The union-closed sets conjecture

Henning Bruhn

The union-closed sets conjecture

Always: \mathcal{A} finite family of finite sets
$\square \mathcal{A}$ union-closed: $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.

- Example: $\emptyset, 1,12,34,134,1234$

Conjecture

Every union-closed family of at least two sets has an element that appears in at least half of the member-sets.

- power sets are union-closed
- conjecture tight for power sets!

The union-closed sets conjecture

Always: \mathcal{A} finite family of finite sets
$\square \mathcal{A}$ union-closed: $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$.

- Example: $\emptyset, 1,12,34,134,1234$

Conjecture

Every union-closed family of at least two sets has an element that appears in at least half of the member-sets.

- power sets are union-closed
- conjecture tight for power sets!

A union-closed family

| 12345 | 12346 | 12356 | 12456 | 13456 | 23456 | |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 1234 | 1235 | 1236 | 1456 | 2456 | 3456 | |
| | 123 | 145 | 246 | 356 | 456 | |
| | | 45 | 46 | 56 | | |
| | | 4 | 5 | 6 | | |
| | | | \emptyset | | | |

union-closed

- 25 sets
- Universe: 1, 2, 3, 4, 5, 6

A union-closed family

12345	12346	12356	12456	13456	23456	
1234	1235	1236	1456	2456	3456	
	123	145	246	356	456	
		45	46	56		
		4	5	6		
			\emptyset			

union-closed

- 25 sets
- Universe: 1, 2, 3, 4, 5, 6
- 2 lies in 12 member-sets

A union-closed family

| 12345 | 12346 | 12356 | 12456 | 13456 | 23456 | |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 1234 | 1235 | 1236 | 1456 | 2456 | 3456 | |
| | 123 | 145 | 246 | 356 | 456 | |
| | | 45 | 46 | 56 | | |
| | | 4 | 5 | 6 | | |
| | | | \emptyset | | | |

- union-closed
- 25 sets
- Universe: 1, 2, 3, 4, 5, 6
- 2 lies in 12 member-sets
- 4 lies in 16 member-sets \rightarrow conjecture

A memorable quote

Peter Winkler '87:
The 'union-closed sets conjecture' is well known indeed, except for (1) its origin and (2) its answer!

Some terminology

Conjecture

Every union-closed family of at least two sets has an element that appears in at least half of the member-sets.

- \mathcal{A} always (finite) union-closed family
- $U:=\bigcup_{A \in \mathcal{A}} A$ is the universe
- frequency: $\mathcal{A}_{u}:=\{A \in \mathcal{A}: u \in A\}$
- u abundant if $\left|\mathcal{A}_{u}\right| \geq \frac{1}{2}|\mathcal{A}|$.
- n : number of member-sets
- m : number of elements

What do we know?

\mathcal{A} satisfies the conjecture when

- at most 12 elements
- at most 50 member-sets
- \mathcal{A} has special structure, for instance represented by cubic graph

Also

- some (weak) properties of smallest counterexample known
\rightarrow conjecture wide open

Knill's argument

Knill: There's always an element appearing in $\geq \frac{n-1}{\log _{2}(n)}$ member-sets

123456				X : smallest set intersecting all members traces $\mathcal{T}=\{A \cap X: A \in \mathcal{A}\}$		
12345	12346	12356				
12456	13456	23456				
1234	1235	1236		- $X=12456$?		
1456	2456	3456		- smallest traces 12\|4	5	6
123145	246	3564	456			
	46	56				
	45					
	\emptyset					

Knill's argument

Knill: There's always an element appearing in $\geq \frac{n-1}{\log _{2}(n)}$ member-sets

123456			
12345	12346	12356	
12456	13456	23456	
1234	1235	1236	
1456	2456	3456	
123	145	246	356
45	46	56	
4	5	6	
	\emptyset		

X : smallest set intersecting all members
traces $\mathcal{T}=\{A \cap X: A \in \mathcal{A}\}$

- $X=1456$
$-\mathcal{T}$ contains all singletons of X
- union-closed $\rightarrow \mathcal{T}=2^{X}$
$\square \rightarrow|X|=\log _{2}(|\mathcal{T}|) \leq \log _{2}(n)$
$\square \rightarrow$ an element in X meets at least
$(n-1) / \log _{2}(n)$ member-sets

