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Chapter 1

Introduction

There is no universally accepted definition of what a Diophantine equation

is. In this course, we will assume that it is a single polynomial equation

F (x1, . . . , xn) = 0,

where F ∈ Z[x1, . . . , xn] is a polynomial in n ≥ 2 variables xi. Depending on

the specific example at hand, we are interested in its integral solutions (i.e. the

set of all x = (xi) ∈ Zn such that F (x) = 0) or its rational solutions (with

xi ∈ Q). Mostly, the number n of variables will be n = 2 or n = 3, and then we

will use the variable names x, y, z instead of x1, x2, . . ..

The term Diophantine equation is derived from the ancient greek mathe-

matician Diophantus of Alexandria, who lived during the third century AD and

was the author of a series of books called Arithmetica. Many of these books

are now lost, and the remaining ones where translated into Latin during the

17th century, and became a great source of inspiration for the mathematicians

of that time. 1

For the last 300 years, Diophantine equations have been a major and very

active part of pure mathematics. To briefly explain where the fascination for

them comes from we may mention the following point:
1From today’s point of view the Arithmetica contains mainly cooking-book mathematics

and does not rank among the great works of the ancient greek school of mathematics – like,

for instance, Euclid’s Elements. Even though it is has some historical importance, it has little

bearing on what we mean today by the theory of Diophantine equations.
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• Several parts of modern mathematics (algebra, number theory, algebraic

geometry) have to a large extent been developed in order to solve Dio-

phantine equations, and this influence continues to the present day.

• Diophantine equations present a particularly simple way to pose hard and

interesting mathematical problems.

An excellent example illustrating both points above is Fermat’s Last Theo-

rem:

Theorem 1.1 (Fermat’s Last Theorem, FLT). Let n ≥ 3. Then the Diophan-

tine equation

xn + yn = zn (1.1)

has no solutions x, y, z ∈ Z with xyz 6= 0

This theorem has been formulated by Pierre de Fermat in 1638 and later

became one of the most famous and notorious open problems in mathematics.

Building on the work of many people, it was finally proved in 1995 by Andrew

Wiles. You can read more about the fascinating and amusing story of this

proof in Simon Singh’s book Fermat’s Last Theorem ([4]; see also the BBC

documentary with the same name).

Remark 1.2. (i) A solution (x, y, z) of Fermat’s equation (1.1) with xyz = 0

is called trivial. Obviously, the trivial solutions are of the form (x, 0, x),

(0, y, y) or (x,−x, 0) (for n odd).

(ii) A solution (x, y, z) ∈ Z3, with z 6= 0, of Equation (1.1) gives rise to a

rational solution
(
x

z
,
y

z

)
of the inhomogenous equation

xn + yn = 1. (1.2)

This is a special instance of the following general phenomenon. Integral

solutions of homogenous equations in n variables correspond to rational

solutions of arbitrary equations in n− 1 variables.

(iii) The condition n ≥ 3 in Theorem 1.1 is essential. For n = 2 the equa-

tion has infinitely many nontrivial solutions, as the following Theorem 1.4

shows.
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Definition 1.3. A pythagorean triple (P.T.) is a triple (x, y, z) ∈ Z3 such

that

• x, y, z > 0,

• gcd(x, y, z) = 1,

• x2 + y2 = z2.

Theorem 1.4. Let (x, y, z) be a pythagorean triple. Then

(a) z is odd and x and y have different parities.

(b) If we assume that x is odd then there exist a, b ∈ N with a > b, gcd(a, b) = 1,

a 6≡ b (2) and

x = a2 − b2,

y = 2ab,

z = a2 + b2.

Proof. Let (x, y, z) be a pythagorean triple. The two conditions gcd(x, y, z) = 1

and x2 + y2 = z2 combined imply

gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.

This means in particular that x and y can’t both be even. But if they were

both odd, then we’d have z2 ≡ x2 + y2 ≡ 2 (4), which is impossible. Therefore

x and y have different parities and z is odd. This proves (a).

For the proof of (b) we rewrite the condition x2 + y2 = z2 in the form

y2 = z2 − x2 = (z − x)(z + x). (1.3)

Using 2x = −(z − x) + (z + x) and 2z = (z − x) + (z + x) we see that

gcd(z − x, z + x) = gcd(2x, 2z) = 2 · gcd(x, z) = 2.

Therefore, there exist u, v, w ∈ Z so that gcd(u, v) = 1 and

z + x = 2u,

z − x = 2v,

y = 2w.
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Hence we may rewrite (1.3) as

w2 = uv. (1.4)

Since gcd(u, v) = 1 we conclude from (1.4) that there exist a, b ∈ Z so that

a > b, gcd(a, b) = 1 and

u = a2,

v = b2,

w = ab.

Plugging this into the equations defining u, v, w we obtain

x = (z + x)− (z − x)
2 = u− v = a2 − b2,

y = 2ab,

z = a2 + b2.

We also see that a 6≡ b (mod 2), otherwise x and z would be even. This com-

pletes the proof of the theorem.

The proof above use only elementary number theory; it heavily relies on

the unique factorization theorem. Here is another proof with a more geometric

flavour.

As we have seen in Remark 1.2 (ii), we may first look for rational solutions

of the equation x2 + y2 = 1, i.e. for points on the unit circle with rational

coordinates. For this we can use the fact that the unit circle has a rational

parametrization. The underlying geometric construction is obvious from the

following picture.
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The point (1, 0) is clearly a rational solution, and every other rational so-

lution can be connected to the point (1, 0) by a line y = t(x − 1) with t ∈ Q.

Conversely, given any such a line, its intersection with the unit circle consists of

exactly two points, the point (1, 0) and another rational solution of x2 +y2 = 1.

So, to find a parametrisation for the rational solutions it suffices to solve the

system

x2 + y2 = 1,

y = t(x− 1).

So we have x2 + t2(x − 1)2 = 1, which gives the equation (1 + t2)x2 − 2t2x +

(t2 − 1) = 0.

Its solutions are (x, y) = (1, 0) (which we already know is a rational solution)

and

(x, y) =
(

1− t2

1 + t2
,

2t
1 + t2

)
.

Thus, the parametrisation for the rational solutions of x2 + y2 = 1 is:

x = 1− t2

1 + t2
,

y = 2t
1 + t2

,

with t ∈ Q. If we write t = a

b
, a, b ∈ Z, ggT (a, b) = 1, we get:

x = a2 − b2

a2 + b2 ,

y = 2ab
a2 + b2 .

We obtain integral solutions of the homogenous equation x2 + y2 = z2 by ‘mul-

tiplying with the denominator’. If we do the carefully we obtain all pythagorean

triples as follows:

• (a2 − b2, 2ab, a2 + b2) if a 6≡ b (2),

•

(
a2 − b2

2 , ab,
a2 + b2

2

)
if a ≡ b ≡ 1 (2).

The first case corresponds precisely to Theorem 1.4 (b).
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Theorem 1.5. The diophantine equation

x4 + y4 = z2

has no solutions x, y, z ∈ Z with xyz 6= 0

Corollary 1.6. Fermat’s Last Theorem is true for n = 4

Proof. We will proceed by contradiction. Let (x, y, z) be a solution for x4 +y4 =

z2 with

(a) x, y, z > 0 mutually prime

(b) x, z ≡ 1 (2), y ≡ 0 (2)

(c) z minimal

The idea of the proof is to construct another solution (x1, y1, z1) that satisfies

(a)− (c) for which z1 < z. This will actually contradict the minimality of z and

prove the theorem.

We have (x2)2 + (y2)2 = z2 and hence (x2, y2, z) is a pythagorean triple. By

Theorem 1.4 this means that we can find a, b ∈ N such that a > b > 0, a 6≡ b

(mod 2), gcd(a, b) = 1 and

x2 = a2 − b2,

y2 = 2ab,

z = a2 + b2.

Here we have assumed that x is odd and y even, which we may. But now

x2 + b2 = a2 and a ≡ 1, b ≡ 0 (mod 2), i.e. (x, b, a) is a pythagorean triple,

satisfying the conditions from Theorem 1.4. Using the theorem again we can

find c, d ∈ N such that c > d > 0, c 6≡ d (mod 2), gcd(c, d) = 1 and

x = c2 − d2,

b = 2cd,

a = c2 + d2.

Because y2 = 2ab, a 6≡ b (mod 2) and gcd(a, b) = 1 we can write

b = 2w2,

a = z2
1 .
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So w2 = b

2 = cd and because gcd(c, d) = 1 we write

c = x2
1,

d = y2
1 .

We remark that (x1, y1, z1) is a solution for x4 + y4 = z2:

z2
1 = a = c2 + d2 = x4

1 + y4
1

and also that z = a2 + b2 = z4
1 + 4w4 > z1.

Therefore the minimality of z is contradicted.

This proof strategy is called "descente infinie" (infinite descent) and is based

on the idea that one cannot build an infinite decreasing sequence of natural

numbers.
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Chapter 2

Rational solutions of

quadratic equations

In this chapter we will consider quadratic diophantine equations, of the form

F (x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0,

with integral coefficients a, . . . , f ∈ Z and (a, b, c) 6= (0, 0, 0). We are interested

in its rational solutions x, y ∈ Q, F (x, y) = 0.

As we will see below, it suffices to consider equations of the form

ax2 + by2 = 1, (2.1)

with a, b ∈ Z both positive, a, b > 0.

Notation 2.1. We fix a quadratic polynomial F ∈ Z[x, y] as above. For any

commutative ring R we note

X(R) :=
{

(x, y) ∈ R2 | F (x, y) = 0
}
.

As we said before, we are mainly interested in X(Q). To study this set we

may use the fact that it is contained in X(R), which is a quadric. See e.g. [6],

§3.3.

Remark 2.2. A quadric is called degenerate if it has at most one point, or if it

is the union of two lines. Otherwise, we call the quadric nondegenerate. We
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will assume from now on that the quadric defined by our quadratic Diophantine

equation F (x, y) = 0 is nondegenerate.

There are three types of nondegenerate quadrics. You have learned in your

linear algebra course that each of them can be brought, by a change of coordinate

system representing a symmetry of the plane, into the following normal form.

1. Ellipse (normal form): ax2 + by2 = 1, a, b > 0

2. Hyperbola (normal form): ax2 − by2 = 1, a, b > 0

3. Parabola (normal form): ax = by2, a, b > 0

The proof of the existence of the normal form relies on the spectral theorem. It

only works over the real numbers but in general not over the rationals (recall

that one may have to solve a quadratic equation!). This is not acceptable for us

because we are interested in the rational solutions of the equation. Fortunately,

there is another way to obtain a normal form with works over the rationals (but

which may not corresponds to a euclidean symmetry).

9



Proposition 2.3. Every quadratic diophantine equation

F (x, y) = 0

that represents a non-degenerate quadric can be brought to one of the two

normal forms

ax2 ± by2 = c,

or

ax = by2,

with a, b, c ∈ N, by a coordinate change over Q.

The proof is very simple and left as an exercise. We only give an example.

Example 2.4. Consider the equation F (x, y) = x2 + xy + y2 − 1 = 0. We

substitute x = x1 −
1
2y and obtain:

F (x, y) = x2
1 − x1y + 1

4y
2 + x1y −

1
2y

2 + y2 − 1

= x2
1 + 3

4y
2 − 1 = 1

4(4x2
1 + 3y2 − 4).

So there is a bijection between the rational solutions of the equation x2 + xy +

y2 = 1 and 4x2
1 + 3y2 = 4, given by

(x, y) 7→ (x+ 1
2y, y).

Theorem 2.5. Let F (x, y) = 0 be a quadratic diophantine equation that rep-

resents a non-degenerated quadric over R. Then the following assertions are

equivalent:

(a) There is at least one rational solution.

(b) There are infinity many rational solutions.

Proof. The proof is a straightforward generalization of the parametrization of

the unit circle constructed on page 4f: starting from one rational solution we

obtain a parametrization of all rational solutions with respect to a parameter t.
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Example 2.6 (the parable case). Let F (x, y) = ax− by2 = 0. Because we always

have the rational solution (x, y) = (0, 0) we have an infinite number of rational

solutions. To be more precise, we can parametrize: x = abt2, y = at, t ∈ Q.

It thus remains to consider the case ax2 ± by2 = c and see if the equation

has any rational solutions. To this end, it makes sense to homogenize:

ax2 ± by2 = cz2

and look for the integral solutions (x, y, z) ∈ Z3 with z 6= 0 We have now arrived

at the following formulation of our original question.

