
Appendix

The lemma of Barahona and Mahjoub

Our Lemma 19 is a slight reformulation of Theorem 2.5 of Barahona and
Mahjoub [1]. Fortunately, only minor modifications are necessary to adapt the
proof. For the sake of completeness the adapted proof follows. We stress that
it is mostly the original work of Barahona and Mahjoub.

Lemma 1 (Barahona and Mahjoub [1]). Let G be a graph, and let uvw be a
path in G with deg(v) = 2 so that uw /∈ E(G). Furthermore, let aT x ≤ α be a
facet-defining inequality of SSP(G) so that au = av = aw > 0. Denote by G′ the
graph obtained from G by contracting uv and vw, and let ṽ be the new vertex,
i.e. V (G′) \ V (G) = {ṽ}. If a′ ∈ RV (G′) is defined by a′p = ap for p ∈ V (G′− ṽ)
and aṽ = av then a′T x ≤ α− av is a facet-defining inequality of SSP(G′).

Proof. First, let us see that a′T x ≤ α − av is valid for SSP(G′). For this, let
S′ be a stable set of G′. If ṽ ∈ S′ then S := (S′ \ ṽ) ∪ {u,w} is a stable set
of G. Thus α − av ≥ aT χS − av = a′T χS′ . If, on the other hand, ṽ /∈ S′ then
S := S′ ∪ {v} is stable in G, and we get again α− av ≥ aT χS − av = a′T χS′ .

Second we show that a′T x ≤ α− av is a facet. For later use, we note that

α ≥ 2av. (1)

Indeed, as uw /∈ E(G), the vector χ{u,w} lies in SSP(G), and hence α ≥
aT χ{u,w} = 2av.

Since aT x ≤ α defines a facet of SSP(G) there are n = |V (G)| affinely
independent stable sets S1, . . . , Sn of G that satisfy aT x ≤ α with equality. As
α 6= 0 the stable sets are even linearly independent. For each i if {u,w} ⊆ Si

we set S′i := Si \ {u, v, w} ∪ {ṽ}. Otherwise, we define S′i to be Si \ {u, v, w}.
Clearly, the S′i are stable sets in G′ that satisfy a′T x ≤ α− av with equality.

If we can show that they form an affinely independent set then we are done.
Denote by M the matrix whose columns are χSi , and let M ′ be the matrix with
columns χS′i . Then the matrices have the following form:

M =




A1 A2 A3 A4

1 . . . 1 1 . . . 1 0 . . . 0 0 . . . 0
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1
1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0



← u
← v
← w

M ′ =
(

A1 A2 A3 A4

1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0

)
← ṽ

We show that M ′ has rank n− 2. For this we consider a third matrix M̄ :

M̄ =




0
...

M 0
1
0
0

1 . . . 1 1



← u
← v
← w
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Suppose that M̄ is singular. As M has full rank, this implies that the last
row of M̄ is a linear combination of the other rows. As the only solution of
xT M = (α . . . α) is a it follows that au = α, a contradiction to au = av > 0
and (1). Therefore, M̄ is non-singular.

Finally, we add the rows corresponding to v and w to the one corresponding
to u and substract from the resulting row the last row of M̄ . We get:




A1 A2 A3 A4 0
1 . . . 1 0 . . . 0 0 . . . 0 0 . . . 0 0
0 . . . 0 0 . . . 0 0 . . . 0 1 . . . 1 0
1 . . . 1 0 . . . 0 1 . . . 1 0 . . . 0 0
1 . . . 1 1 . . . 1 1 . . . 1 1 . . . 1 1




← u
← v
← w

Since this matrix is non-singular and contains M ′ as a submatrix we deduce
that M ′ has rank n− 2, as desired.

Sebő’s corollary

We give here a slightly more comprehensive proof of Corollary 16. Recall that
a graph is called h-perfect if its SSP is determined by

x ≥ 0
xK ≤ 1 for every clique K

x(C) ≤ b|C|/2c for every induced odd cycle C

We denote by HSTAB(G) the polytope determined by those three types of
inequalities.

The proof of the following corollary is due to Sebő [5]. As it has not been
published but contains a nice and useful technique we present it here.

