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The union-closed sets conjecture

Always: A finite family of finite sets
A union-closed: A, Be A= AUuBe A
Example: 0, 1, 12, 34, 134, 1234

Conjecture

Every union-closed family of at least two sets has an element that
appears in at least half of the member-sets.

power sets are union-closed
conjecture tight for power sets!
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12345 12346 12356 12456 13456 23456
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45 46 56
4 5 6
0
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A union-closed family

123456
12345 12346 12356 12456 13456 23456
1234 1235 1236 1456 2456 3456
123 145 246 356 456

45 46 56
4 5 6
0
union-closed
25 sets

Universe: 1,2,3,4,5,6
2 lies in 12 member-sets
4 lies in 16 member-sets — conjecture



A memorable quote

Peter Winkler '87:
The ‘union-closed sets conjecture’ is well known indeed, except
for (1) its origin and (2) its answer!



Some terminology

Conjecture

Every union-closed family of at least two sets has an element that appears
in at least half of the member-sets.

A always (finite) union-closed family
U := Ugc 4 Als the universe
frequency: A, . ={A€ A:uec A}
u abundant if [A,| > 1|A.

n : number of member-sets

m : number of elements



What do we know?

A satisfies the conjecture when
at most 12 elements
at most 50 member-sets
A has special structure, for instance represented by cubic graph

Also
some (weak) properties of smallest counterexample known

— conjecture wide open



Knill’s argument

Knill: There’s always an element appearing in > 2= member-sets

log, ()

123456 X : smallest set intersecting all members
12345 12346 12356 traces T = {ANX:Ac A}
12456 13456 23456
1234 1235 1236 X = 124567
1456 2456 3456 smallest traces 12|4|5/6

123 145 246 356 456
45 46 56
4 5 6

0
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Knill’s argument

Knill: There’s always an element appearing in > |Og;(1n) member-sets

123456 X : smallest set intersecting all members

12345 12346 12356 traces T = {ANX:Aec A}
12456 13456 23456

1234 1235 1236 X = 1456
1456 2456 3456 T contains all singletons of X
123 145 246 356 456 union-closed—s T = 2X
45 46 56
45 6 — [X| = logx(|T1) < logy(n)
0 — an element in X meets at least

(n—1)/log,(n) member-sets

constant factor improved by Wojcik



Many faces

Equivalent reformulations
in terms of lattices
in terms of graphs
in terms of “very full sets”



The lattice formulation

Lattice: Finite poset (L, <) so that

any two x, y € L have unique
greatest lower bound x A y

any two x, y € L have unique
smallest upper bound x V y

non-zero x € Lis join-irreducible if x = y vV z implies x = y or x = z.
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Lattice: Finite poset (L, <) so that

any two x, y € L have unique
greatest lower bound x A y

any two x, y € L have unique
smallest upper bound x V y

non-zero x € Lis join-irreducible if x = y vV z implies x = y or x = z.



The lattice formulation Il

Conjecture

Let L be a lattice with |L| > 2. Then
there is join-irreducible x € L so that

{y : x <y} < IILI.

true for lower semimodular lattices



Main techniques

Injections
Local configurations
Averaging



Injections

Up-set: IfAc Aand BD AthenBe A
Up-sets satisfy the conjecture

Proof:
Injection Az — Ay
= Z‘Ax‘ > ‘A7| + ‘Ax| = ‘A‘
X abundant!

Problem with this technique:
Need to know where to find an abundant element



Local configurations

Early observation:

Singleton {x} ¢ A — x abundant!
2-set {x,y} € A — X or y abundant!
3-set{x,y,z} € A — x,yorzabundant?



Local configurations

Early observation:

Singleton {x} ¢ A — x abundant!
2-set {x,y} € A — X or y abundant!
3-set{x,y,z} € A — x,yorzabundant?

NO!