Problem. We are given a, b, c ∈ Z\{0}. We wish to find (x, y, z) ∈ Z3 satisfying

• (x, y, z) 6= (0, 0, 0)

• gcd(x, y, z) = 1

• ax2 + by2 − cz2 = 0

Remark 2.7. Continue with the notation introduced above. Without loss of

generality we may also assume:

(i) a, b, c > 0

(ii) c = 1,

(iii) a, b squarefree.

To see (i), let us write the equation first in the more symmetric form

ax2 + by2 + cz2 = 0,
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without making any prior assumption on the sign of the coefficients a, b, c. If

a, b, c all have the same sign then obviously there is no solution (x, y, z) 6=

(0, 0, 0). It is therefore no restriction to assume that two out of three coefficients

are positive and the third negative. After a suitable permutation of the variables

x, y, z we may then assume that a, b > 0 and c < 0. But then we can rewrite

our equation in the less symmetric form

ax2 + by2 = cz2, (2.2)

with a, b, c > 0. This shows (i).

If (x, y, z) is a solution of (2.2) then (x1, y1, z1) := (x, y, cz) is a solution to

(ac)x2
1 + (bc)y2

1 = z2
1 .

We may therefore assume that c = 1, (ii).

To prove (iii) we write a = a0d
2 with a0, d ∈ Z and a0 squarefree. If (x, y, z)

is a solution of

ax2 + by2 = z2,

then (x1, y1, z1) := (dx, y, z) is a solution to

a0x
2
1 + by2

1 = z2
1 .

Hence we may assume that a (and for the same reason, b) is squarefree.

Example 2.8.

• 5x2 + 7y2 = z2 has no solutions

• 5x2 + 11y2 = z2 has solution (1, 1, 4)

Definition 2.9. Let a, b ∈ Z, b > 0.

We say that a is a quadratic residue modulo b and write a QR b if there

exists an x ∈ Z so that a ≡ x2 (b).

Example 2.10. 7 ≡ 2 (5) but the squares in (Z/5Z)× are 1̄ and 4̄, so 7 is not a

quadratic residue modulo 5. On the other hand, 9 ≡ 4 (5) so 9 QR 5.

Theorem 2.11 (Legendre). Let a, b ∈ N be squarefree. Then the diophantine

equation

ax2 + by2 = z2 (2.3)
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has a solution (x, y, z) ∈ Z3 \
{

(0, 0, 0)
}
if and only if the following conditions

are satisfied:

(i) a QR b,

(ii) b QR a,

(iii) −ab
d2 QR d, with d = gcd(a, b).

Proof. For now we will only prove the direct implication. Let (x, y, z) 6= (0, 0, 0)

be a non-trivial solution of ax2+by2 = z2. We may assume that gcd(x, y, z) = 1.

From this and from the assumption that a, b are squarefree we deduce:

• gcd(x, y) = gcd(y, z) = gcd(z, x) = 1,

• gcd(x, b) = 1.

From (2.3) we have that ax2 ≡ z2 (b) and, because gcd(x, b) = 1, we deduce

a ≡
(
z

x

)2
(b)

This proves (i) and, by symmetry, (ii). The proof of (iii) is left as an exercise.

The converse implication in Theorem 2.11 is more difficult; its proof can be

found on p14f. In it we will use the following theorem:

Theorem 2.12 (Fermat’s two squares theorem). Let p be a prime number.

Then the following assertions are equivalent:

(a) There exist x, y ∈ Z such that x2 + y2 = p.

(b) −1 QR p.

(c) p = 2 or p ≡ 1 (4).

Proof. (a)⇒(c): If p 6= 2 then x 6≡ y (2) and hence x2 + y2 ≡ 1 (4).

(c) ⇒ (b) : We use the fact that (Z/pZ)× is a cyclic group of order p − 1.

A solution of x2 ≡ −1 (p) corresponds to an element x̄ ∈ (Z/pZ)× of order 4.

This gives 4|p− 1 and hence p ≡ 1 (4).

(b)⇒ (a): Let a ∈ Z with a2 ≡ −1 (p). Then p|a2 + 1 = (a+ i)(a− i). We

use the fact that Z[i] is a euclidean ring, so it’s a unique factorisation domain.

If p were irreducible then it would be prime and from p|(a+ i)(a− i) we would
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have p|a+ i or p|a− i. This would mean that p|1, which is impossible. Therefore

p is not irreducible, so p can be factorised. Because N(p) = p2 this factorisation

can have at most two irreducible factors, due to the multiplicativity of the norm

in Z[i]. Moreover, these two factors are both of norm p. Let p = π · π′ be the

factorization. Then π̄ · p = p · π′, so π′ = π̄. Now, if π = x+ iy then we have

p = π · π̄ = (x+ iy)(x− iy) = x2 + y2.

Remark 2.13. The equivalence (b)⇔(c) is equivalent to the first supplement to

the law of quadratic reciprocity, i.e. the formula(
−1
p

)
= (−1)(p−1)/2.

See e.g. [1], §5.1.

Corollary 2.14. Let b ∈ N so that −1 QR b. Then there are x, y ∈ Z so that

b = x2 + y2

Remark 2.15. The converse is not true. For instance, b = 9 = 32 + 02, but −1

is not a quadratic residue modulo 9.

Proof. Let b =
r∏
i=1

pei
i the prime factor decomposition. Because pi|b we deduce

−1 QR pi for all i. From theorem 2.12 for all i we have xi, yi ∈ Z so that

pi = x2
i + y2

i = |xi + iyi|2.

Then

b =
r∏
i=1

(|xi + iyi|2)ei =

∣∣∣∣∣∣
r∏
i=1

(xi + iyi)ei

∣∣∣∣∣∣
2

= x2 + y2,

because the norm of an element in Z[i] is always a sum of squares.

We can now finish the proof of Legendre’s theorem (Theorem 2.11).

Proof. We have already proven one implication. To prove the remaining one,

let a, b ∈ N be square-free and assume that the following three conditions hold:

(i) a QR b,

(ii) b QR a,
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(iii) −ab
d2 QR d, d = gcd(a, b).

We have to show that the equation

ax2 + by2 = z2 (2.4)

has a solution (x, y, z) ∈ Z3\{(0, 0, 0)}.

One idea used in the proof is the norm trick. Assume for simplicity that

b > 1. Since we assume b to be square-free, this means that
√
b is irrational.

Then Z[
√
b] is a quadratic ring extension of Z (just like Z[i]), and we can define

the norm map as follows:

N : Z[
√
b]→ Z

u+
√
bv 7→ u2 − bv2

As one can easily check, this map is multiplicative, i.e. N(αβ) = N(α)N(β).

This shows that the product of two numbers of the form Z2 − bY 2 is again of

this form. More explictly, let x1 and x2 be norms:

x1 = z2
1 − by2

1 = (z1 −
√
by1)(z1 +

√
by1)

x2 = z2
2 − by2

2 = (z2 −
√
by2)(z2 +

√
by2)

Then x1x2 = z2
3 − by2

3 , where

y3 = z1y2 + z2y1

z3 = z1z2 + by1y2

In fact, these identities can be checked by a direct calculation, and they work

also for b = 1. We used the norm map only to motivate them.

The second idea of the proof is to use descent. More precisely we use induc-

tion with respect to max(a, b).

If a = 1 or b = 1, then (x, y, z) = (1, 0, 1) or (x, y, z) = (0, 1, 1), respectively,

is a solution to (2.4). We may therefore assume a, b > 1 and, by symmetry,

a ≥ b.

We treat the case a = b separately. From (iii) we get −1 QR a and from

Corollary 2.14 a = r2 + s2. Then (r, s, a) is a solution for (2.4).

We may now assume that a > b > 1. By (ii) there is a u ∈ Z so that

u2 ≡ b (mod a).
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We can choose u such that |u| ≤ a/2. Then, there exists T ∈ Z so that u2− b =

aT . Since b is assumed to be square-free, A 6= 0. Write T = Am2 with A ∈ Z

squarefree and m ∈ N. We will prove that 0 < A < a. Indeed, from

0 ≤ u2 = aAm2 + b < a(Am2 + 1)

we deduce that A > 0. Thus u2 − b = aAm2 < u2 < a2/4, and hence

0 < A ≤ Am2 ≤ a

4 < a.

Let us consider the equation

Ax2 + by = z2. (2.5)

Since A < a, we can apply the induction hypothesis, which says that Legendre’s

theorem holds for (2.5).

Claim: Equation (2.5) satisfies (i)-(iii).

The proof of this claim is not difficult but a bit tedious. We omit it and

instead refer to [1], §17, proof of Proposition 17.3.2.

Applying Legendre’s theorem, we see that there exists a solution (x1, y1, z1) ∈

Z3 \
{

(0, 0, 0)
}
for (2.5). Then

Ax2
1 = z2

1 − by2
1 ,

aAm2 = u2 − b.

Multiplying both equations and using the norm trick, we conclude that

a(Amx1)2 = z2
2 − by2

2 ,

for some y2, z2 ∈ Z. This means that (Amx1, y2, z2) is a solution to (2.4). The

theorem is proved.

Remark 2.16. There is an equivalent formulation of the theorem in which all

three variables x, y, z play symmetric roles. Let a, b, c ∈ Z \ {0} be squarefree,

mutually prime, and not all of the same sign. Then the equation

ax2 + by2 + cz2 = 0

has a solution (x, y, z) ∈ Z3 \
{

(0, 0, 0)
}
if and only if the following are true:
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(i) −ab QR c,

(ii) −bc QR a,

(iii) −ca QR b.

Corollary 2.17. Let a, b ∈ N squarefree. Then the equation

ax2 + by2 = z2

has a non-trivial solution if and only if for any prime p and m ∈ N the congru-

ence equation

ax2 + by2 ≡ z2 (mod pm)

has a solution (x, y, z) ∈ Z3 with (x, y, z) 6≡ (0, 0, 0) (mod p).

Proof. The direct implication is clear. To prove the converse we may use Le-

gendre’s theorem. This means that it suffices to prove that Conditions (i)-(iii)

in Theorem 2.11 hold.

We will only prove (ii); the proof of the other two conditions is similar. If

a = 1 then b QR a and (ii) holds. We may therefore assume that a > 1. Let

p|a be a prime divisor. We choose m = 2. By our assumption there exists

(x, y, z) 6≡ (0, 0, 0) (p) with

ax2 + by2 ≡ z2 (mod p2).

This gives by2 ≡ z2 (mod p). If p|y then z ≡ 0 (mod p) and hence p2 | ax2. But

a is assumed to be square-free, so p|x as well. This contradicts the assumption

(x, y, z) 6≡ (0, 0, 0) (mod p). Therefore we have gcd(p, y) = 1 and thus

b ≡
(
z

y

)2
(mod p).

In other words, b is a quadratic residue modulo p.

Let a = p1 . . . pr be the prime factor decomposition of a. The argument from

above shows that b ≡ x2
i (mod pi), for all i. By the Chinese Remainder Theorem

there exists x with x ≡ xi (mod pi) for all i. Then b ≡ x2 (mod pi) for all i.

Using again the Chinese Remainder Theorem we conclude that b ≡ x2 (mod a).

This means that b is a quadratic residue modulo a, and (ii) is proved.
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Chapter 3

The p-adic numbers

In this chapter we will introduce a new kind of numbers, called the p-adic

numbers. Here p is a fixed prime number, and the set Qp of all p-adic numbers

is a field which contains the field Q of rational numbers. Thus every rational

number can be considered as a p-adic number, just as every rational number can

be considered as a real number. In fact, there is a surprising similarity in the

way the real numbers are defined as limits of rational numbers and the parallel

construction of p-adic numbers.

Here is the definition of the p-adic numbers in a nutshell. Given a prime

number p, every nonzero rational number x ∈ Q× can be written in a unique

way in the form

x = pn
a

b
,

with a, b, n ∈ Z, p - a, b and b > 0. Then

|x|p := p−n ∈ Q≥0

is called the p-adic absolute value of x. We will see that the map

| · |p : Q→ Q≥0

has quite similar properties to the usual (euclidean) absolute value. Rather

strangely, |x|p ≤ 1 for all integers x ∈ Z, and |p|p = 1/p < 1. Therefore, it seems

to make sense to consider power series in p with integral coefficients,
∞∑
k=0

akp
k, (3.1)
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with ak ∈ Z, and to ask whether such series converge. Well, the series does cer-

tainly not converge to a real number. Essentially, we will define p-adic numbers

in such a way that (3.1) converges to a p-adic number.