Corollary 1. Let G be a claw-free h-perfect graph. Then

(i) χ(G) = dχ∗(G)e; and

(ii) χ(G) = ω(G) if ω(G) ≥ 3.

Here, χ∗ denotes the fractional chromatic number. More formally, if S de-
notes the set of all stable sets:

χ∗(G) = min1T y, y ∈ RS
subject to y ≥ 0 (2)∑

S∈S, v∈S

yS ≥ 1 for all v ∈ V

To state the dual of this linear program, define the polytope

P = {x ∈ RV : x(S) ≤ 1 for each stable set S, x ≥ 0}.

Then, by duality, we have χ∗(G) = maxx∈P 1T x.
Let Q ⊆ Rn

+ be a polytope. Define

Q↓ := {y ∈ Rn : there is x ∈ Q with y ≤ x}.
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We say that Q is of the anti-blocking type if Q = Q↓ ∩ Rn
+. The anti-blocking

polytope A(Q) of Q is then defined to be

A(Q) := {z ∈ Rn
+ : xT z ≤ 1 for all x ∈ Q}.

For a set S ⊆ RV we denote by χS the characteristic vector of S. As they
are used in different context we hope that the danger of confusing the chromatic
number χ with a characteristic vector χS is minimal.

Theorem 2 (Fulkerson [3] and [4]). Let Q ⊆ Rn
+ be a full-dimensional polytope

of the anti-blocking type, and let a1, . . . , ak ∈ Rn
+. Then Q = conv{a1, . . . , ak}↓∩

Rn
+ if and only if A(Q) = {z ∈ Rn

+ : aT
i z ≤ 1 for i = 1, . . . , k}.

For an h-perfect G and P as above it holds that

SSP(G) = A(P ).

Indeed, consider a z ∈SSP(G). Now, since for any x ∈ P we have xT χS ≤ 1
for all S ∈ S, the same inequality holds for z, as it is a convex combination of
characteristic vectors of stable sets. Hence, z ∈ A(P ).

Conversely, let z ∈ A(P ). Observe that for a clique K, and an odd cycle C
the vectors χK and 2

|C|−1χC lie in P . Thus, zT χK ≤ 1 and zT 2
|C|−1χC ≤ 1,

which implies z ∈HSTAB(G) =SSP(G).
Therefore, Fulkerson’s theorem has the following consequence:

P = conv{χK1 , . . . , χKs ,
2

|C1|−1χC1 , . . . ,
2

|Ct|−1χCt}↓ ∩ Rn
+,

where {K1, . . . , Ks} is the set of all cliques and {C1, . . . , Ct} is
the set of all odd cycles of G.

(3)

Proof of Corollary 1. Let P be defined as above.
First, assume that ω(G) ≥ 3. We show that

there is a stable set S which intersects every clique of size ω(G). (4)

Since, ω(G) ≥ 3 > 1T ( 2
|C|−1χC) for every odd cycle C of length ≥ 5, we see

with (3) that maxx∈P 1T x = ω(G) is attained in every clique of size ω(G).
Consider an optimal solution y of (2) and a clique K of size ω(G). Then

ω(G) = 1T χK ≤
∑

S

yS χT
SχK =

∑

S

yS |S ∩K| ≤
∑

S

yS = ω(G).

Thus, each stable set S with yS > 0 must meet each such clique K, which
proves (4).

Next, we find with (4) stable sets S1, . . . , Sk where k = ω(G)− 3 such that
G′ := G−S1−. . .−Sk has no clique of size 4. Thus, G′ is t-perfect and therefore,
by Theorem 2 of [2], colourable with three stable sets, Sk+1, Sk+2, Sk+3 say.
Now, we can colour G with S1, . . . , Sω(G). This proves assertion (ii), and (i),
too, for ω(G) ≥ 3 as ω(G) is a lower bound for χ∗(G).

Finally, assume ω(G) < 3. If G is not bipartite, in which case we are done,
then χ∗(G) = maxx∈P 1T x is attained in 2

|C|−1χC for some odd cycle C. Thus,
χ∗(G) > 2. On the other hand, G is t-perfect, and we can consequently, by
Theorem 2 of [2], colour it with three colours.
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