(Pθ) ≥ K.
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