This may appear to be a rather esoteric construction at first sight. We

will try to convince you that, quite to the contrary, p-adic numbers are both

useful and natural objects, and in particular so in the context of Diophantine

equations.

3.1 The p-adic valuation

Let p be a prime number. Then every nonzero integer a ∈ Z\{0} can be written,

in a unique way, as

a = upn, (3.2)

where u ∈ Z is prime to p and n ∈ N0. This fact is a direct consequence of

the fundamental theorem of arithmetic which states that every natural number

can be factored in a unique way as a product of primes. We define the p-adic

valuation of a as the exponent n of p in (3.2),

vp(a) := n.

Then the prime factorization of a can be written as

a = ±
∏
p

pvp(a). (3.3)

For consistency, we set vp(0) =∞. Also, if x = a/b is a rational number we set

vp(x) := vp(a)− vp(b) ∈ Z ∪ {∞}.

It is easy to see that this is well defined.

Lemma 3.1. The function vp : Q→ Z ∪ {∞} has the following properties (for

any a, b ∈ Q):

(i) vp(ab) = vp(a) + vp(b).

(ii) vp(a+ b) ≥ min(vp(a), vp(b)).

(iii) If vp(a) 6= vp(b) then we actually have vp(a+ b) = min(vp(a), vp(b)).
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(iv) If x ∈ Z then vp(x) ≥ 0.

Proof. Easy and left as an exercise.

Definition 3.2. Let p be a prime number and x ∈ Q. The p-adic absolute value

of x is defined as

|x|p := p−vp(x).

For x = 0 this has to be understood as |0|p := 0.

Lemma 3.3. The function | · |p : Q→ Q≥0 has the following properties:

(i) |xy|p = |x|p ·|y|p.

(ii) |x+ y|p ≤ max(|x|p ,|y|p).

(iii) If |x|p 6= |y|p then |x+ y|p = max(|x|p ,|y|p).

(iv) For x ∈ Z we have |x|p ≤ 1.

Proof. This follows directly from Lemma 3.1.

3.2 The definition of Zp and Qp

Recall from your first analysis lecture that the field R of real numbers may

be defined as the completion of the field Q with respect to the usual euclidean

absolute value| · |. It is possible to define the fieldQp of p-adic numbers in exactly

the same way, i.e. by saying that the field Qp is the completion of Q with respect

to the p-adic absolute value. We will, however, follow a slightly different path

which ultimately leads to the same result. To motivate our definition we prove

the following lemma.

Lemma 3.4. Let p be an odd prime number and a ∈ Z, a 6≡ 0 (mod p). Assume

that the congruence equation

x2 ≡ a (mod p)

has a solution x ∈ Z (i.e. that a is a quadratic residue modulo p). Then the

congruence equation

x2 ≡ a (mod pm)

has a solution for all m ∈ N.
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Proof. We build inductively a sequence of integers x0, x1, x2, . . . with

(a) x2
i ≡ a (mod pi+1), i ≥ 0.

(b) xi ≡ xi+1 (mod pi+1), i ≥ 0.

Since a QR p there exists an x0 so that x2
0 ≡ a (mod p). Note that x0 6≡ 0 (p)

because a 6≡ 0 (mod p).

Now assume that x0, . . . , xi−1 have already been constructed. Our Ansatz

is to write xi = xi−1 + piy, with y ∈ Z. Then (b) holds automatically, and we

need to choose y such that (a) holds as well. But

x2
i = x2

i−1 + pi(2xi−1y) + p2iy2 ≡ a+ piz + pi(2xi−1y) (mod pi+1)

≡ a+ pi(z + 2xi−1y) (mod pi+1).

Hence x2
i ≡ a (mod pi+1) if and only if z + 2xi−1y ≡ 0 (mod p) if and only if

y ≡ − z

2xi−1
(mod p).

We can choose y so that this works.

Example 3.5.

p = 7, a = 2,
(

2
7

)
= 1

x0 = 3, x2
0 ≡ 9 ≡ 2 (7)

x1 = 3 + 7a1 so x2
1 = 9 + 42a1 + 72a2

1 ≡ 9 + 7 · (6a1) ≡ 2 (72)

So x1 = 3 + 7 = 10, x2 = x1 + 72a2

We now give the formal definition of p-adic numbers. Let us fix a prime p.

We will work with the rings of residue classes modulo pk,

Z/pk+1Z,

for k = 0, 1, 2, . . .. Note that we have a sequence of natural surjective ring

homomorphisms

· · · → Z/p4Z→ Z/p3Z→ Z/p2Z→ Z/pZ.

Definition 3.6. The p-adic integers are the elements of the set

Zp :=

 (xk)k∈N0 ∈
∞∏
k=0

Z/pk+1Z | xk+1 ≡ xk (mod pk+1)

 .
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Proposition 3.7. Let +, · be the binary operations on Zp defined by com-

ponentwise addition and multiplication. Then (Zp,+, ·) is a commutative ring

with zero element (0)k∈N0 and unit element (1)k∈Nk
. Moreover, the map

εp : Z→ Zp, εp(a) := (a)k∈N0 ,

is an injective ring homomorphism.

Proof. This is a routine and rather boring exercise.

Example 3.8. Let p = 7. Then

ε7(173) = (173, 173, 173, 173, . . .) = (5, 26, 173, 173, . . .),

and

ε7(−1) = (−1,−1,−1,−1, . . .) = (6, 48, 342, 2400, . . .).

If we apply the proof of Lemma 3.4 to the case p = 7 and a = 2 then we obtain

a square root of 2 as an element of Z7 (i.e. the element x ∈ Z7 so that x2 = 2):
√

2 := (3, 10, 108, 3166, . . .).

Note that

−
√

2 = (−3,−10,−108,−3166, . . .) = (4, 39, 235, 235, . . .)

is also a square root of 2, and that there is no natural way to distinguish between

the two.

From now on we will consider Z as a subring of Zp (via εp), and we will not

distinguish between a ∈ Z and εp(a) ∈ Zp, if the prime p to use is clear from

the context.

Remark 3.9. Let x = (xk)k∈N0 ∈ Zp. Without loss of generality we may assume

that

0 ≤ xk ≤ pk+1 − 1.

Then there is a unique sequence a0, a1, a2, . . . with 0 ≤ ai < p such that

xk = a0 + a1 · p+ a2 · p2 + . . .+ ak · pk,

for all k. We write (formally)

x =
∞∑
k=0

ak · pk
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and call this the p-adic expansion of x ∈ Zp.

For the moment it is just a notational device which is useful for calculations.

Note that you have to mind the carry-over when doing computations with p-adic

expansions.

Theorem 3.10. (i) The ring Zp is an integral domain (i.e. it has no zero

divisors).

(ii) The group of units of Zp is the subset

Z×p = Zp\p · Zp = {(xk) | x0 6= 0}.

(iii) Every nonzero element x ∈ Zp has a unique representation of the form

x = u · pn,

with u ∈ Z×p and n ∈ N0.

(iv) The only ideals in Zp are 0 and pnZp, for n ∈ N0. We have

∩n∈N0p
nZp = 0

and

Zp/pnZp ∼= Z/pnZ.

In particular, Zp is a principal ideal domain with a unique maximal ideal

pZp.

Remark 3.11. We can say informally that by passing from Z to the ring Zp we

have ‘eliminated’ the primes ` 6= p. This is because in principal ideal domains

prime ideals correspond to prime elements, and Z and Zp are principal. Thus,

prime decomposition in Zp becomes very simple as p remains the only prime.

Definition 3.12. The field of p-adic numbers is the fraction field of Zp,

Qp := Frac(Zp) = { x
y
| x, y ∈ Zp, y 6= 0 }.

If we write x, y ∈ Zp\{0} as

x = u · pn, y = v · pm,
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with u, v ∈ Z×p and n,m ∈ Z (Theorem 3.10 (iii)), then

x

y
= (uv−1) · pn−m.

It follows that every element x ∈ Q×p can be written in a unique way as

x = u · pn, (3.4)

with u ∈ Z×p and n ∈ Z. From the p-adic expansion of the unit u we can then

derive a presentation of x as a ‘p-adic Laurent series’ of the form

x =
∑

k�−∞

ak · pk, (3.5)

with 0 ≤ ak < p. However, at this stage this is again just a convenient notation.

Example 3.13. For p = 5 we compute the p-adic expansion of 1/10 ∈ Q ⊂ Qp:

1
10 = 5−1

(
1 + 2 · 1

1− 5

)
= 5−1(1 + 2 · (1 + 5 + 52 + 53 + . . .)

)
= 3 · 5−1 + 2 + 2 · 5 + 2 · 52 + 2 · 53 + . . . .

As an exercise,

• justify this computation, and

• find the general method for computing the p-adic expansion of a rational

number.

Definition 3.14. Let x ∈ Qp. We know that for x 6= 0 there is a unique

representation x = u · pn, u ∈ Z×p , n ∈ Z. In analogy with the rational case, we

define:

vp(x) =

 n if x 6= 0

∞ if x = 0

which we call the p-adic valuation and

|x|p =

 p−vp(x) if x 6= 0

0 if x = 0

which we call the p-adic absolute value.

From the definition of the p-adic absolute value it is very easy to prove the

following facts.
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Lemma 3.15. Let x, y ∈ Qp. Then

(i) |xy|p = |x|p · |y|p,

(ii) |x+ y|p ≤ max
{
|x|p, |y|p

}
,

(iii) If |x|p 6= |y|p then |x+ y|p = max
{
|x|p, |y|p

}
≤ |x|p + |y|p,

(iv) |x|p ≤ 1⇔ x ∈ Zp,

(v) |x|p < 1⇔ x ∈ pZp.

Statements (ii) and (iii) are called the strong triangle inequality, because

they imply (and are strictly stronger than) the usual triangle inequality

|x+ y|p ≤|x|p +|y|p .

Theorem 3.16. (Qp, | · |p) is a complete valued field and is the completion of

Q with respect to the absolute value | · |p. In particular:

(i) Every Cauchy sequence in Qp, (xn)n∈N has a unique limit x = lim
n→∞

xn

(ii) Every element x ∈ Qp is the limit of a sequence of rational numbers.

Proof. (i) Let (xn)n∈N be a Cauchy sequence in Qp, i.e. for every ε > 0 there

exists an N ∈ N so that for all n,m ≥ N we have

|xn − xm|p < ε.

We will start by proving that we can assume that xn ∈ Zp. For this we wish to

prove that the sequence |xn|p is bounded.

If we fix m then for all n > N we have that |xn|p ≤ |xm|p and the upper

bound is |xm|p.

If not, then we take n so that |xn|p > |xm|p.

Then the strong triangle inequality gives

|xn|p = |xn − xm + xm|p ≤ max(|xn − xm|p, |xm|p)

As we have assumed that |xn|p > |xm|p the only option left is |xn|p ≤

|xn − xm|p.

Choose ε = pl. From the triangle inequality we have that

|xn|p ≤ |xn − xm|p ≤ pl
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As multiplying by p−l does not change the convergence, we can replace (xn)

with (p−lxn) and then we have |p−l · xn|p ≤ pl, so |xn|p ≤ 1, i.e. xn ∈ Zp.

Write xn = (x(k)
n )k∈N0 where x(k)

n ∈ Z/pk+1Z. Let k ∈ N0. Then there exists

an Nk so that for all n,m ≥ Nk

|xn − xm|p ≤ p−k−1.

This is equivalent to

x(k)
n = x(k)

m (in Z/pk+1Z)

for all n,m ≥ Nk. Without loss of generality we can assume that N0 ≤ N1 ≤

N2 ≤ . . .. Then |xNk
− xNk+1 |p ≤ p−k−1 and thus for all k ∈ N0

xNk
≡ xNk+1 (mod pk+1).

Put x := (x(k)
Nk

) ∈ Zp. Then we have

|x− xNk
|p ≤ p−k−1 k→∞−→ 0

and this means that x = lim
n→∞

xn

(ii) Let x ∈ Qp with p-adic expansion

x =
∞∑

k=−N
akp

k, 0 ≤ ak < p

Then we can write x = xn + yn, where xn =
n∑

k=−N
akp

k ∈ Q and

yn =
∞∑

k=n+1
akp

k ∈ Qp.

Since

|yn|p ≤ p−n−1

we have limn yn = 0 and limn xn = x.

Remark 3.17. (i) The proof of (ii) shows that the p-adic expansion can be

indeed considered as a convergent series.

