The union-closed sets conjecture

Henning Bruhn

joint with Oliver Schaudt

The union-closed sets conjecture

Always: \mathcal{A} finite family of finite sets

- $\blacksquare \ \mathcal{A} \text{ union-closed: } A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}.$
- Example: Ø, 1, 12, 34, 134, 1234

Conjecture

Every union-closed family of at least two sets has an element that appears in at least half of the member-sets.

- power sets are union-closed
- conjecture tight for power sets!

The union-closed sets conjecture

Always: \mathcal{A} finite family of finite sets

- $\blacksquare \ \mathcal{A} \text{ union-closed: } A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}.$
- Example: Ø, 1, 12, 34, 134, 1234

Conjecture

Every union-closed family of at least two sets has an element that appears in at least half of the member-sets.

- power sets are union-closed
- conjecture tight for power sets!

A union-closed family

- union-closed
- 25 sets
- Universe: 1, 2, 3, 4, 5, 6

A union-closed family

- union-closed
- 25 sets
- Universe: 1, 2, 3, 4, 5, 6
- 2 lies in 12 member-sets

A union-closed family

- union-closed
- 25 sets
- Universe: 1, 2, 3, 4, 5, 6
- 2 lies in 12 member-sets
- 4 lies in 16 member-sets → conjecture ✓

Peter Winkler '87:

The 'union-closed sets conjecture' is well known indeed, except for (1) its origin and (2) its answer!

Conjecture

Every union-closed family of at least two sets has an element that appears in at least half of the member-sets.

- A always (finite) union-closed family
- $U := \bigcup_{A \in \mathcal{A}} A$ is the universe
- frequency: $A_u := \{A \in A : u \in A\}$
- *u* abundant if $|\mathcal{A}_u| \geq \frac{1}{2}|\mathcal{A}|$.
- n : number of member-sets
- *m* : number of elements

What do we know?

 ${\cal A}$ satisfies the conjecture when

- at most 12 elements
- at most 50 member-sets
- A has special structure, for instance represented by cubic graph

Also

· · · ·

some (weak) properties of smallest counterexample known

 \rightarrow conjecture wide open

Knill's argument

Knill: There's always an element appearing in $\geq \frac{n-1}{\log_2(n)}$ member-sets

	-	12345	6	
12	345	12346	6 123	356
12	456	13456	5 234	156
1	1234	1235	123	6
1	1456	2456	345	6
123	145	246	356	456
	45	46	56	
	4	- 5	6	
		Ø		

X : smallest set intersecting all members traces $\mathcal{T} = \{A \cap X : A \in \mathcal{A}\}$

smallest traces 12|4|5|6

Knill's argument

Knill: There's always an element appearing in $\geq \frac{n-1}{\log_2(n)}$ member-sets

	-	12345	6	
12	345	12346	6 123	356
12	456	13456	5 234	156
1	234	1235	123	6
1	456	2456	345	6
123	145	246	356	456
	45	46	56	
	4	- 5	6	
		Ø		

X : smallest set intersecting all members traces $\mathcal{T} = \{A \cap X : A \in \mathcal{A}\}$

- *X* = 1456
- \mathbf{T} contains all singletons of X

• union-closed
$$\rightarrow \mathcal{T} = 2^X$$

$$A o |X| = \log_2(|\mathcal{T}|) \le \log_2(n)$$

■ → an element in X meets at least $(n-1)/\log_2(n)$ member-sets

Knill's argument

Knill: There's always an element appearing in $\geq \frac{n-1}{\log_2(n)}$ member-sets

	-	12345	6	
12	2345	12346	5 123	356
12	2456	13456	3 234	56
	1234	1235	123	6
	1456	2456	345	6
123	145	246	356	456
	45	46	56	
	4	5	6	
		Ø		

X : smallest set intersecting all members traces $\mathcal{T} = \{A \cap X : A \in \mathcal{A}\}$

- *X* = 1456
- **\mathcal{T}** contains all singletons of *X*

• union-closed
$$\rightarrow \mathcal{T} = 2^X$$

$$A o |X| = \log_2(|\mathcal{T}|) \le \log_2(n)$$

■ → an element in X meets at least $(n-1)/\log_2(n)$ member-sets

constant factor improved by Wójcik

Equivalent reformulations

- in terms of lattices
- in terms of graphs
- in terms of "very full sets"

The lattice formulation

Lattice: Finite poset (L, <) so that

- any two $x, y \in L$ have unique greatest lower bound $x \land y$
- any two $x, y \in L$ have unique smallest upper bound $x \lor y$

non-zero $x \in L$ is join-irreducible if $x = y \lor z$ implies x = y or x = z.

The lattice formulation

Lattice: Finite poset (L, <) so that

- any two $x, y \in L$ have unique greatest lower bound $x \land y$
- any two $x, y \in L$ have unique smallest upper bound $x \lor y$

non-zero $x \in L$ is join-irreducible if $x = y \lor z$ implies x = y or x = z.

