Supplementary material

Proof of main result from NW's Hall-theorem

For a graph G = (V, E) and a subset $U \subseteq V$, denote by $\mathcal{E}_G(U)$ (or simply by $\mathcal{E}(U)$, if G is clear from the context) the set of edges with at least one endvertex in U. For a single vertex v, we abbreviate $\mathcal{E}(\{v\})$ to $\mathcal{E}(v)$. Let H be a bipartite graph with partition classes M and W, and define for $X \subseteq W$ the demand-set $D_H(X)$ to be $\{m \in M : N(m) \subseteq X\}$. We will often simply write D(X) if it is obvious which is the underlying graph H.

Theorem 1 (Hall [2]). Let H be a bipartite graph with partition classes M and W. Assume that every vertex in M has only finitely many neighbours. Then there is a matching of M if and only if $|D(X)| \leq |X|$ for every finite set $X \subseteq W$.

Let $\mathcal{W}_{\theta} = (W_{\lambda})_{\lambda < \theta}$ be a queue in W. Set $q(\mathcal{W}_0) = -|D(\mathcal{W}_0)| = -|D(\emptyset)|$ and define

(i)
$$q(\mathcal{W}_{\lambda}) := q(\mathcal{W}_{\kappa}) + |W_{\lambda} \setminus W_{\kappa}| - |D(W_{\lambda}) \setminus D(W_{\kappa})|$$
 if $\lambda = \kappa + 1$ is a successor ordinal; and

(ii)
$$q(\mathcal{W}_{\lambda}) := \liminf_{\mu < \lambda} q(\mathcal{W}_{\mu}) - |D(\mathcal{W}_{\lambda}) \setminus \bigcup_{\mu < \lambda} D(\mathcal{W}_{\mu})|$$
 otherwise

If confusion may arise we will write q_H to indicate the graph H in which we are measuring q.

Theorem 2 (Nash-Williams [3]). Let H be a countable bipartite graph with partition classes M and W. Then there is a matching of M if and only if $q(\mathcal{W}) \geq 0$ for each queue \mathcal{W} in W.

We deduce our main theorem from Nash-Williams' theorem. For this, let a countable graph G = (V, E) and bounds l and u be given. Assume that there are no deficient and no faulty sets.

For each $v \in V$, set $X_v := \{(v, i) : i = 1, \dots, u(v)\}$ (if $u(v) = \infty$ we choose countably infinitely many copies of v) and $V_u := \bigcup_{v \in V} X_v$. So V_u consists of u(v) copies of each $v \in V$. Define a bipartite graph H with partition classes V_u and E. Let $v' \in X_v$ and $e \in E$ be adjacent in H if and only if v is incident with e in G. For each $v \in V$ pick l(v) of its copies in X_v , denote the set of those by Y_v and set $V_l := \bigcup_{v \in V} Y_v$.

We will find a matching M_l of V_l and a matching M_u of E in H. From these two we shall construct a common matching M of V_l and E. Once we have done this, we orient an edge $e \in E$ towards its endvertex $v \in V$ if e is matched with some $v' \in X_v$. This yields the desired orientation.

So, let us first find the matching M_l , for which we work within the graph $H' := H[V_l \cup E]$. Considering an arbitrary queue $\mathcal{W} = (W_{\lambda})_{\lambda \leq \theta}$ in *E*, we want to show that $q_{H'}(\mathcal{W}) \geq 0$.

Put $U_{\lambda} := \{v \in V : \mathcal{E}_{H'}(v) \subseteq W_{\lambda}\}$ (observe that $U_0 = \emptyset$, since there are no deficient sets). Now, at this stage we would like to see that the sets U_{λ} form a queue \mathcal{U} in the graph G and that $q_{H'}(\mathcal{W}) \geq \eta_G(\mathcal{U}, l)$. Unfortunately, this is only almost true. However, the only reason this fails is a small technical detail, namely that we had required in our definition for a queue in the context of degree constrained orientations that $U_{\lambda} = \bigcup_{\mu < \lambda} U_{\mu}$ for any limit ordinal λ . So, we will turn the chain \mathcal{U} into a queue $\tilde{\mathcal{U}}$ by padding it, that is, for every limit ordinal λ we will insert the set $\bigcup_{\mu < \lambda} U_{\mu}$ into the chain. For this, we introduce a function σ on the ordinals that will provide the needed space, so that we can insert the new sets.