(ii) We can generally ask whether a series
∞∑
n=1

xn (3.6)
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in Qp converges (i.e. whether the finite partial sums converge to a p-adic

number). Using the strong triangle inequality (Lemma 3.15 (iii)) it is easy

to see that (3.6) is convergent if and only if xn
n→∞−→ 0.

Example 3.18. Let p be a prime number and a ∈ Z with a ≡ 1 (mod p). Let

n ∈ N, n 6≡ 0 (mod p). Then there exists b ∈ Zp with bn = a (an nth root of a

in Qp).

Proof. We can write a = 1 + pc, with c ∈ Z. We define

b := (1 + pc)1/n =
∞∑
k=0

(
1/n
k

)
ckpk.

If we can show that this series converges, then the standard proof from analysis

that bn = a goes through. To prove the convergence it suffices by Remark 3.17

(ii) to show that
(1/n
k

)
∈ Zp. This is an interesting exercise.

3.3 Hensel’s Lemma

The most important theorem about p-adic numbers is called Hensel’s Lemma1.

There are many different formulations of this result, with varying generality.

We will only need its most basic form.

Theorem 3.19 (Hensel’s lemma). Let p be a prime number, f ∈ Zp[t] and

x0 ∈ Zp so that

vp(f(x0)) ≥ 2l + 1,

where l := vp(f ′(x0)). Then there exists a uniquely determined root x ∈ Zp of

f , f(x) = 0, so that

x ≡ x0 (mod pl+1).

Proof. It suffices to build a sequence x0, x1, x2 . . . ∈ Zp with

• xk ≡ xk−1 (mod pk+l), for all k ≥ 1, and

• f(xk) ≡ 0 (mod pk+2l+1), for all k ≥ 0.
1named after Kurt Hensel, 1861-1941, who discovered (or invented) the p-adic numbers in

1897
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Then x := lim xk will give us the right solution.

Our assumption says that x0 satisfies the second condition. We may there-

fore assume that k ≥ 1 and that x0, . . . , xk−1 have already been determined. To

make sure that the first condition holds we have to choose xk = xk−1 + y · pk+l

for a suitable element y ∈ Zp. Then, by Taylor expansion there exists a z ∈ Zp
so that:

f(xk) = f(xk−1 + ypk+l) = f(xk−1) + f ′(xk−1) · ypk+l + z · p2k+2l

= pk+2l(w + zpk + uy),

with

w := f(xk−1)
pk+2l , u := f ′(xk−1)

pl
.

By the induction hypothesis we have vp(w) ≥ 0, i.e. w ∈ Zp. We claim that

u ∈ Z×p . To prove this claim we have to show that vp(f ′(xk−1)) = l. Using the

strong triangle inequality, this follows easily from the fact that f ′ is a polynomial

with coefficients in Zp and that xk−1 ≡ x0 (mod pl).

By choosing y := −u−1w we get f(xk) = p2k+2lz ∈ pk+2l+1Zp. This com-

pletes the proof of the theorem.

Remark 3.20. The proof is a form of Newtonian approximation

xk := xk−1 −
f(xk−1)
f ′(xk−1) .

One can see that the convergence is ‘quadratic’, as in the classical case.

Example 3.21. Let p = 5, f = x3 − 2 and x0 = 3. Then

l = v5(f ′(3)) = v5(33) = 0

and

f(3) = 33 − 2 = 25 ≡ 0 (mod 52).

We see that the conditions in Theorem 3.19 hold. Therefore, the series x0, x1, . . .

defined inductively by

xk+1 = xk −
x3
k − 2
3x2

k

, k = 0, 1, . . . ,

converges to an element x = limk xk ∈ Z5 with x3 = 2.
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We calculate x with accuracy O(54). The first step of our Newton approxi-

mation scheme gives

x1 =3− 27− 2
27 = 3− 1

2 + 25 · 5
2 ≡ 3− 1

252 (mod 54)

≡3 + 2
1− 552 (mod 54)

≡3 + 2(1 + 5 + 52 + . . .) · 52 (mod 54)

≡3 + 2 · 52 + 2 · 53 (mod 54).

Then

x3
1 ≡(3 + 2 · 52 + 2 · 53)3 (mod 54)

≡27 + 3 · 32 · (2 · 52 + 2 · 53) (mod 54)

≡2 + 52(1 + 33 · 2 · 6) (mod 54)

≡2 + 52(1 + 54 · 6) (mod 54)

≡2 (mod 54).

This means that f(x1) ≡ 0 (mod 54). Hence we can stop here and obtain an

approximation of x with accuracy O(54):

x = 3 + 2 · 52 + 2 · 53 + . . . .
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Chapter 4

The theorem of

Hasse-Minkowski

The goal of this chapter is to prove the famous Theorem of Hasse-Minkowski.

Theorem (Hasse-Minkowski). A quadratic Diophantine equation has a rational

solution if and only if it has solutions in R and Qp for every prime p.

We start with some preparation.

4.1 The equation x2 = a

LetK be a field. Then the set (K×)2 =
{
x2 | x ∈ K×

}
, called the set of squares,

is a subgroup of K×.

We wish to determine (K×)2 for

K = Q, R, Qp, Fp = Z/pZ.

For K = R,Q this is easy, for K = Fp the result is well known from elementary

number theory.

Remark 4.1. (i) The squares in R× are precisely the positive reals:

(R×)2 =
{
a ∈ R | a > 0

}
.
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(ii) Using the prime factorization, i.e. the representation of a ∈ Q× in the

form

a = ±
∏
p

pvp(a),

we see immediately that a rational number a is a square if and only if it

is positive and all p-valuations vp(a) are even:

(Q×)2 =
{
a ∈ Q | a > 0, vp(a) ≡ 0 (mod 2) for every prime p

}
.

(iii) The multiplicative group of the finite field F2 is trivial, hence

(F×2 )2 = F×2 = {1} .

Let p 6= 2 be an odd prime. Then F×p is a cyclic group of order p−1 (which

is even). Therefore, (F×p )2 is the unique subgroup of order (p − 1)/2. It

follows that there are exactly (p− 1)/2 squares and (p− 1)/2 non-squares.

To decide whether an actual element of F×p is a square or not it is useful

to work with the Legendre symbol.

Definition 4.2. For p 6= 2 and a ∈ Z the Legendre symbol is:

(
a

p

)
=


0 if p|a

1 if p 6 |a, a QR p

−1 if p 6 |a, a QNR p

Proposition 4.3. The Legendre symbol has the following properties:

(i)
(
a

p

)
only depends on the residue class of a modulo p.

(ii)
(
a

p

)
≡ a

p− 1
2 (mod p).

(iii)
(
ab

p

)
=
(
a

p

)
·
(
b

p

)
.

(iv)
(
−1
p

)
= (−1)(p−1)/2 =

 1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).
.

(v)
(

2
p

)
= (−1)

p2 − 1
8 =

 1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).
.
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(vi)
(
q

p

)
·
(
p

q

)
= (−1)

p− 1
2 · q − 1

2 =

 1 if q ≡ 1 or p ≡ 1 (mod 4),

−1 if p, q ≡ 3 (mod 4).

Lemma 4.4. Let p 6= 2, a ∈ Q×p . Write a = u · pn, u ∈ Z×p , n = vp(a) ∈ Z.

Then a ∈ (Q×p )2 if and only if n ≡ 0 (mod 2),
(
u

p

)
= 1

Example 4.5. p = 3, a = 18 = 2 · 32,
(

2
3

)
= −1, so a /∈ (Q×p )2

Proof. For the direct implication take a = x2 with x = v ·pm. Then a = v2 ·p2n,

so u = v2, u = 2m ≡ 0 (mod 2). So u QR p and
(
u

p

)
= 1.

For the converse take a = u · p2m with
(
u
p

)
= 1. p2m is already a square in

Q×p , so we can assume that m = 0. Then a = u. From
(
a
p

)
=
(
u
p

)
= 1 there

exists x0 ∈ Z so that x2
0 ≡ a (mod p).

Let f := X2 − a ∈ Zp[X]. Then f(x0) ≡ 0 (mod p), f ′(x0) = 2x0 6≡ 0

(mod p), so l := vp(f ′(x0)) = 0.

From Hensel’s lemma there is an x ∈ Zp with f(x) = x2−a, so a ∈ (Q×p )2

Lemma 4.6. Let p = 2, a ∈ Q×2 , a = u · 2n. Then

a ∈ (Q×2 )2 if and only if n ≡ 0 (mod 2) and u ≡ 1 (mod 8)

Proof. Like in lemma 4.4 we can assume that n = 0 and a ∈ Z×2 .

For the direct implication we have a = x2.

Then x ∈ Z×2 , so x ≡ 1, 3, 5, 7 (mod 8), so a ≡ 1 (mod 8).

For the converse let a ≡ 1 (mod 8), f := X2 − a, x0 := 1. Then

f(x0) = 1− a ≡ 0 (mod 8), so v2(f(x0)) ≥ 3.

f ′(x0) = 2, so l = v2(f ′(x0)) = 1

Applying Hensel’s lemma gives us that there exists such an x ∈ Z2 so that

x2 = a

Corollary 4.7 (trivial case of Hasse-Minkowski). For a ∈ Q× we have that

a ∈ (Q×)2 if and only if a ∈ (R×)2 and a ∈ (Q×p )2 for every p ∈ P

Notation 4.8. We can note R =: Q∞, so the corollary can be written as

a ∈ (Q×)2 if and only if a ∈ (Q×p )2 for every p ∈ P ∪ {∞}
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4.2 The quadratic residue classes

For K = R we have (R×)2 =
{
a | a > 0

}
⊆ R×, so the map

R×/(R×)2 → {±1}

a · (R×)2 7→ sgn(a) = a

|a|

is a group isomorphism. Also, for p 6= 2 we have the group isomorphism

φp : F×p /(F×p )2 → {±1}

a · (F×p )2 7→
(
a

p

)
What does this look like for K = Q?

Theorem 4.9. The map

φ̃ :

 Q× → {±1} ×
⊕

p∈P Z/2Z

a 7→ (sgn(a); (vp(a) (mod 2))p∈P)

induces a group isomorphism

Q×/(Q×)2 → {±1} ×
⊕
p∈P

Z/2Z.

Remark 4.10. For (ε, (cp)p∈P) ∈ {±1}×
⊕
p∈P

Z/2Z we have that cp = 0 for almost

all p ∈ P, this is why we have a direct sum on the right hand side, instead of a

Cartesian product.

Proof. The map φ̃ is a group homomorphism because sgn(ab) = sgn(a) · sgn(b)

and vp(ab) = vp(a) + vp(b). Its kernel is the subgroup of all a ∈ Q× such that

sgn(a) = 1 and vp(a) ≡ 0 (mod 2), ∀ p ∈ P.

But this condition means that a is a square. Therefore,

ker(φ̃) = (Q×)2.

It remains to prove that φ̃ is surjective. Take

(ε, (cp)p∈P) ∈ {±1} ×
⊕
p∈P

Z/2Z.
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We set

cp :=

 1 if cp = 1

0 if cp = 0

and a := ε
∏
p∈P p

cp ∈ Zp. Then φ̃(a) = (ε, cp). Hence φ̃ is surjective.

From the first isomorphism theorem we deduce that φ̃ induces the isomor-

phism:

Q×/(Q×)2 → {±1} ×
⊕
p∈P

Z/2Z.

Remark 4.11. From the proof we see that the square free integers

a := ε
∏
p∈P

pi ∈ Zp with pi 6= pj

form a system of representatives for Q×/(Q×)2.

Theorem 4.12. 1. If p 6= 2 we have the group isomorphism:

φp : Q×p /(Q×p )2 → {±1} × Z/2Z

a(Q×p )2 7→

((
u

p

)
, vp(a) mod 2

)

where a = pvp(a) · u.

In particular, for ε ∈ Z with
(
ε

p

)
= −1 {1, ε, p, εp} is a system of repre-

sentatives for Q×p /(Q×p )2.

2. If p = 2 we have the group isomorphism:

φ2 : Q×2 /(Q
×
2 )2 → (Z/8Z)× × Z/2Z

a(Q×2 )2 7→ (u mod 8, v2(a) mod 2)

where a = 2v2(a) · u.

In particular, {±1,±5,±2,±10} is a system of representatives for Q×2 /(Q
×
2 )2.

Proof. We use Lemmas 4.4 and 4.6, the proof is similar to Theorem 4.9.
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4.3 The Hilbert symbol

We have seen that x2 = a is solvable in Q if and only if it is solvable in Qp for

every p ∈ P ∪ {∞}.