Knill's argument

Knill: There's always an element appearing in $\geq \frac{n-1}{\log _{2}(n)}$ member-sets

123456			$X:$ smallest set intersecting all members
12345	12346	12356	traces $\mathcal{T}=\{A \cap X: A \in \mathcal{A}\}$
12456	13456	23456	$X=1456$
1234	1235	1236	
1456	2456	3456	\mathcal{T} contains all singletons of X
123145 246 356 456 45 46 56 union-closed $\rightarrow \mathcal{T}=2^{X}$ 4 5 6 $\rightarrow\|X\|=\log _{2}(\|\mathcal{T}\|) \leq \log _{2}(n)$ \emptyset \rightarrow an element in X meets at least $(n-1) / \log _{2}(n)$ member-sets			

- constant factor improved by Wójcik

Many faces

Equivalent reformulations

- in terms of lattices
- in terms of graphs
- in terms of "very full sets"

The lattice formulation

Lattice: Finite poset $(L,<)$ so that

- any two $x, y \in L$ have unique greatest lower bound $x \wedge y$
- any two $x, y \in L$ have unique smallest upper bound $x \vee y$
non-zero $x \in L$ is join-irreducible if $x=y \vee z$ implies $x=y$ or $x=z$.

The lattice formulation

Lattice: Finite poset $(L,<)$ so that

- any two $x, y \in L$ have unique greatest lower bound $x \wedge y$
- any two $x, y \in L$ have unique smallest upper bound $x \vee y$
non-zero $x \in L$ is join-irreducible if $x=y \vee z$ implies $x=y$ or $x=z$.

The lattice formulation II

Conjecture

Let L be a lattice with $|L| \geq 2$. Then there is join-irreducible $x \in L$ so that

$$
|\{y: x \leq y\}| \leq \frac{1}{2}|L|
$$

- true for lower semimodular lattices

Main techniques

Injections

- Local configurations

Averaging

Injections

Up-set: If $A \in \mathcal{A}$ and $B \supseteq A$ then $B \in \mathcal{A}$

- Up-sets satisfy the conjecture

Proof:

- Injection $\mathcal{A}_{\bar{x}} \rightarrow \mathcal{A}_{x}$
$\Rightarrow 2\left|\mathcal{A}_{x}\right| \geq\left|\mathcal{A}_{\bar{x}}\right|+\left|\mathcal{A}_{x}\right|=|\mathcal{A}|$.
- x abundant!

Problem with this technique:
Need to know where to find an abundant element

Local configurations

Early observation:
Singleton $\{x\} \in \mathcal{A} \quad \longrightarrow \quad x$ abundant!
2-set $\{x, y\} \in \mathcal{A} \quad \longrightarrow \quad x$ or y abundant!
3-set $\{x, y, z\} \in \mathcal{A} \quad \longrightarrow \quad x, y$ or z abundant?

Local configurations

Early observation:
$\begin{array}{lll}\text { Singleton }\{x\} \in \mathcal{A} & \longrightarrow & x \text { abundant! } \\ \text { 2-set }\{x, y\} \in \mathcal{A} & \longrightarrow & x \text { or } y \text { abundant! } \\ \text { 3-set }\{x, y, z\} \in \mathcal{A} & \longrightarrow & x, y \text { or } z \text { abundant? }\end{array}$
NO!

| 12345 | 12346 | 12356 | 12456 | 13456 | 23456 | |
| ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 1234 | 1235 | 1236 | 1456 | 2456 | 3456 | |
| | 123 | 145 | 246 | 356 | 456 | |
| | | 45 | 46 | 56 | | |
| | | 4 | 5 | 6 | | |
| | | | \emptyset | | | |

Local configurations II

However:

- $123,124,134 \in \mathcal{A}$ then one of $1,2,3,4$ is abundant
- Family \mathcal{L} is Frankl-complete if any union-closed \mathcal{A} that contains \mathcal{L} has abundant element among the elements of \mathcal{L}
- all Frankl-complete families known on five elements (Morris)
- General characterisation due to Poonen

Averaging

Strategy: determine average frequency $\frac{1}{|U|} \sum_{u \in U}\left|\mathcal{A}_{u}\right|$

Averaging

Strategy: determine average frequency $\frac{1}{|U|} \sum_{u \in U}\left|\mathcal{A}_{U}\right|$

complete rubbish approach!