More precisely, we define inductively sets \hat{U}_{λ} and a function σ on the ordinals. Start with $\hat{U}_0 = \emptyset$ and $\sigma(0) = 0$. For a successor ordinal $\lambda = \kappa + 1$ put $\sigma(\lambda) = \sigma(\kappa) + 1$. If λ is a limit ordinal set $\nu = \bigcup_{\mu < \lambda} \sigma(\mu)$, $\tilde{U}_{\nu} = \bigcup_{\mu < \nu} \tilde{U}_{\mu}$ and $\sigma(\lambda) = \nu + 1$. In any case we define $\tilde{U}_{\sigma(\lambda)} = U_{\lambda}$. The resulting $\tilde{\mathcal{U}} = (\tilde{U}_{\lambda})_{\lambda \leq \sigma(\theta)}$ is indeed a queue.

Claim. We claim that for all λ it holds that

$$q_{H'}(\mathcal{W}_{\lambda}) \ge \eta_G(\tilde{\mathcal{U}}_{\sigma(\lambda)}, l) + |W_{\lambda} \setminus \mathcal{E}_G(\tilde{\mathcal{U}}_{\sigma(\lambda)})|.$$
(1)

Proof. In the proof of the claim, q and D are always with respect to H', while \mathcal{E} and η are always measured in G, so we will omit these subscripts. As every vertex $v \in V_l$ has a neighbour in H' we obtain $q(\mathcal{W}_0) = 0$. Since we also have that $W_0 = \emptyset$ and $\eta(U_0, l) = 0$, (1) holds for $\lambda = 0$.

So, let $\lambda > 0$ and assume first $\lambda = \kappa + 1$ to be a successor ordinal. We observe that

ī

$$|D(W_{\lambda}) \setminus D(W_{\kappa})| = \left| \bigcup_{v \in U_{\lambda} \setminus U_{\kappa}} Y_{v} \right| = \sum_{v \in U_{\lambda} \setminus U_{\kappa}} l(v) = l(U_{\lambda} \setminus U_{\kappa}) = l(\tilde{U}_{\sigma(\lambda)} \setminus \tilde{U}_{\sigma(\kappa)}).$$

Next, since $W_{\lambda} \supseteq W_{\kappa} \supseteq \mathcal{E}(\tilde{U}_{\sigma(\kappa)})$ and $W_{\lambda} \supseteq \mathcal{E}(\tilde{U}_{\sigma(\lambda)}) \supseteq \mathcal{E}(\tilde{U}_{\sigma(\kappa)})$, we get that

$$\begin{aligned} |W_{\lambda} \setminus W_{\kappa}| + |W_{\kappa} \setminus \mathcal{E}(\tilde{U}_{\sigma(\kappa)})| &= |W_{\lambda} \setminus \mathcal{E}(\tilde{U}_{\sigma(\kappa)})| \\ &= |W_{\lambda} \setminus \mathcal{E}(\tilde{U}_{\sigma(\lambda)})| + |\mathcal{E}(\tilde{U}_{\sigma(\lambda)}) \setminus \mathcal{E}(\tilde{U}_{\sigma(\kappa)})| \end{aligned}$$

Thus, by induction hypothesis, we get

$$q(\mathcal{W}_{\lambda}) = q(\mathcal{W}_{\kappa}) + |W_{\lambda} \setminus W_{\kappa}| - |D(W_{\lambda}) \setminus D(W_{\kappa})|$$

$$\geq \eta(\tilde{\mathcal{U}}_{\sigma(\kappa)}, l) + |W_{\kappa} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\kappa)})| + |W_{\lambda} \setminus W_{\kappa}| - |D(W_{\lambda}) \setminus D(W_{\kappa})|$$

$$= \eta(\tilde{\mathcal{U}}_{\sigma(\kappa)}, l) + |W_{\lambda} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\lambda)})| + |\mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\lambda)}) \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\kappa)})| - l(\tilde{\mathcal{U}}_{\sigma(\lambda)} \setminus \tilde{\mathcal{U}}_{\sigma(\kappa)})$$

$$= \eta(\tilde{\mathcal{U}}_{\sigma(\lambda)}, l) + |W_{\lambda} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\lambda)})|,$$

which is (1).