For p 6= 2 and a = pnu, solvability of x2 = a in Q is equivalent to n ≡ 0

(mod 2) and
(
u
p

)
= 1. Hence the Legendre symbol measures the solvability of

the equation x2 = a. For the more general equation

ax2 + by2 = z2 (4.1)

the tool we are going to use is the Hilbert symbol.

Definition 4.13. Let p ∈ P ∪ {∞} and a, b ∈ Q×p . Then we note:

(
a, b

p

)
=

 1 if (4.1) has solutions in Qp,

−1 otherwise.

Proposition 4.14. For p =∞, a, b ∈ R× we have(
a, b

p

)
= 1⇐⇒ a > 0 or b > 0

Proof. If
(
a, b

p

)
= 1 then we have x, y, z ∈ R \ {0} that satisfy (4.1). Then a

and b can’t be both negative. Conversely, if a > 0, then a = c2 then (x, y, z) =

(c−1, 0, 1) ∈ R \ {0} is a solution of (4.1). This completes the proof.

Lemma 4.15. Let p ∈ P ∪ {∞}, a, b, c, d ∈ Q×p

(i)
(
a, b

p

)
=
(
b, a

p

)

(ii)
(
a, 1
p

)
=
(
a,−a
p

)
= 1

(iii)
(
a, 1− a

p

)
= 1 for a 6= 1

(iv)
(
a, b

p

)
=
(
ac2, bd2

p

)

(v)
(
ab, ac

p

)
=
(
ab,−bc
p

)

(vi) if
(
a, c

p

)
= 1 then

(
a, bc

p

)
=
(
a, b

p

)
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Proof.
(
a, b

p

)
= 1 if and only if ax2 + by2 = z2 has solutions.

(i) We use the definition of the Hilbert symbol and switch the role of x and

y.

(ii) For b = 1 (0, 1, 1) is a solution of (4.1), so
(
a,1
p

)
= 1. For b = −a (1,1,0)

is a solution of (4.1), so
(
a,−a
p

)
= 1

(iii) We need to prove ax2 + (1 − a)y2 = z2 is solvable. We remark that

(1,1,1) is a solution.

(iv) (x, y, z) is a solution of ax2 + by2 = z2 if and only if (c−1x, d−1y, z) is a

solution of (ac2)x2 + (bd2)y2 = z2.

(v) Because a, b are invertible, multiplying abx2 + acy2 = z2 by ab gives an

equivalent equation:

abx2 + acy2 = z2 ⇔ (abx)2 + bc(ay2) = abz2 ⇔ (ab)z2 − (bc)(ay2) = (abx)2.

Again, due to the invertibility of a and b the equation (ab)z2 − (bc)(ay2) =

(abx)2 is solvable if and only if (ab)z2 − (bc)ỹ2 = x̃2 is.

This gives
(
ab,ac
p

)
=
(
ab,−bc
p

)
.

(vi) Let us prove first that G :=
{
b ∈ Q×p |

(
a, b

p

)
= 1
}

is a subgroup of

Q×p .

If a ∈ (Q×p )2 then G = Q×p .

If not, then we can build an extension K of Qp of degree 2 by adjoining a

square root of a. It will be endowed with a norm

NK/Qp
: K → Qp

x+
√
ay 7→ x2 − ay2

By (ii) we have that 1 ∈ G.

If u ∈ G then the equation ax2 + uy2 = z2 has a nontrivial solution. Then,

if we divide by u2, we get a
(
x
u

)2 + 1
uy

2 =
(
z
u

)2 and so u−1 ∈ G.

Take now u, v ∈ G, so we have x1, y1, z1, x2, y2, z2 ∈ Qp so that ax2
1 + uy2

1 =

z2
1 and ax2

2 + vy2
2 = z2

2 .

This gives uv(y1y2)2 = (z2
1−ax2

1)(z2
2−ax2

2) = NK/Qp
(z1 +

√
ax1)NK/Qp

(z2 +
√
ax2) = NK/Qp

((z1z2 + ax1x2) +
√
a(z1x2 + x1z2)) = Z2 − aX2. So we have

aX2 + uv(y1y2)2 = Z2, so
(
a,uv
p

)
= 1 and uv ∈ G.
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Thus G ≤ Q×p . We have that c ∈ G and we have to prove that b ∈ G if and

only if bc ∈ G. But this is obvious, due to the group structure of G.

Remark 4.16.
(
a, b

p

)
depends only on the image of a, b in Q×p /(Q×p )2

Theorem 4.17. Let p ∈ P, p 6= 2. Let a = pnu and b = pnv, n,m ∈ Z,

u, v ∈ Z×p . Then (
a, b

p

)
= (−1)nm

p−1
2

(
u

p

)m(
v

p

)n
In particular:

(i) a, b ∈ Z×p :
(
a, b

p

)
= 1

(ii) for n = 0, m = 1:
(
u, pv

p

)
=
(
u

p

)

(iii) for n = m = 1:
(
up, vp

p

)
=
(
−uv
p

)
Proof. We first show (i), (ii), (iii).

(i) We will use the following lemma:

Lemma 4.18. For a, b ∈ F×p the equation ax2 + b = z2 is solvable in Fp

Proof. Let M1 =
{
ax2 + b | x ∈ Fp

}
and M2 =

{
z2 | z ∈ Fp

}
Then |M1| = |M2| = (|(F×p )2|+ 1 = p− 1

2 + 1 = p+ 1
2 .

But then |M1| + |M2| > |Fp| = p, so M1 ∩ M2 6= ∅, so that there exist

x, z ∈ Fp with ax2 + b = z2.

Now let a, b ∈ Z×p and a, b their images in Fp.

Let (x0, z0) be a solution for a x2 + b = z2.

We take f := aX2 + b− z2
0 ≡ 0 (mod p)

For x0 6≡ 0 (mod p) we have f ′(x0) = 2ax0 6≡ 0 (mod p), because p 6= 2.

From Hensel’s lemma we deduce the existence of an x ∈ Zp with f(x) =

ax2 + b− z2
0 = 0, so (4.1) has the solution (x, 1, z0) and thus

(
a, b

p

)
= 1.

For x0 ≡ 0 (mod p), because b ∈ Z×p we have z0 6≡ 0 (mod p) and the same

argument for g := ax2
0 + b− Z2 gives z ∈ Zp with ax2

0 + b = z2, so
(
a, b

p

)
= 1.

(ii) We assume
(
a, pv

p

)
= 1, so we have a nontrivial solution (x, y, z) of

ux2 + vpy2 = z2
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We may assume x, y, z ∈ Zp and that at least one of the numbers x, y, z is

in Z×p (if it’s not the case, we just eliminate p factors until it is).

We have ux2 ≡ z2 (mod p). If x ≡ 0 (mod p) then z ≡ 0 (mod p), so

vpy2 ≡ 0 (mod p2). Because v ∈ Z×p this gives the contradiction y ≡ 0 (mod p).

So x ∈ Z×p .

Therefore u ≡
(
z
x

)2 (mod p) and thus
(
u
p

)
= 1.

Conversely, if we have
(
u
p

)
= 1 then by Hensel’s Lemma there is a v ∈ Z×p

so that a = v2. This means that (v−1, 0, 1) is a solution of ax2 + vpy2 = z2.

(iii)
(
up, vp

p

)
4.15(v)=

(
up,−uv

p

)
4.15(i)=

(
−uv, up

p

)
4.17(ii)=

(
−uv
p

)
We will now prove the main formula:

(
a, b

p

)
= (−1)nm

p−1
2

(
u

p

)m(
v

p

)n
As we have seen in remark 4.16

(
a,b
p

)
depends only on the classes a(Q×p )2

and b(Q×p )2 in Q×p /(Q×p )2, so we can find a0, b0 ∈ {1, ε, p, εp} so that
(
a,b
p

)
=(

a0,b0
p

)
. This means that we can actually restrict the discussion to the cases

n,m ∈ {0, 1} and u, v ∈ {1, ε}

For (n,m) we have, ignoring symmetry, the three cases (0, 0), (1, 0), (1, 1),

corresponding to the formulas (i),(ii),(iii), which have already been proven.

Theorem 4.19. For a = 2nu, b = 2mv, u, v ∈ Z×2 we have(
a, b

2

)
= (−1)

u−1
2 ·

v−1
2 (−1)n

v2−1
8 (−1)m

u2−1
8

In particular:

(i) a, b ∈ Z×p :
(
a, b

2

)
= (−1) a−1

2 ·
b−1

2

(ii)
(
u, 2v

2

)
= (−1) u−1

2 ·
v−1

2 · (−1) u2−1
8

(iii)
(

2u, 2v
2

)
= (−1) u−1

2 ·
v−1

2 · (−1)n v2−1
8 (−1)mu2−1

8

Proof. See [2], Theorem 14.13.

Remark 4.20. We have the following values for
(
a,b
p

)
for every choice of repre-

sentatives:

For p ≡ 1 (mod 4):
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(
a,b
p

)
1 ε p εp

1 +1 +1 +1 +1

ε +1 +1 −1 −1

p +1 −1 +1 −1

εp +1 −1 −1 +1
For p ≡ 3 (mod 4):(

a,b
p

)
1 ε p εp

1 +1 +1 +1 +1

ε +1 +1 −1 −1

p +1 −1 −1 +1

εp +1 −1 +1 −1

One can see from the tables that
(
a,·
p

)
: Q×p /(Q×p )2 → {±1} is multiplicative,

so
(
a,bc
p

)
=
(
a,b
p

)
·
(
a,c
p

)
.

This also means that
(
·,·
p

)
: Q×p /(Q×p )2 × Q×p /(Q×p )2 → {±1} is bimulti-

plicative.

This also works for p = 2 and p =∞.

Example 4.21.

Let us compute
(

5,6
p

)
for p ∈ P ∪ {∞}

• p =∞ :
(

5,6
∞

)
= 1

• p = 2 :
(

5,6
2

)
=
(

5,2
2

)
·
(

5,3
2

)
= (−1) 52−1

8 (1) = −1

• p = 3 :
(

5,6
3

)
=
(

5,2
3

)
·
(

5,3
3

)
=
( 5

3
)

(1) = −1

• p = 5 :
(

5,6
5

)
=
(

5,2
5

)
·
(

5,3
5

)
=
( 6

5
)

=
( 1

5
)

= 1

• p > 5 :
(

5,6
p

)
= 1, because 5, 6 ∈ Z×p

So the equation 5x2 + 6y2 = z2 is solvable in R and Qp for p > 3, but not in Q2

and Q3. This means that it is not solvable in Q either.

Legendre’s theorem says that 5x2 + 6y2 = z2 is solvable in Q if and only if

5 QR 6 and 6 QR 5. We see that 6 QR 5, but 5 QNR 6.

Theorem 4.22 (the product formula). Let a, b ∈ Q×. Then∏
p∈P∪{∞}

(
a, b

p

)
= 1
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Remark 4.23. For almost all p ∈ P, p 6= 2, if a, b ∈ Zp then
(
a,b
p

)
= 1 (finite

product) The theorem says that the number of p with
(
a,b
p

)
= −1 is even.

Corollary 4.24. If
(
a,b
p

)
= 1 for all p ∈ P ∪ {∞}, p 6= q, then

(
a,b
q

)
= 1

Proof. Due to the bimultiplicativity it suffices to prove the assertion in the

following cases, for p, q ∈ P \ {2}, p 6= q:

(a, b) = (−1,−1), (−1, 2), (−1, q), (2, 2), (2, q), (q, q), (q, p)

Because
(

2,2
p

)
=
(
−1,2
p

)
,
(
q,q
p

)
=
(
−1,q
p

)
we are left with 5 cases:

(a, b)
(
a,b
∞

) (
a,b
2

) (
a,b
q

) (
a,b
r

)
(−1,−1) −1 −1 +1 +1

(−1, 2) +1 +1 +1 +1

(−1, q) +1 (−1)
q−1

2

(
−1
q

)
+1

(2, q) +1 (−1)
q2−1

8

(
2
q

)
+1

(q, r) +1 (−1)
q−1

2
r−1

2

(
r
q

) (
q
r

)

4.4 Proof of the Theorem of Hasse andMinkowski

THIS SECTION STILL NEEDS TO BE PROOFREAD

Theorem 4.25 (Hasse-Minkowski, rank 3). For a, b ∈ Q× the equation

ax2 + by2 = z2 (4.2)

has solutions in Q if and only if it has solutions in Qp, for all p ∈ P ∪ {∞}

Proof. The direct implication is obvious. We will prove the converse, we have

solutions in Qp for all p and we wish to prove that there are rational solutions.