Average set size

Double counting:

$$
\sum_{A \in \mathcal{A}}|A|=\sum_{u \in U}\left|\mathcal{A}_{u}\right|
$$

Usually, total set size easier to control!
Thus, if

$$
\frac{1}{|U|} \sum_{A \in \mathcal{A}}|A| \geq \frac{1}{2}|\mathcal{A}|
$$

then \mathcal{A} satisfies the conjecture.

Average set size

Double counting:

$$
\sum_{A \in \mathcal{A}}|A|=\sum_{u \in U}\left|\mathcal{A}_{u}\right|
$$

Usually, total set size easier to control!
Thus, if average set size

$$
\frac{1}{|\mathcal{A}|} \sum_{A \in \mathcal{A}}|A| \geq \frac{1}{2}|U|
$$

then \mathcal{A} satisfies the conjecture.

- Advantage: Don't need to know where to look for abundant element
- Drawback: Averaging does not always work!

Large families

Nishimura \& Takahashi '96:

- If $|\mathcal{A}|>2^{m}-\sqrt{2^{m}}$, where $m=|U|$ then \mathcal{A}

Proof:

Subfamily of power set on 1, 2, 3, 4

Large families

Nishimura \& Takahashi '96:

- If $|\mathcal{A}|>2^{m}-\sqrt{2^{m}}$, where $m=|U|$ then \mathcal{A}

Proof:

- Assume set $X \notin \mathcal{A}$ with $|X| \geq \frac{m}{2}$
- If $Y \subseteq X$ in $\mathcal{A} \Rightarrow Y \backslash X \notin \mathcal{A}$
- Thus: $\frac{1}{2} 2^{|X|}$ sets missing in \mathcal{A}
$-|\mathcal{A}| \leq 2^{m}-2^{\frac{m}{2}}$, contradiction!

Subfamily of power set on 1, 2, 3, 4

Large families

Nishimura \& Takahashi '96:

- If $|\mathcal{A}|>2^{m}-\sqrt{2^{m}}$, where $m=|U|$ then \mathcal{A}

Proof:

- Assume set $X \notin \mathcal{A}$ with $|X| \geq \frac{m}{2}$
- If $Y \subseteq X$ in $\mathcal{A} \Rightarrow Y \backslash X \notin \mathcal{A}$
- Thus: $\frac{1}{2} 2^{|X|}$ sets missing in \mathcal{A}
$-|\mathcal{A}| \leq 2^{m}-2^{\frac{m}{2}}$, contradiction!
- $\Rightarrow \mathcal{A}$ contains all large sets
- Average set size $\geq \frac{m}{2}$

Subfamily of power set on 1, 2, 3, 4

Large families

Nishimura \& Takahashi '96:

- If $|\mathcal{A}|>2^{m}-\sqrt{2^{m}}$, where $m=|U|$ then \mathcal{A}

Proof:

- Assume set $X \notin \mathcal{A}$ with $|X| \geq \frac{m}{2}$
- If $Y \subseteq X$ in $\mathcal{A} \Rightarrow Y \backslash X \notin \mathcal{A}$
- Thus: $\frac{1}{2} 2^{|X|}$ sets missing in \mathcal{A}
$-|\mathcal{A}| \leq 2^{m}-2^{\frac{m}{2}}$, contradiction!
- $\Rightarrow \mathcal{A}$ contains all large sets
- Average set size $\geq \frac{m}{2}$

Subfamily of power set on 1, 2, 3, 4
$\rightarrow \mathcal{A}$ satisfies the conjecture!

Large families II

Balla, Bollobás \& Eccles '13:

- If $|\mathcal{A}| \geq \frac{2}{3} 2^{m}$, where $m=|U|$ then \mathcal{A} Result...
- is best possible
- builds on Kruskal-Katona theorem
- and on approach of Reimer

Reimer '03:

- Average set size always

$$
\frac{1}{|\mathcal{A}|} \sum_{A \in \mathcal{A}}|A| \geq \frac{1}{2} \log _{2}|\mathcal{A}|
$$

Hungarian family

Let $A, B \subset \mathbb{N}$ finite
Set $A<B$ if
11 largest element: $\max A<\max B$
2 reverse colex: $\max (A \Delta B) \in A$
Initial segment:

$$
\begin{aligned}
\emptyset< & <12<2<123<23<13<3<1234<234 \\
& <134<34<124<24<14<4<12345<\ldots
\end{aligned}
$$

Czédli, Maróti and Schmidt '09:

- $\mathcal{H}(m)$: initial segment of length $\left\lfloor\frac{2}{3} 2^{m}\right\rfloor$
- Average too low for $\mathcal{H}(m)$!