So, assume λ to be a limit ordinal. Then, by definition of σ , $\sigma(\lambda) = \nu + 1$ where $\nu = \bigcup_{\mu < \lambda} \sigma(\mu)$. We get

$$|D(W_{\lambda}) \setminus (\bigcup_{\mu < \lambda} D(W_{\mu}))| = |\bigcup_{v \in U_{\lambda} \setminus (\bigcup_{\mu < \lambda} U_{\mu})} Y_{v}| = |\bigcup_{v \in \tilde{U}_{\nu+1} \setminus \tilde{U}_{\nu}} Y_{v}| = l(\tilde{U}_{\nu+1} \setminus \tilde{U}_{\nu}),$$

and thus

$$q(\mathcal{W}_{\lambda}) = \lim \inf_{\mu < \lambda} q(W_{\mu}) - |D(W_{\lambda}) \setminus (\bigcup_{\mu < \lambda} D(W_{\mu}))|$$

$$\geq \lim \inf_{\mu < \lambda} (\eta(\tilde{\mathcal{U}}_{\sigma(\mu)}, l) + |W_{\mu} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\mu)})|) - l(\tilde{\mathcal{U}}_{\nu+1} \setminus \tilde{\mathcal{U}}_{\nu})$$

$$\geq \eta(\tilde{\mathcal{U}}_{\nu}, l) + \lim \inf_{\mu < \lambda} |W_{\mu} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\sigma(\mu)})| - l(\tilde{\mathcal{U}}_{\nu+1} \setminus \tilde{\mathcal{U}}_{\nu}).$$

Now, $\liminf_{\mu < \lambda} |W_{\mu} \setminus \mathcal{E}(\tilde{U}_{\sigma(\mu)})| \ge \liminf_{\mu < \lambda} |W_{\mu} \setminus \mathcal{E}(\tilde{U}_{\nu})|$, and since $W_{\lambda} = \bigcup_{\mu < \lambda} W_{\mu}$ it follows that

$$\lim\inf_{\mu<\lambda}|W_{\mu}\setminus \mathcal{E}(\tilde{U}_{\sigma(\mu)})|\geq |W_{\lambda}\setminus \mathcal{E}(\tilde{U}_{\nu})|=|W_{\lambda}\setminus \mathcal{E}(\tilde{U}_{\nu+1})|+|\mathcal{E}(\tilde{U}_{\nu+1})\setminus \mathcal{E}(\tilde{U}_{\nu})|.$$

(Note that $\mathcal{E}(\tilde{U}_{\nu+1}) \subseteq W_{\lambda}$.) Substituting in the above estimation for $q(W_{\lambda})$ we obtain

$$\begin{aligned} q(\mathcal{W}_{\lambda}) &\geq \eta(\tilde{\mathcal{U}}_{\nu}, l) + |W_{\lambda} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\nu+1})| + |\mathcal{E}(\tilde{\mathcal{U}}_{\nu+1}) \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\nu})| - l(\tilde{\mathcal{U}}_{\nu+1} \setminus \tilde{\mathcal{U}}_{\nu}) \\ &= \eta(\tilde{\mathcal{U}}_{\nu+1}, l) + |W_{\lambda} \setminus \mathcal{E}(\tilde{\mathcal{U}}_{\nu+1})|. \end{aligned}$$

Since $\nu + 1 = \sigma(\lambda)$ this shows (1) when λ is a limit ordinal.

Having proved Claim (1), we see that $q_{H'}(\mathcal{W}) \geq 0$ as there are no deficient sets in G. Therefore, we can apply Theorem 2 and obtain a matching M_l of V_l in H.

Next, we find a matching M_u of E in H. For this, pick a vertex v of V(G) with $u(v) = \infty$. Hence, its set X_v of copies in H is infinite and we can easily match all incident edges to a separate copy of v in H. Delete X_v and all those already matched edges from H and pick the next v' with $|X_{v'}| = \infty$. Continuing in this manner, we arrive at a subgraph H'' of H in which all the sets X_v are finite.

In order to use Theorem 1, we consider a finite set $X \subseteq V_u \cap V(H'')$. If there is a $v \in V(G)$ such that X_v meets X but is not completely contained in X then we may delete $X_v \cap X$ from X: Indeed, |X| will get smaller while $D_{H''}(X)$ stays the same, making our task of showing $|D_{H''}(X)| \leq |X|$ only more difficult. Thus, we may assume that for each v either $X_v \subseteq X$ or X_v and X are disjoint. Denoting by V_X the set of vertices in G with $X_v \subseteq X$ we obtain $u(V_X) = |X|$ and $i_G(V_X) = |D_{H''}(X)|$. Since, by assumption, $u(V_X) \geq i_G(V_X)$ we find with Theorem 1 a matching of the remaining edges of G in H'', which together with the already matched edges gives us the desired M_u .