We may assume that a, b ∈ Z and are squarefree, as we know that
(
a,b
p

)
=(

ac2,ad2

p

)
(that is, the Hilbert symbol only depends on the residue classes of a

and b in Q×p /(Q×p )2).

We will use induction with respect to |a|+ |b|.

If |a|+ |b| = 2 then, because of symmetry, we only have three cases:

• x2 + y2 = z2, having (1, 0, 1) as a solution

• x2 − y2 = z2, having (1, 1, 0) as a solution
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• −x2 − y2 = z2 not solvable in R.

If |a|+ |b| > 2, let |a| ≤ |b| so we have |b| ≥ 2

We first prove that a is a quadratic residue modulo b.

We have b = ±
∏
i

pi, so it suffices to prove that a QR pi for all i.

For pi = 2 or pi|a it is clear.

For pi 6= 2 and pi 6 |a we have, due to pi|b: 1 =
(
a,b
pi

)
=
(
a
pi

)
, so a QR pi.

Therefore we have a QR b. Then we can write a+ bc = t2 with |t| ≤
∣∣∣ b2 ∣∣∣ and

|c| < |b|.

If c = 0 then a = t2 and the equation (4.2) has the solution (1, 0, t).

If c 6= 0 then for all p ∈ P∪{∞} we have 1 =
(
a,b
p

)
from the hypothesis. We

also have
(
a,bc
p

)
=
(
a,t2−a
p

)
= 1, because the equation ax2 + (t2 − a)y2 = z2

has the solution (1, 1, t).

So by multiplicativity of the Hilbert symbol we have
(
a,c
p

)
= 1 for all p ∈

P ∪ {∞}

Because |a| + |c| < |a| + |b| we deduce from the induction hypothesis that

there exist (x1, y1, z1) ∈ Z3 \ {0} so that

ax2
1 + cy2

1 = z2
1

If y1 = 0 then (x1, 0, z1) is a solution for

ax2 + by2 = z2

If y1 6= 0 then without loss of generality we can take y1 = 1, so c = z2
1 − ax2

1

bc = t2 − a · 12

We use the norm trick and get b = z2
2 − ax2

2, so (x2, 1, z2) is a solution of

(4.2).

Theorem 4.26 (The Hasse-Minkowski theorem). Let a1, . . . , ar ∈ Q×, r ≥ 2.

Then the quadratic ecuation

Q(X) := a1X
2
1 + . . . arX

2
r

has a solution in Q if and only if it has a solution in Qp for all p ∈ P∪{∞}
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Remark 4.27. The theorem is true in general for quadratic polynomials Q(X) =

Q(X1, . . . , Xn)

Proof. We will use induction with respect to r and Dirichlet’s theorem on arith-

metic progressions: For a,m ∈ N, gcd(a,m) = 1 there are infinitely many prime

numbers p so that p ≡ a (mod m).

For r = 2: a1X
2
1 + a2X

2
2 = 0 if and only if

(
X1
X2

)2
= −a2

a1

But −a2
a1

is in (Q×)2 if and only if −a2
a1
∈ (Q×p )2 for all p, according to

corollary 4.7.

For r = 3: a1X
2
1 + a2X

2
2 + a3X

2
3 = 0 if and only if −a1

a3
X2

1 +−a2
a3
X2

2 = X2
3

The statement follows by the preceding theorem.

For r ≥ 4: We can assume without loss of generality that a1, . . . , ar ∈ Z and

are squarefree and we can write:

Q(X) = a1X
2
1 + . . . arX

2
r = f − g

with

• f(X1, X2) = a1X
2
1 + a2X

2
2

• g(X3, . . . , Xr) = −a3X
2
3 − . . .− arX2

r

So we may assume that a1, . . . , ar > 0

MISSING TWO LINES

The idea is to determine b ∈ Q so that f(X1, X2) = g(X3, . . . , Xr) = b has

solutions in Q.

Let S be the set of odd primes p so that p|a1 . . . ar.

For p ∈ S ∪ {2} let X(p) = (X(p)
1 , . . . , X

(p)
r ) ∈ Zp \ {0} be a p-adic solution

for Q(X) = 0

Put bp := f(X(p)
1 , X

(p)
2 ) = g(X(p)

3 , . . . , X
(p)
r )

By the Chinese Remainder Theorem there exists a b0 ∈ Z with

• b0 > 0

• b0 ≡ b2 (mod 16)

• b0 ≡ bp (mod p2) for all p ∈ S
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Then for m := 16
∏
p∈P

p all the b ∈ B :=
{
b0 + km|k ∈ N0

}
fulfill the con-

dition. Because gcd(b0,m) = 1, through the Dirichlet theorem of arithmetic

progressions there exists a prime number q ∈ B.

We choose F (Y,X1, X2) =− qY 2 + f(X1, X2)

G(Z,X3, . . . , Xr) =− qZ2 + g(X3, . . . , Xr)

We want to prove that F () = 0 and G() = 0 have solutions in Qp for all

p ∈ P ∪ {∞}

For p =∞ this is clear.

For p ∈ S: f(X(p)
1 , X

(p)
2 ) = bp ≡ q (mod p), so f(X(p)

1 ,X
(p)
2 )

q ≡ 1 (mod p),

so by the Hensel lemma there exists a Y (p), (Y (p))2 ≡ f(X(p)
1 ,X

(p)
2 )

q (mod p) and

−(Y (p))2 + f(X(p)
1 , X

(p)
2 ) = 0.

So (Y (p), X
(p)
1 , X

(p)
2 ) is a solution of F = 0.

In the same way G = 0 is solvable in Qp.

For p = 2 we reason as for p ∈ S.

If p /∈ S ∪{2} then the coefficients of F,G are in Z×p , so F,G = 0 solvable in

Qp.

From the induction hypothesis F = G = 0 is solvable in Q.

MISSING LINES

So there exist X1, . . . , Xr ∈ Q so that f(X1, X2) ≡ q ≡ g(X3, . . . , Xr).

Thus Q(X1, . . . , Xn) = 0, X 6= 0
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Chapter 5

Elliptic curves

5.1 Motivation: rational points on plane curves

In the previous two chapters we were concerned with homogenous quadratic

Diophantine equations. We saw that the crucial case to consider were equations

in three variables, e.g. the equation

ax2 + by2 = z2, (5.1)

where a, b ∈ Q×. If we dehomogenize a homogenous equation, we end up with a

nonhomogenous equation in one variable less. For instance, a solution of (5.1)

with z 6= 0 may be normalized to z = 1. Hence if we restrict attention to

solutions with z 6= 0 we may replace (5.1) by the nonhomogenous equation

ax2 + by2 = 1. (5.2)

Depending on the signs of a, b the set of real solutions of (5.2) is either empty,

an ellipse or a parabola.

Our two main results about the set of rational solutions to (5.2) were:

(a) If there is one rational solution, then there are infinitely many solutions,

parametrized by rational functions in one parameter t (Theorem 2.5).

(b) The existence of a rational solutions is equaivalent to the existence of so-

lutions in the real numbers and in all p-adic number fields Qp (Theorem

4.25).
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What happens if we look at equations of higher degree, e.g. cubic equations?

The general answer is that both (a) and (b) fail to be true. For instance, we

will see later that the cubic equation

y2 = x3 + 1 (5.3)

has exactly 5 rational solutions, namely (x, y) = (−1, 0), (0,±1), (2,±3). This

means that (a) is not true for cubic equations. Also, a famous example due to

Selmer is the cubic equation

3x3 + 4y3 + 5z3 = 0. (5.4)

It can be shown that (5.4) has a solution in R and Qp, for all primes p, but no

solution in Q. So (b) is false as well for cubic equations.

5.2 Plane curves

Let us fix a field k. For any n ∈ N we denote by

Ank := kn

the affine space of dimension n over k. In these lectures we will be exclusively

interested in the cases n = 1, 2. We call A1
k = k the affine line and A2

k = k2 the

affine plane over k. An element P = (a, b) ∈ A2
k is called a (k-rational) point.

Let k[x, y] denote the ring of polynomials in two variables x, y over k. A

polynomial f ∈ k[x, y] gives rise to a function

f : A2
k → k, P = (a, b) 7→ f(P ) := f(a, b).

We will typically not make any formal distinction between a polynomial and its

associated function.1

Definition 5.1. A subset X ⊂ A2
k is called an affine plane curve if there exists

a nonconstant polynomial f ∈ k[x, y] such that

X = {P ∈ A2
k | f(P ) = 0}.

We will often write this as

X : f(x, y) = 0.
1This is potentially dangerous: if k is a finite field, then the polynomial f is not uniquely

determined by its associated function!
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Example 5.2. A line is given by a linear equation:

L : ax+ by + c = 0.

Here a, b, c ∈ k and (a, b) 6= (0, 0). A quadric is given by a quadratic equation

Q : a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0,

with a1, . . . , a6 ∈ k and (a1, a2, a3) 6= (0, 0, 0).

Remark 5.3. Definition 5.1 is a bit problematic for several reasons. For instance,

if k = R then the empty set X(R) = ∅ is an algebraic curve (a quadric) because

it is the set of solutions to the equation

x2 + y2 + 1 = 0.

This is certainly not what one understands by an algebraic curve! There are

several ways to give better definitions. See e.g. the lecture notes [5] or any book

on algebraic geometry. For the present course we may ignore this problems

because we will only treat a limit number of special cases where they do not

cause trouble.

Definition 5.4. The projective space of dimension n over k is the set

Pnk :=
(
kn+1 − {(0, . . . , 0)}

)
/ ∼,

where ∼ is the equivalence relation defined by

(a1, . . . , an+1) ∼ (ta1, . . . , tan+1), for t ∈ k×.

The equivalence class of (a1, . . . , an+1) ∈ kn+1 − {0} is denoted by

P = [a1 : . . . : an+1] ∈ Pnk

and called a point with projective coordinates a1, . . . , an+1.

We will only be concerned with the cases n = 1, 2. We call P1
k the projective

line and P2
k the projective plane.

By definition, a point [a : b] ∈ P1
k corresponds to a line in the affine plane

through the origin:

[a : b] =̂ { (ta, tb) ∈ A2
k | t ∈ k}.
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This line has nonzero slope if and only if b 6= 0. If this is the case, then

[a : b] = [a/b : 1]. If the line has zero slope then b = 0 and [a : b] = [1 : 0]. We

see that the map

A1
k ↪→ P1

k, a 7→ [a : 1] (5.5)

is injective, and the complement of its image consists of a single point. We write

suggestively ∞ := [0 : 1]. If we identify the affine line A1
k = k with its image

under the map (5.5) then we can write

P1
k = A1

k ∪ {∞}.

This suggests that the projective line is a compactification of the affine line.

Indeed, for k = R or C one can check that P1
k carries a natural topology such

that P1
k is compact and A1

k is a dense open subset.

Similarly, the projective plane can be seen as a compactification of the affine

plane. We have a natural embedding

A2
2 ↪→ P2

k, (a, b) 7→ [a : b : 1].

The complement consists of all points of the form [a : b : 0], where (a, b) 6= (0, 0).

Note that this set can be identified with the projective line. It is called the line

at infinity.

Definition 5.5. A subset X ⊂ P2
k is called a projective plane curve if there

exists a homogenous polynomial

F =
∑

i+j+k=d
ai,j,k x

iyjzk

of degree d > 0 such that

X = {[a : b : c] | F (a, b, c) = 0}.

We often write this as:

X : F (x, y, z) = 0.

Note that the condition F (a, b, c) = 0 depends only on the class [a : b : c]

because F is homogenous.

Example 5.6. A subset L ⊂ P2
k is called a (projective) line if it is defined by a

linear equation,

L : ax+ by + cz = 0.
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Here (a, b, c) 6= (0, 0, 0). If, moreover, (a, b) 6= 0, then the intersection of L with

the affine plane A2
k ⊂ P2

k is a line in the usual sense, given by the equation

ax+ by + c = 0.

If a = b = 0, then we may assume that c = 1, and L is the line at infinity, given

by the equation z = 0.

Proposition 5.7. Let L1, L2 ⊂ P2
k be two projective lines. Then either L1 =

L2, or L1 and L2 intersect in a unique point.

Proof. For i = 1, 2 the line Li is given by an equation

Li : aix+ biy + ciz = 0.