123456
12345 12346 12356 12456 13456 23456
1234 1235 1236 1456 2456 3456
123 145 246 356 456
45 46 56
4 5 6
0



Local configurations Il

However:
123,124,134 € A then one of 1,2, 3, 4 is abundant

Family £ is Frankl-complete if any union-closed .4 that contains £ has
abundant element among the elements of £

all Frankl-complete families known on five elements (Morris)
General characterisation due to Poonen



Averaging

1
Strategy: determine average frequency ] Z | Ayl
uelU

123456 .
19345 12346 12356 1,2,3 — each 12 times
12456 13456 23456 4,5,6 — each 16 times
1‘2‘2‘; ;42122 ;42122 average frequency
]
1(3. .16) = 1
123 145 246 356 456 6(3 12—.1_3 6) 5
45 46 56 — there is element of frequency > 15
4 5 6 25 member-sets —

0



Averaging

1
Strategy: determine average frequency ] Z | Ayl
uelU

123456 .
19345 12346 12356 1,2,3 — each 12 times
12456 13456 23456 4,5,6 — each 16 times
1‘2‘2‘; ;42122 ;42122 average frequency
]
1(3. .16) = 1
123 145 246 356 456 6(3 12—.1_3 6) 5
45 46 56 — there is element of frequency > 15
4 5 6 25 member-sets —
0

complete rubbish approach!



Average set size

Double counting:

dIAI=D A

AcA uel

Usually, total set size easier to control!
Thus, if

1 1
>
PILERE]

AcA

then A satisfies the conjecture.



Average set size

Double counting:

dIAI=D A

AcA uel

Usually, total set size easier to control!
Thus, if average set size

FONLERTY

AcA

then A satisfies the conjecture.

Advantage: Don’t need to know where to look for abundant element
Drawback: Averaging does not always work!
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Subfamily of power seton 1,2, 3,4
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Proof:
Assume set X ¢ A with |X| > 7
fYCXinA=Y\X¢A
Thus: 321! sets missing in A
|A| < 2m — 2%, contradiction!
= A contains all large sets
Average set size > 7

Subfamily of power seton 1,2, 3,4

— A satisfies the conjecture!



Large families Il

Balla, Bollobas & Eccles '13:

If | A| > 2™, where m = |U| then A
Result...

is best possible
builds on Kruskal-Katona theorem
and on approach of Reimer

Reimer '03:

Average set size always

]
Al > |A = Jlog, | A|

AeA



Hungarian family

Let A, B C N finite
Set A< Bif

largest element: max A < max B

reverse colex: max(AAB) € A
Initial segment:

D<1<12<2<123<23<13 <3< 1234 < 234
<134 <34 <124 <24 <14 <4< 12345 < ...

Czédli, Maréti and Schmidt '09:
H(m): initial segment of length | 52"
Average too low for H(m)!



Separating families

Consider A = (0,1,12,234,1234
4 does not add anything!
delete 4 from every member
A '=0,1,12,23,123

— may assume that A separating:
for every x, y € Uthereis A € A containing exaxtly one of x, y



Small families

Let A be separating, U = {x1,...,Xm}.

Assume Xy, ..., Xy ordered by
increasing frequency

let Xp be universe

X1 Xo X3 X4 X5 X6

for i < j there exists Xj; with
Xj §é X,'/' > X

set X; := ; X

all Xp, ..., Xn_1 distinct

all contain xp,

— If |A| < 2mthen A satisfies conjecture (Falgas-Ravry "11)
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Small families

Let A be separating, U = {x1,...,Xm}.

Assume Xy, ..., Xy ordered by
increasing frequency

let Xp be universe

% for i < j there exists Xj; with
? x Xj §é X,'/' 2 X

2 7 % )X

2 7 7 % setX:=UpX;

2 2 2 2 % all X, ..., Xm—1 distinct

all contain xp,

— If |A| < 2mthen A satisfies conjecture (Falgas-Ravry '11)



Future directions?

What families on n member-sets have lowest max frequency?
for n = 2™ — power sets
in between powers of two?
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Details, bibliography and more:
The journey of the union-closed sets conjecture,
Henning Bruhn and Oliver Schaudt