Separating families

> Consider $\mathcal{A}=\emptyset, 1,12,234,1234$
> 4 does not add anything!
> delete 4 from every member
> $\mathcal{A}^{\prime}=\emptyset, 1,12,23,123$
\rightarrow may assume that \mathcal{A} separating: for every $x, y \in U$ there is $A \in \mathcal{A}$ containing exaxtly one of x, y

Small families

Let \mathcal{A} be separating, $U=\left\{x_{1}, \ldots, x_{m}\right\}$.
Assume x_{1}, \ldots, x_{m} ordered by increasing frequency

- let X_{0} be universe
- for $i<j$ there exists $X_{i j}$ with
$x_{i} \notin X_{i j} \ni x_{j}$
$-\operatorname{set} X_{i}:=\bigcup_{j} X_{i j}$
all X_{0}, \ldots, X_{m-1} distinct
- all contain x_{m}
\rightarrow If $|\mathcal{A}| \leq 2 m$ then \mathcal{A} satisfies conjecture (Falgas-Ravry '11)

Small families

Let \mathcal{A} be separating, $U=\left\{x_{1}, \ldots, x_{m}\right\}$.

Assume x_{1}, \ldots, x_{m} ordered by increasing frequency

- let X_{0} be universe
- for $i<j$ there exists $X_{i j}$ with
$x_{i} \notin X_{i j} \ni x_{j}$
$-\operatorname{set} X_{i}:=\bigcup_{j} X_{i j}$
all X_{0}, \ldots, X_{m-1} distinct
- all contain x_{m}
\rightarrow If $|\mathcal{A}| \leq 2 m$ then \mathcal{A} satisfies conjecture (Falgas-Ravry '11)

Small families

Let \mathcal{A} be separating, $U=\left\{x_{1}, \ldots, x_{m}\right\}$.

Assume x_{1}, \ldots, x_{m} ordered by increasing frequency

- let X_{0} be universe
- for $i<j$ there exists $X_{i j}$ with
$x_{i} \notin X_{i j} \ni x_{j}$
$-\operatorname{set} X_{i}:=\bigcup_{j} X_{i j}$
- all X_{0}, \ldots, X_{m-1} distinct
- all contain x_{m}
\rightarrow If $|\mathcal{A}| \leq 2 m$ then \mathcal{A} satisfies conjecture (Falgas-Ravry '11)

Small families

Let \mathcal{A} be separating, $U=\left\{x_{1}, \ldots, x_{m}\right\}$.

x_{1}	x_{2}	x_{3}	x_{4}	χ_{5}	x_{6}
\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
*	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
?	*	\checkmark	\checkmark	\checkmark	\checkmark
?	?	*	\checkmark	\checkmark	\checkmark
?	?	?	*	\checkmark	\checkmark
?	?	?	?	*	\checkmark

Assume x_{1}, \ldots, x_{m} ordered by increasing frequency

- let X_{0} be universe
- for $i<j$ there exists $X_{i j}$ with
$x_{i} \notin X_{i j} \ni x_{j}$
$-\operatorname{set} X_{i}:=\bigcup_{j} X_{i j}$
- all X_{0}, \ldots, X_{m-1} distinct
- all contain x_{m}
\rightarrow If $|\mathcal{A}| \leq 2 m$ then \mathcal{A} satisfies conjecture (Falgas-Ravry '11)

Future directions?

What families on n member-sets have lowest max frequency?

- for $n=2^{m} \rightarrow$ power sets
- in between powers of two?

Future directions?

What families on n member-sets have lowest max frequency?

- for $n=2^{m} \rightarrow$ power sets
- in between powers of two?

Details, bibliography and more:
The journey of the union-closed sets conjecture, Henning Bruhn and Oliver Schaudt