The intersection of L1 and L2 consists of the points [x : y : z] ∈ P2
k where

(x, y, z) ∈ k3−{(0, 0, 0)} is a nontrivial solution of the system of linear equations

a1x+ b1y + c1z = 0,

a2x+ b2y + c2z = 0.

By linear algebra we know that the set of solutions is a linear subspace of k3 of

dimension 1 or 2. Moreover, if the dimension is two then the two equations are

linearly dependent and each of them define the full set of solutions. This would

mean that L1 = L2. So if L1 6= L2 then the set of solutions is of the form

{ (tx0, ty0, tz0) | t ∈ k},

where (x0, y0, z0) 6= (0, 0, 0). It follows that the intersection

L1 ∩ L2 = {[x0 : y0 : z0]}

consists of a single point.

Remark 5.8. The proposition says that in the projective plane parallel lines do

not exist. To reconcile this with our geometric intuition (which is trained on

working with the affine plane) we consider the following example. Let

L1 : 2x− y = 1, L2 : 2x− y = 2,

48



be two lines in the affine plane (with coordinates x, y). Obviously, L1 and L2 are

parallel, i.e. they do not intersect. However, L1, L2 can be extended uniquely

to lines in the projective plane,

L̃1 : 2x− y − z = 0, L̃2 : 2x− y − 2z = 0.

The intersection L̃1 ∩ L̃2 is computed by the system of linear equations

2x− y − z = 0,

2x− y − 2z = 0.

Its solution set is one dimensional and is spanned by the point (1, 2, 0). It follows

that the lines L̃1 and L̃2 intersect in the point [1 : 2 : 0] on the ’line at infinity’.

So far, we have identified the affine plane with the subset of the projective

plane defined by the condition z = 1. Surely, the choice of the variable z is

somewhat arbitrary. To be more impartial we define subsets

Ux, Uy, Uz ⊂ P2
k

by the conditions x = 1, y = 1 and z = 1. Then we have natural identifications

Ux ∼= A2
k, [1 : y : z] 7→ (y, z),

Uy ∼= A2
k, [x : 1 : z] 7→ (x, z),

Uz ∼= A2
k, [x : y : 1] 7→ (x, y).

Accordingly, we call Ux the y-z-plane, Uy the x-z-plane and Uz the x-y-plane.

Note that

P2
k = Ux ∪ Uy ∪ Uz.

Let X ⊂ P2
k be a projective curve defined by the equation

X : F (x, y, z) = 0

where F ∈ k[x, y, z] is homogenous of degree d. Then

Xx := X ∩ Ux = {[1 : y : z] | F (1, x, y) = 0}

may be considered, via the identification Ux ∼= A2
k, as an affine plane curve,

defined by the equation

Xx : F (1, y, z) = 0.

Similarly, Xy := X∩Uy is defined by F (x, 1, z) = 0 and Xz := X∩Uz is defined

by F (x, y, 1) = 0.
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5.3 The group law on an elliptic curve

Definition 5.9. Let K be a field of characteristic 6= 2, 3 and a, b ∈ K. We

consider the projective curve E = Ea,b with equation

E : y2z = x3 + axz2 + bz3.

We have E ⊆ P2
K and we say that it is in Weierstrass normal form.

Remark 5.10. (i) The affine curve E ∩ A2
K (where A2

K is the (x, y)-plane) is

given by the dehomogenized equation

y2 = f(x) := x3 + ax+ b.

It uniquely determines the projective curve E ⊆ P2
K . We will mostly write

down the affine equation above to define a curve E in Weierstrass normal

form. But actually, we will always mean by E the projective curve given

by the homogenized equation.

(ii) The unique point on E “at infinity” is O := [0 : 1 : 0]. This is a smooth

point of E. To see this, we consider the the affine (x, z)-plane, where y = 1.

The affine equation for E is then

E : z = x3 + axz2 + bz3,

and the point O is the origin, O = (0, 0). It is now an easy exercise to

show that O is a smooth point of E, and that the tangent to E at O is the

line z = 0 (formerly known as the line at infinity). Note, however, that

the proof uses the assumption char(K) 6= 2!

(iii) The curve E is smooth if and only if the polynomial f = x3 + ax+ b has

no double root. By basic algebra this holds if and only if the discriminant

of f is not zero, that is

∆(f) = −4a3 − 27b2 6= 0.

You should prove this as an exercise. You will have to use the assumption

that char(K) 6= 2.
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Example 5.11. (i) Consider the curve E/K with Weierstrass equation

E : y2 = x3 + x2.

For K = R, its affine part looks like this:

One checks that f(0) = f ′(0) = 0, so (0, 0) is a singular point, confirm-

ing the picture. But note that the algebraic calculation shows that E

is singular over any field K (whereas the picture is only meaningful for

K = R).

(ii) Consider the curve E/K in Weierstrass equation

E : y2 = x3 + 1.

The discriminant of f = x3 + 1 is ∆ = −27 6= 0 (because we assume that

char(K) 6= 3!), and hence E/K is smooth. For K = R we get the following

(affine) picture of E:

Definition 5.12. The curve E : y2 = f(x) = x3 + ax + b is called an elliptic

curve over K if E is smooth (i.e. if ∆ = −4a3 − 27b2 6= 0).

Let us fix an elliptic curve E/K. For the moment, let us also assume that

K is algebraically closed. We want to define a binary operation ⊕ : E×E → E

(called addition) such that (E,⊕) an abelian group with neutral element O.

51



The first key point is the following lemma.

Lemma 5.13. Let E ⊂ P2
K be an elliptic curve over an algebraically closed field

K, and let L ⊂ P2
K be a projective line. Then there are exactly three points

of intersection of E and L, counted with multiplicity. More precisely, there are

three cases as follows.

(a) The intersection E∩L consists of three pairwise distinct points P,Q,R. We

write this as

E ∩ L = P +Q+R.

(b) The intersection E ∩ L consists of two distinct points P,Q, and for exactly

one of them, say P , L is the tangent to E at P . We write this as

E ∩ L = 2 · P +Q.

(c) The intersection E ∩L consists of a unique point P . If this is the case, then

L is the tangent to E at P , and P is an inflection point of E. We write this

as

E ∩ L = 3 · P.

Proof. This is a special case of Bezout’s Theorem, see [3], Appendix A.3-4. See

also Construction 5.18 below.

Construction 5.14. Let P,Q ∈ E. If P 6= Q then we let L ⊆ P2
k be the unique

projective line through P and Q. If P = Q then we let L := TE,P be the tangent

to E at P = Q. Then by Lemma 5.13 there exists a unique point R ∈ E such

that

E ∩ L = P +Q+R.

We write R′ for the point symmetric to R with respect to the x-axis. Explicitely,

R′ :=


(x,−y), if R = (x, y) ∈ A2

K ,

O, if R = O.

Note that R′ is the unique point such that

E ∩ L′ = R+R′ +O.
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We define

P ⊕Q := R′.

See Example 5.15 and Figure 5.1 for an example.

Figure 5.1: Addition on the elliptic curve E : y2 = x3 + 1.

Example 5.15. Let us consider the elliptic curve E : y2 = x3 + 1 over Q. We

immediately find two rational points

P := (−1, 0), Q := (0, 1)

on E. Let us compute P ⊕Q. The unique line L1 through P and Q is given by

the affine equation L1 : x− y + 1 = 0. To compute the third intersection point

R we have to solve the system of equations

y2 = x3 + 1,

y = x− 1.

Eliminating y we obtain the following cubic equation in x:

x3 − x2 + 2x = x(x+ 1)(x− 2) = 0.

It has three solutions x = −1, 0, 2, corresponding to the x-coordinate of the

three points of intersection of E with L1. Hence

E ∩ L = P +Q+R, where R := (2, 3).
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It follows that

P ⊕Q = R′ = (2,−3).

As an exercise, you should now compute P ⊕ P , Q⊕Q and R⊕Q′.

Remark 5.16. The binary operation ⊕ : E ×E → E defined above is commuta-

tive and has O as a neutral element. Moreover, for all P ∈ E the point P ′ (the

mirror image of P after reflection at the x-axis) is an inverse to P with respect

to ⊕. These claims follow easily from the construction of ⊕ and the fact that

O is an inflection point of E.

Theorem 5.17. The binary operation ⊕ is associative, and hence (E,⊕) is an

abelian group with neutral element O.

Proof. See e.g. [5], §1.7.

Construction 5.18. In what follows we will work out an explicit formula for the

group law on the elliptic curve

E : y2 = f(x) = x3 + ax+ b.

Let P,Q ∈ E be arbitrary points. If one of them is the neutral element O, say

Q = O, then P ⊕ Q = P ⊕ O = P . We may therefore assume that P,Q 6= O,

and write P = (x1, y1) and Q = (x2, y2).

Let L denote the line through P and Q (or the tangent in P , in the case

P = Q). Also, let R be the third point of intersection, such that

E ∩ L = P +Q+R.

It suffices to compute R, because P ⊕ Q = R′, by definition. If Q = P ′, i.e.

if x1 = x2, y1 = −y2, then R = O. Otherwise, R 6= O, and we can write

R = (x3, y3). Moreover, the line L has finite slope and may be written as

L : y = λx+ ν,

with λ, ν ∈ K. Explicitly, we have

λ =


y2 − y1

x2 − x1
, if P 6= Q,

−f ′(x1)
2y1

, if P = Q,
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and

ν = y1 − λx1.

We calculate E ∩ L by substituting y = λx+ ν into the equation for E. We

obtain a cubic equation in x with three roots x = x1, x2, x3 (compare Example

5.15):

(λx+ ν)2 = x3 + ax+ b

⇔ x3 − λ2x2 + (a− 2λν)x+ b− ν2 = 0

⇔ (x− x1)(x− x2)(x− x3) = 0.

If we expand the product in the third line and compare the coefficients of x2

with the same coefficient in the second line we obtain the identity

x1 + x2 + x3 = λ2.

This gives an explicit formula for x3 in terms of P = (x1, y1) and Q = (x2, y2).

An explict formula for y3 is then obtained from the identity y3 = λx3 + ν. We

have proved:

Lemma 5.19. Let P = (x1, y2), Q = (x2, y2) be affine points on the elliptic

curve E : y2 = x3 + ax+ b. Then

P ⊕Q =


(x3, y3), if x1 6= x2 or P = Q,

O, if x1 = x2 and y2 = −y1,

where

x3 := λ2 − x1 − x2, y3 := λx3 + ν.

Here

λ :=


y2 − y1

x2 − x1
, if x2 6= x1,

−3x2 − a
2y1

, if x1 = x2,

and

ν := y1 − λx1.

Example 5.20. We come back to the elliptic curve E : y2 = x3 +1 from Example

5.15. Let P = (−1, 0) and Q = (0, 1). You should check again, using Lemma

5.19, that

P ⊕Q = R′ = (2,−3).
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You will then also find that

2 · P := P ⊕ P = O,

so P is a point of order 2,

3 ·Q := Q⊕Q⊕Q = O,

i.e. Q is a point of order 3 (because it is an inflection point), and

2 ·R = Q.

It follows that P is a point of order 6, i.e. it generates a cyclic subgroup of order

6 of E:

〈P 〉Z = {O, R, 2 ·R = Q, 3 ·R = P, 4 ·R = R′, 5 ·R = Q′}.

Note that all these points are Q-rational. We will prove later that these are in

fact all Q-rational points on E.

Example 5.21. E/Q : y2 = x3 − 2

P = (3, 5), −P = (3,−5)

2P = . . .

5.4 Points of finite order

5.5 The Theorem of Mordell-Weil

Theorem 5.22. Let E/Q be an elliptic curve over Q, Γ = E(Q) the group of

rational points. Then Γ is finitely generated, that is, there exist P1, . . . , PN ∈ Γ

so that Γ =< P1, . . . , Pn >Z

Remark 5.23. (i) This is the Mordell theorem and has a more general form,

proven by Weil, wherein we replace Q by an extension K/Q and E by an

abelian variety A over K.

If dim(A) = 1 we get back the case for elliptic curves.

(ii) Γ is a finitely generated abelian group and can be decomposed into its free

part and its torsion part: Γ = Γfree ⊕ Γtor
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Γfree ∼=< P1, . . . , Pn >Z∼= Zr

r := rang(Γ) =Mordell-Weil Rank of E/Q

Proof. in Silverman-Tate (with an additional hypothesis E[2](Q) 6= {0})

Definition 5.24. (i) For x = m
n ∈ Q, gcd(m,n) = 1 we note H(x) :=

max(|m|, |n|) the height of x and h(x) := logH(x) the logarithmic height.

h(x) can be interpreted as the number of bits needed to represent x

(ii) For P = (x, y) ∈ Γ = E(Q) \ {0} define h(P ) := h(x) the height of P and

by convention h(O) = 0

Lemma 5.25. For c > 0 we have the number of points whose height is upper

bounded by c is finite, that is

|
{
P ∈ Γ | h(P ) < c

}
| <∞

Proof. The number of rational numbers a
b of (logarithmic) height smaller than

p is finite (because there is a finite number of possibilities for a and b).