Finally, we construct a common matching M of V_l and E in H. Put $L := (V(H), M_l \cup M_u)$ where we put in a double edge if an edge of H lies in M_l and M_u . Clearly, L has maximum degree 2, and every vertex in $V_l \cup E$ has degree at least one. Thus components of L are cycles, finite or infinite paths. Consider a component P that is a finite path starting in a vertex of V_l . Then the first edge of P is necessarily an edge of M_l . Since we reach every vertex on P in E via an edge in M_l and since each vertex in E is incident with an edge in M_u , Pends in a vertex $w \in V_u$. The last edge of P lies in M_u ; therefore, $w \notin V_l$.

Now in every component pick every other edge; if the component is a path (finite or infinite) starting in a vertex v in V_l start picking edges from v. In this way we get a matching M that covers all of $V_l \cup E$.

Proof of Lemma 6

Lemma 6. Let there be neither deficient sets nor faulty sets in G, and let U be a taut set and L be a tight set. Then $U \setminus L$ is taut and $L \setminus U$ is tight.

Proof. Let $\mathcal{L} = (L_{\lambda})_{\lambda \leq \theta}$ be a queue with $\eta(\mathcal{L}, l) = 0$ and $L_{\theta} = L$, and define $\mathcal{M} = (L_{\lambda} \setminus U)_{\lambda \leq \theta}$. By transfinite induction, we show that for any ordinal $\lambda \leq \theta$ it holds that

$$\eta(\mathcal{L}_{\lambda}, l) \ge \eta(\mathcal{M}_{\lambda}, l) + i(L_{\lambda} \cap U) - l(L_{\lambda} \cap U) + d(L_{\lambda} \cap U, \overline{L_{\lambda}}).$$
⁽²⁾

This is trivially true for $\lambda = 0$. Let λ be such that the induction hypothesis holds for all $\mu < \lambda$. First, assume that λ is a successor ordinal. We use the induction hypothesis for $\lambda - 1$ in what follows:

$$\eta(\mathcal{L}_{\lambda}, l) = \eta(\mathcal{L}_{\lambda-1}, l) + i(L'_{\lambda}) + d(L'_{\lambda}, \overline{L_{\lambda}}) - l(L'_{\lambda})$$

$$\stackrel{(2)}{\geq} \eta(\mathcal{M}_{\lambda-1}, l) + i(L_{\lambda-1} \cap U) - l(L_{\lambda-1} \cap U)$$

$$+ d(L_{\lambda-1} \cap U, \overline{L_{\lambda-1}}) + i(L'_{\lambda}) + d(L'_{\lambda}, \overline{L_{\lambda}}) - l(L'_{\lambda})$$

$$= \eta(\mathcal{M}_{\lambda-1}, l) + i(L_{\lambda-1} \cap U) + d(L_{\lambda-1} \cap U, \overline{L_{\lambda-1}} \setminus M'_{\lambda})$$

$$d(L_{\lambda-1} \cap U, M'_{\lambda}) + i(L'_{\lambda}) + d(L'_{\lambda}, \overline{L_{\lambda}})$$

$$- l(L_{\lambda} \cap U) - l(M'_{\lambda})$$

With

$$d(L_{\lambda-1} \cap U, M'_{\lambda}) + i(L'_{\lambda}) + d(L'_{\lambda}, \overline{L_{\lambda}}) = d(L_{\lambda-1} \cap U, M'_{\lambda}) + i(L'_{\lambda} \cap U) + d(L'_{\lambda} \cap U, M'_{\lambda}) + i(M'_{\lambda}) + d(L'_{\lambda} \cap U, \overline{L_{\lambda}}) + d(M'_{\lambda}, \overline{L_{\lambda}}) = i(M'_{\lambda}) + d(M'_{\lambda}, \overline{M_{\lambda}}) + i(L'_{\lambda} \cap U) + d(L'_{\lambda} \cap U, \overline{L_{\lambda}})$$
(3)