The lattice formulation II

Conjecture

Let *L* be a lattice with $|L| \ge 2$. Then there is join-irreducible $x \in L$ so that

$$|\{y: x \le y\}| \le \frac{1}{2}|L|.$$

true for lower semimodular lattices

Main techniques

- Injections
- Local configurations
- Averaging

Injections

Up-set: If $A \in \mathcal{A}$ and $B \supseteq A$ then $B \in \mathcal{A}$

Up-sets satisfy the conjecture

Problem with this technique: Need to know where to find an abundant element

Local configurations

Early observation:

Singleton $\{x\} \in \mathcal{A} \longrightarrow x$ abundant!2-set $\{x, y\} \in \mathcal{A} \longrightarrow x$ or y abundant!3-set $\{x, y, z\} \in \mathcal{A} \longrightarrow x, y$ or z abundant?

Local configurations

Early observation:

Singleton $\{x\} \in \mathcal{A} \longrightarrow x$ abundant!2-set $\{x, y\} \in \mathcal{A} \longrightarrow x$ or y abundant!3-set $\{x, y, z\} \in \mathcal{A} \longrightarrow x, y$ or z abundant?

NO!

However:

- 123, 124, 134 $\in \mathcal{A}$ then one of 1, 2, 3, 4 is abundant
- Family *L* is Frankl-complete if any union-closed *A* that contains *L* has abundant element among the elements of *L*
- all Frankl-complete families known on five elements (Morris)
- General characterisation due to Poonen

Averaging

Strategy: determine average frequency

$$\frac{1}{|U|}\sum_{u\in U}|\mathcal{A}_u|$$

- $\blacksquare 1,2,3 \rightarrow each 12 \text{ times}$
- 4, 5, 6 \rightarrow each 16 times
- average frequency

$$\frac{1}{6}(3 \cdot 12 + 3 \cdot 16) = 15$$

- \rightarrow there is element of frequency \geq 15
- 25 member-sets → ✓

Averaging

Strategy: determine average frequency

$$\frac{1}{|U|}\sum_{u\in U}|\mathcal{A}_u|$$

	1	2345	56		
12	345	1234	6	123	56
124	456	1345	6	234	56
1	234	1235	51	236	3
1	456	2456	3 3	3456	6
123	145	246	3	56	456
	45	46	56	6	
	4	- 5	6		
		Ø			

- $\blacksquare 1,2,3 \rightarrow each 12 \text{ times}$
- 4, 5, 6 \rightarrow each 16 times
- average frequency

$$\frac{1}{6}(3 \cdot 12 + 3 \cdot 16) = 15$$

- \rightarrow there is element of frequency \geq 15
- 25 member-sets $\rightarrow \checkmark$

complete rubbish approach!

Average set size

Double counting:

$$\sum_{A \in \mathcal{A}} |A| = \sum_{u \in U} |\mathcal{A}_u|$$

Usually, total set size easier to control! Thus, if

$$rac{1}{|U|}\sum_{A\in\mathcal{A}}|A|\geq rac{1}{2}|\mathcal{A}|$$

then $\ensuremath{\mathcal{A}}$ satisfies the conjecture.

Average set size

Double counting:

$$\sum_{A \in \mathcal{A}} |A| = \sum_{u \in U} |\mathcal{A}_u|$$

Usually, total set size easier to control! Thus, if average set size

$$rac{1}{|\mathcal{A}|}\sum_{A\in\mathcal{A}}|A|\geq rac{1}{2}|\mathcal{U}|$$

then \mathcal{A} satisfies the conjecture.

Advantage: Don't need to know where to look for abundant element

Drawback: Averaging does not always work!

Nishimura & Takahashi '96:

If $|\mathcal{A}| > 2^m - \sqrt{2^m}$, where m = |U| then $\mathcal{A} \checkmark$

Subfamily of power set on 1, 2, 3, 4

Nishimura & Takahashi '96:

If $|\mathcal{A}| > 2^m - \sqrt{2^m}$, where m = |U| then $\mathcal{A} \checkmark$

Subfamily of power set on 1, 2, 3, 4

Proof:

- Assume set $X \notin \mathcal{A}$ with $|X| \geq \frac{m}{2}$
- If $Y \subseteq X$ in $\mathcal{A} \Rightarrow Y \setminus X \notin \mathcal{A}$
- Thus: $\frac{1}{2}2^{|X|}$ sets missing in A

■ $|\mathcal{A}| \leq 2^m - 2^{\frac{m}{2}}$, contradiction!