Because h(P ) = h(x) and once we choose x we have two possibilities for y,

this means that

|
{
P ∈ Γ | h(P ) < c

}
| <∞

Lemma 5.26. Let P0 ∈ Γ be a fixed point. Then there exists a constant

k0 = k0(E,P0) so that for all P ∈ Γ we have

h(P + P0) ≤ 2h(P ) + k0

Lemma 5.27. There exists a constant k = k(E) so that for all P ∈ Γ

h(2P ) ≥ 4h(P )− k

(i.e. h : Γ→ R≥0 is "almost quadratic")

Lemma 5.28 (Weak form of the Mordell-Weil theorem).

|Γ/2Γ| <∞

This means that there exist Q1, . . . Qm ∈ Γ so that for every P ∈ Γ there is a

Q ∈ Γ and i ∈ {1, 2, . . . ,m} so that P = 2Q+Qi .
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We will prove that these four lemmas imply the theorem.

Proposition 5.29. Let Γ be an abelian group, h : Γ→ R≥0 so that

(a) |
{
P ∈ Γ | h(P ) < c

}
| <∞ for all c ∈ R>0

(b) for all P0 ∈ Γ there exists a constant k0 so that h(P + P0) ≤ 2h(P ) + k0

(c) there exists a constant k so that for all P ∈ Γ: h(2P ) ≥ 4h(P )− k

(d) |Γ/2Γ| <∞

Then Γ is finitely generated.

Proof. We will use a descent argument.

Let Q1, . . . , Qm be a system of representatives for Γ/2Γ (according to (d)).

For P ∈ Γ there exists a sequence P1, P2, . . ., i1, i2, . . . ∈ {1, . . . ,m}

P = Qi1 + 2P1

P1 = Qi2 + 2P2

. . .

Pm−1 = Qim + 2Pm
So P = Qi1 + 2Qi2 + 4Qi3 + . . .+ 2m−1Qim + 2mPm for all m ∈ N.

It suffices to prove that there exists a constant c > 0 so that h(Pm) < c for

a m ∈ N

In this case Γ will be generated by {Q1, . . . , Qm} ∪
{
P ∈ Γ | h(P ) ≤ c

}
Proof. We apply (b):

h(P −Qi) ≤ 2h(P ) + ki for all P ∈ Γ, i ∈ {1, . . . ,m}

We note k′ := max
i
ki.

From (c) and 2Pj = Pj−1 − Qij we have 4h(Pj) ≤ h(2Pj) + k = h(Pj−1 −

Qij ) + k ≤ 2h(Pj−1) + k′ + k

We note k′′ := k′ + k

So h(Pj) ≤ 1
2h(Pj−1) + k′′

4 = 3
4h(Pj−1)− 1

4 (h(Pj−1)− k′′)

So for h(Pj−1) ≥ k′′ =: c we have h(Pj) ≤ 3
4h(Pj−1)

We can’t have h(Pj) > c for all j ∈ N because h(Pj) ≤
( 3

4
)j
h(P )→ 0

So there exists an m so that h(Pm) ≤ c.
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We will see the proof of lemma 5.28 in the following section.

For now, we will give a sketch of the proof of lemmas 5.26 and 5.27, that

can be found in section III.2. of [3]

Lemma 5.30. There exists a constant k = k(E) so that for all P ∈ Γ

h(2P ) ≥ 4h(P )− k

Proof. We may assume that P /∈ E[2], so that 2P 6= 0.

If P = (x, y) and 2P = (ξ, η), where

ξ = f ′(x)2−(8x+4a)f(x)
4f(x) = x4+...

4x3+... = φ(X)
ψ(X)

with φ, ψ ∈ Z[X], deg(φ) = 4, deg(ψ) = 3, gcd(φ, ψ) = 1 (in C[X])

Lemma 5.27 follows from the following:

Lemma 5.31. Let φ, ψ ∈ Z[X], gcd(φ, ψ) = 1, d = max(deg(φ), deg(ψ)).

(a) there exists an R = R(φ, ψ) ∈ Z \ {0} so that for all x = m
n ∈ Q

gcd

(
ndφ

(
m

n

)
, ndψ

(
m

n

))
|R

(b) there exist k1 = k1(φ, ψ), k2 = k2(φ, ψ) so that for all x = m
n ∈ Q with

ψ(x) 6= 0,

dh(x)− k1 ≤ h
(
φ(x)
ψ(x)

)
≤ dh(x) + k2

Proof. We note

Φ(X,Y ) = Y dφ(XY )

Ψ(X,Y ) = Y dψ(XY )

For x = m
n we have ndφ(x) = Φ(m,n), ndψ(x) = Ψ(m,n)

Because gcd(φ, ψ) = 1 there exist F,G ∈ Z[X]:

Fφ+Gψ = A ∈ Z \ {0}

Let D := max(deg(F ), deg(G)) and

Φ(m,n) = a0m
d + a1m

d−1n+ . . .

Then nDF (mn )Φ(m,n) + nDG(mn )Ψ(m,n) = AnD+d for all x = m
n ∈ Q

γ := gcd(Φ(m,n),Ψ(m,n))|AnD+d

Then γ divides AnD+d−1Φ(m,n) = Aa0m
dnD+d−1 + . . .

So γ|Aa0m
dnD+d−1 and finally γ|R
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Remark 5.32. The proof of the Mordell-Weil theorem is not effective, i.e. it does

not give a constant c > 0 so that

Γ =< P1, . . . , PN >Z, h(Pi) ≤ c

There is no known algorithm that computes the Mordell-Weil group Γ for

any elliptic curve E.

There exists one, but it works under the hypothesis of the Birch and Swinnerton-

Dyer conjecture.

We will now prove the weak version of the Mordell-Weil theorem:

Lemma 5.33 (Weak Mordell-Weil theorem). |Γ/2Γ| = (Γ : 2Γ) <∞

In order to simplify the presentation, we will make the assumption that

there exists a point T ∈ E[2](Q), T 6= 0. This is equivalent to the existence of

a x0 ∈ Q so that E : y2 = f(x) = (x− x0)(x2 + . . .).

After substituting x by x + x0 we have x0 = 0 and T := (0, 0), which gives

E : y2 = x3 + ax2 + bx.

In this case ∆ = b2(a2 − 4b) and this is nonzero if and only if b 6= 0 and

a2 6= 4b.

We consider the map

[2] : E → E, P 7→ 2P

P = (x, y) 7→


(

(x2−b)2

4y2 , (x2−b)(x4+2ax3+6bx2+2abx+b2)
8y3

)
if y 6= 0

O if P ∈ E[2]
This map has the following properties:

(i) [2] is a group homomorphism;

(ii) [2] is surjective (E = E(C));

(iii) Ker[2] = E[2] ∼= Z/2Z× Z/2Z;

(iv) Q ∈ E, [2]−1 =
{
P ∈ E | 2P = O

}
has exactly 4 elements.

Proposition 5.34. We define E : y2 = x3 + ax2 + bx

where a = −2a, b = a2 − 4b, T = (0, 0)
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(i) The map φ : E → E φ(P ) =


(
y2

x2 ,
y(x2−b)
x2

)
if P = (x, y) 6= O, T

O if P = O, T
is a

group homomorphism with Ker(φ) = {O, T}

(ii) The map ψ : E → E ψ(P ) =


(
y2

x2 ,
y(x2−b)
x2

)
if P 6= O, T

O if P = O, T

(iii) We have ψ ◦ φ = [2]E and φ ◦ ψ = [2]E .

Proof. Calculations

Remark 5.35. The existence of φ : E → E over C can be seen in the following

way:

∆ =< ω1, ω2 >Z

E ∼= C/∆

E := C/∆, ∆ =< 1
2ω1, ω2 >

φ : E → E, φ(z + ∆) := z + ∆

ψ : E → E, φ(z + ∆) := 2z + ∆

Ker(φ) = ∆/∆

Lemma 5.36. Let A,B be abelian groups and consider group homomorphisms

φ : A → B and ψ : B → A so that φ ◦ ψ = [2]B , ψ ◦ φ = [2]A and the indexes

(B : φ(A)) and (A : ψ(B)) are finite.

Then (A : 2A) ≤ (A : ψ(A))(B : φ(A)) <∞

Proof. quite easy

Corollary 5.37. Note Γ := E(Q) and Γ := E(Q)

If (Γ : ψ(Γ)), (Γ : φ(Γ)) <∞ then (Γ : 2Γ) <∞

We will prove that (Γ : ψ(Γ)) <∞.

(Γ : φ(Γ)) <∞ will work the same way.
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Proposition 5.38. 1. The function

α : Γ→ Q×/(Q×)2

P = (x, y) 7→ x̃ := x(Q×)2 for P 6= O, T

O 7→ 1̃

T = (0, 0) 7→ b̃

is a group homomorphism with Ker(α) = ψ(Γ)

2. Let p1, . . . , pr be the prime divisors of b.

Then α(Γ) is the subgroup of Q×/(Q×)2 generated by ±1, p1, . . . , pr

We will prove this proposition in a bit but, first, we will use it to prove that:

Corollary 5.39. (Γ : ψ(Γ)) <∞

Proof. Γ/ψ(Γ) α
↪→ G :=< ±1̃, p̃1, . . . , p̃r >⊆ Q×/(Q×)2

Proof. We can now prove the proposition 5.38.

(i) α(−P ) = α(P ) = α(P )−1, ∀P ∈ Γ.

Let P1, P2, P3 ∈ Γ, Pi = (xi, yi) with P1 + P2 + P3 = O.

It suffices to show that α(P1)α(P2)α(P3) = 1̃.

If P1 + P2 + P3 = O then P1, P2, P3 are on a line L : y = λx+ ν.

This means that x1, x2, x3 are the roots of the equation

L ∩ E : x3 + (a− λ2)x2 + (b− 2λν)x− ν2 = 0

Then x1x2x3 = ν2, so α(P1)α(P2)α(P3) = x̃1x̃2x̃3 = 1̃.

Thus α is a homomorphism.

(ii) P = (x, y) ∈ Ker(α) if and only if x ∈ (Q×)2 and we will prove that this

is equivalent to P ∈ ψ(Γ)

Because ψ(P ) =


(
y2

x2 ,
y(x2−b)
x2

)
if P 6= O, T

O if P = O, T
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If x ∈ (Q×)2 then x = ω2 6= 0. This gives:

x := 1
2 (ω2 − a+ y

ω )

y := ±xω.

(iii) Let P = (x, y) ∈ Γ.

Then x = m
e2 , y = n

e3 , m,n, e ∈ Z, e > 0, (m, e) = (n, e) = 1

Then n2 = m(m2 + ame2 + be4)

Let p|m be a prime divisor. Then vp(m) ≡ 0 (mod 2) or p|b

Then α(P ) ∈< ±1̃, p̃1, . . . , p̃r >⊆ Q×/(Q×)2.

Question: Does the proof of the Mordell-Weil theorem provide an algorithm

for determining Γ?

Answer: Unfortunately not.

The problem is:

α : Γ/ψ(Γ) ↪→
{
b̃1 ∈ Q×/(Q×)2|b1|b

}
P = (x, y) 7→ x̃, P 6= O, T

T = (0, 0) 7→ b̃

O 7→ 1̃

Let b1|b. Can we decide if there exists a point P = (x, y) ∈ Γ with x̃ = b̃1 in

Q×/(Q×)2 so that x = b1x
2
1, x1 ∈ Q×?

Write x = m
e2 , y = n

e3

n2 = m(m2 + ame2 + be4)

We have b1 = ±gcd(m, b), mb1 > 0

Then m = b1m1, b = b1b2, gcd(m′, b2) = 1, m1 > 0

Then n2 = b2
1m1(b1m

2
1 + am1e

2 + b2e
4)

m1 = M2, n = b1MN , so N2 = b1M
4 + aM2e2 + b2e

4 (∗)

The proof shows that

Im(α) =
{
x̃ ∈ Q×/(Q×)2|x = b1

M2

e2 , (N,M, e) is a solution for (*),M 6= e
}
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