we get

$$\begin{split} \eta(\mathcal{L}_{\lambda},l) &\stackrel{(3)}{\geq} & \eta(\mathcal{M}_{\lambda-1},l) + i(L_{\lambda-1} \cap U) + d(L_{\lambda-1} \cap U, \overline{L_{\lambda-1}} \setminus M_{\lambda}') \\ & i(M_{\lambda}') + d(M_{\lambda}', \overline{M_{\lambda}}) + i(L_{\lambda}' \cap U) + d(L_{\lambda}' \cap U, \overline{L_{\lambda}}) \\ & -l(L_{\lambda} \cap U) - l(M_{\lambda}') \\ &= & \eta(\mathcal{M}_{\lambda},l) + i(L_{\lambda-1} \cap U) + d(L_{\lambda-1} \cap U, \overline{L_{\lambda-1}} \setminus M_{\lambda}') \\ & + i(L_{\lambda}' \cap U) + d(L_{\lambda}' \cap U, \overline{L_{\lambda}}) - l(L_{\lambda} \cap U) \\ &= & \eta(\mathcal{M}_{\lambda},l) + i(L_{\lambda-1} \cap U) + d(L_{\lambda-1} \cap U, \overline{L_{\lambda}}) \\ & + d(L_{\lambda-1} \cap U, L_{\lambda}' \cap U) + i(L_{\lambda}' \cap U) + d(L_{\lambda}' \cap U, \overline{L_{\lambda}}) - l(L_{\lambda} \cap U) \\ &= & \eta(\mathcal{M}_{\lambda},l) + i(L_{\lambda} \cap U) + d(L_{\lambda-1} \cap U, \overline{L_{\lambda}}) \\ & + d(L_{\lambda}' \cap U, \overline{L_{\lambda}}) - l(L_{\lambda} \cap U) \\ &= & \eta(\mathcal{M}_{\lambda},l) + i(L_{\lambda} \cap U) - l(L_{\lambda} \cap U) + d(L_{\lambda} \cap U, \overline{L_{\lambda}}) \end{split}$$

So, let λ be a limit ordinal. Then observe that $\liminf_{\mu \leq \lambda} d(L_{\mu} \cap U, \overline{L_{\mu}}) = d(L_{\lambda} \cap U, \overline{L_{\lambda}})$ as U is finite. Furthermore, $l(L_{\mu} \cap U)$ is bounded for the same reason. Thus

$$\eta(\mathcal{L}_{\lambda}, l) \geq \liminf_{\mu \leq \lambda} \left(\eta(\mathcal{M}_{\mu}, l) + i(L_{\mu} \cap U) - l(L_{\mu} \cap U) + d(L_{\mu} \cap U, \overline{L_{\mu}}) \right)$$

$$\geq \eta(\mathcal{M}_{\lambda}, l) + i(L_{\lambda} \cap U) - l(L_{\lambda} \cap U) + d(L_{\lambda} \cap U, \overline{L_{\lambda}}).$$

Now, for $\lambda = \theta$ this yields

$$0 = \eta(\mathcal{L}, l) + u(U) - i(U)$$

$$\geq \eta(\mathcal{M}, l) + i(L \cap U) - l(L \cap U) + u(U) - i(U) + d(L \cap U, \overline{L})$$

$$\geq \eta(\mathcal{M}, l) + u(U \setminus L) - i(U \setminus L) + (u - l)(L \cap U)$$

Since $\eta(\mathcal{M}, l) \ge 0$, $u \ge l$ and since $u(U \setminus L) \ge i(U \setminus L)$ it follows that $U \setminus L$ is taut. This then also implies that $\eta(\mathcal{M}, l) = 0$, and hence $L \setminus U$ is tight.

Wojciechowski's conjecture

Wojciechowski calls a queue $\mathcal{P} := (P_{\theta})_{\theta \leq \lambda}$ of partitions P_{θ} of V(G) (with the obvious order) proper if

- (i) $P_0 = \{V(G)\};$
- (ii) $P_{\theta+1} = (P_{\theta} \setminus V_0) \cup \{V'_0, V''_0\}$ where $V_0 \in P_{\theta}$ and $\{V'_0, V''_0\}$ is a partition of V_0 for all $\theta + 1 < \lambda$; and

(iii) P_{γ} is the least upper bound of the chain $(P_{\theta})_{\theta < \gamma}$.

For a partition P of V(G) denote by E(P) the set of cross-edges, i.e. those edges with their endvertices in different partition classes of P. Now, assuming that \mathcal{P} is proper define by transfinite induction for $k \in \mathbb{N}$ the so called k-margin $\xi_k(\mathcal{P}_\mu) \in \mathbb{Z} \cup \{-\infty, \infty\}$:

- (i) $\xi_k(\mathcal{P}_0) = 0;$
- (ii) $\xi_k(\mathcal{P}_\mu) = \xi_k(\mathcal{P}_\theta) + |E(P_\mu) \setminus E(P_\theta)| k$ if $\mu = \theta + 1$; and

(iii) $\xi_k(\mathcal{P}_\mu) = \liminf_{\theta < \mu} \xi_k(\mathcal{P}_\theta)$ if μ is a limit ordinal.