Nishimura & Takahashi '96:

If $|\mathcal{A}| > 2^m - \sqrt{2^m}$, where m = |U| then $\mathcal{A} \checkmark$

Subfamily of power set on 1, 2, 3, 4

Proof:

- Assume set $X \notin \mathcal{A}$ with $|X| \geq \frac{m}{2}$
- If $Y \subseteq X$ in $\mathcal{A} \Rightarrow Y \setminus X \notin \mathcal{A}$
- Thus: $\frac{1}{2}2^{|X|}$ sets missing in A
- $|\mathcal{A}| \leq 2^m 2^{\frac{m}{2}}$, contradiction!
- $\blacksquare \Rightarrow \mathcal{A} \text{ contains all large sets}$

• Average set size
$$\geq \frac{m}{2}$$

Nishimura & Takahashi '96:

If $|\mathcal{A}| > 2^m - \sqrt{2^m}$, where m = |U| then $\mathcal{A} \checkmark$

Subfamily of power set on 1, 2, 3, 4

Proof:

- Assume set $X \notin \mathcal{A}$ with $|X| \geq \frac{m}{2}$
- If $Y \subseteq X$ in $\mathcal{A} \Rightarrow Y \setminus X \notin \mathcal{A}$
- Thus: $\frac{1}{2}2^{|X|}$ sets missing in A
- $|\mathcal{A}| \leq 2^m 2^{\frac{m}{2}}$, contradiction!
- $\blacksquare \Rightarrow \mathcal{A} \text{ contains all large sets}$

• Average set size
$$\geq \frac{m}{2}$$

 $ightarrow \mathcal{A}$ satisfies the conjecture!

Balla, Bollobás & Eccles '13:

If
$$|\mathcal{A}| \geq \frac{2}{3}2^m$$
, where $m = |U|$ then $\mathcal{A} \checkmark$

Result...

- is best possible
- builds on Kruskal-Katona theorem
- and on approach of Reimer

Reimer '03:

Average set size always

$$\frac{1}{|\mathcal{A}|}\sum_{\textit{A}\in\mathcal{A}}|\textit{A}|\geq \tfrac{1}{2}\log_2|\mathcal{A}|$$

Hungarian family

Let $A, B \subset \mathbb{N}$ finite Set A < B if

I largest element: $\max A < \max B$

2 reverse colex: $max(A\Delta B) \in A$

Initial segment:

 $\emptyset < 1 < 12 < 2 < 123 < 23 < 13 < 3 < 1234 < 234 \\ < 134 < 34 < 124 < 24 < 14 < 4 < 12345 < \ldots$

Czédli, Maróti and Schmidt '09:

- $\mathcal{H}(m)$: initial segment of length $\lfloor \frac{2}{3} 2^m \rfloor$
- Average too low for $\mathcal{H}(m)$!

Separating families

Consider $\mathcal{A} = \emptyset, 1, 12, 234, 1234$ 4 does not add anything! delete 4 from every member $\mathcal{A}' = \emptyset, 1, 12, 23, 123$

 \rightarrow may assume that A separating: for every $x, y \in U$ there is $A \in A$ containing exactly one of x, y

Let \mathcal{A} be separating, $U = \{x_1, \ldots, x_m\}$.

Assume x_1, \ldots, x_m ordered by increasing frequency

- for i < j there exists X_{ii} with $x_i \notin X_{ii} \ni x_i$

• set
$$X_i := \bigcup_j X_{ij}$$

all X_0, \ldots, X_{m-1} distinct

all contain x_m

Let \mathcal{A} be separating, $U = \{x_1, \ldots, x_m\}$.

<i>x</i> ₁	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>X</i> 5	<i>x</i> ₆	
~	~	~	~	~	~	
×	~	~	~	~	× .	
••	Ţ	Ţ	Ţ	Ţ	Ţ	

Assume x_1, \ldots, x_m ordered by increasing frequency

- let X₀ be universe
- for i < j there exists X_{ij} with $x_i \notin X_{ij} \ni x_j$

• set
$$X_i := \bigcup_j X_{ij}$$

all X_0, \ldots, X_{m-1} distinct

all contain x_m

Let \mathcal{A} be separating, $U = \{x_1, \ldots, x_m\}$.

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6	il
~	~	~	~	 Image: A second s	v	
×	~	~	~	~	v	
?	×	~	~	~	v	

Assume x_1, \ldots, x_m ordered by increasing frequency

- let X₀ be universe
- for i < j there exists X_{ij} with $x_i \notin X_{ij} \ni x_j$

• set
$$X_i := \bigcup_j X_{ij}$$

all X_0, \ldots, X_{m-1} distinct

all contain x_m

Let \mathcal{A} be separating, $U = \{x_1, \ldots, x_m\}$.

<i>x</i> ₁	<i>x</i> ₂	<i>X</i> 3	<i>X</i> 4	<i>x</i> 5	<i>x</i> 6
~	v	~	~	~	~
×	~	~	~	~	~
?	×	~	~	~	~
?	?	×	~	~	~
?	?	?	×	~	~
?	?	?	?	×	~

Assume x_1, \ldots, x_m ordered by increasing frequency

- let X₀ be universe
- for i < j there exists X_{ij} with $x_i \notin X_{ij} \ni x_j$

• set
$$X_i := \bigcup_j X_{ij}$$

all
$$X_0, \ldots, X_{m-1}$$
 distinct

all contain x_m

- What families on n member-sets have lowest max frequency?
- for $n = 2^m \rightarrow \text{power sets}$
- in between powers of two?

- What families on n member-sets have lowest max frequency?
- for $n = 2^m \rightarrow \text{power sets}$
- in between powers of two?

Details, bibliography and more: *The journey of the union-closed sets conjecture*, Henning Bruhn and Oliver Schaudt