Motivated by Nash-Williams' version of the Hall theorem Wojciechowki conjectured:

Conjecture 7 (Wojciechowski [4]). Let G be countable, and $k \in \mathbb{N}$. Then G has a spanning tree if and only if for every queue \mathcal{P} of vertex partitions it holds that $\xi_k(\mathcal{P}) \geq 0$.

It is easy to see that necessity holds.

Using Aharoni and Thomassen's [1] result that for any $k \in \mathbb{N}$ there is a countable 2k-edge-connected graph without k edge-disjoint spanning trees, the following lemma shows that Wojciechowski's conjecture is false.

Lemma 8. Let G be a countable 2k-edge-connected graph. Then for every queue \mathcal{P} of vertex partitions it holds that $\xi_k(\mathcal{P}) \geq 0$.

Proof. Let $\mathcal{P} = (P_{\theta})_{\theta \leq \lambda}$. We define $\nu(\mathcal{P}_{\theta}) = \sum_{U \in P_{\theta}} (\frac{1}{2}d(U) - k)$. As $d(U) \geq 2k$ for every nonempty subset $U \subsetneq V(G), \nu(\mathcal{P}_{\theta}) \in \mathbb{N} \cup \{0, \infty\}$ is well-defined. We claim that

$$\xi_k(\mathcal{P}_\mu) \ge \nu(\mathcal{P}_\mu) \text{ for every } \mu \le \lambda.$$
 (4)

Since $\nu(\mathcal{P}_{\theta})$ is never negative, the assertion of the lemma follows.

So, let us prove the claim, which we do by transfinite induction. For this, consider first the case when $\mu = \theta + 1$. Let V_0 be the partition class of P_{θ} that is split up into V'_0 and V''_0 in P_{μ} . Then

$$\begin{aligned} \xi_k(\mathcal{P}_{\mu}) &= \xi_k(\mathcal{P}_{\theta}) + d(V'_0, V''_0) - k \\ \geq & \nu(\mathcal{P}_{\theta}) + (d(V'_0)/2 - k) + (d(V''_0)/2 - k) - (d(V_0)/2 - k) = \nu(\mathcal{P}_{\mu}). \end{aligned}$$

Next, let μ be a limit ordinal. It suffices to show that $\nu(\mathcal{P}_{\mu}) \leq \liminf_{\theta < \mu} \nu(\mathcal{P}_{\theta})$. In order to do so, let $K \in \mathbb{N}$ be an integer with $\nu(\mathcal{P}_{\mu}) \geq K$. Since K is finite, there is a finite subset $Q \subseteq P_{\mu}$ so that $\sum_{U \in Q} (d(U)/2 - k) \geq K$. For each $U \in Q$ pick $\min\{2(K + k), d(U)\} < \infty$ edges in $D(U, V(G) \setminus U)$, denote the set of these by F_U . Furthermore, since P_{μ} is the least upper bound, in each P_{θ} , for $\theta < \mu$, there is a unique set U_{θ} with $U_{\theta} \supseteq U$. Choose $\mu_U < \mu$ large enough so that $F_U \subseteq D(U_{\theta}, V(G) \setminus U_{\theta})$ for all ordinals θ with $\mu_U \leq \theta < \mu$. Put $\mu' := \max\{\mu_U : U \in Q\} < \mu$. Then, for any θ with $\mu' \leq \theta < \mu$, it holds that

$$\nu(\mathcal{P}_{\theta}) = \sum_{U \in P_{\theta}} (d(U)/2 - k) \ge \sum_{U \in Q} (d(U)/2 - k) \ge K$$

(note that since G is 2k-edge-connected no cancellation takes place). This shows that $\liminf_{\theta < \mu} \nu(\mathcal{P}_{\theta}) \geq K$. \Box

References

- R. Aharoni and C. Thomassen, Infinite, highly connected digraphs with no two arc-disjoint spanning trees, J. Graph Theory 13 (1989), 71–74.
- [2] M. Hall, Distinct representatives of subsets, Bull. American Math. Soc. 54 (1948), 922–928.
- [3] C.St.J.A. Nash-Williams, Another criterion for marriage in denumerable societies, Ann. Disc. Math. 3 (1978), 165–179.
- [4] J. Wojciechowski, A necessary condition for the existence of disjoint bases of a family of infinite matroids, Congr. Numerantium 105 (1994), 97–115.