12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene I. Bouw

This note provides details on [GK, Section 4]. The main goal is to define and
compute the Gross—Keating invariants ay, as, as of ternary quadratic forms over Z,
(Definition 1.2). If a1 = a2 mod2 and a3 > as we define an additional invariant
e € {£1} (Definition 2.7, Definition 4.8). If £ # 2 every quadratic form over Z, is
diagonalizable, and it is easy to determine these invariants from the diagonal form
(Section 2). If £ = 2 not every quadratic form is diagonalizable. We determine a
normal form in Section 3 and compute the invariants in terms of this normal form
(Section 4). In Section 5 we determine explicitly when a ternary quadratic form is
anisotropic. A complete table can be found in Proposition 5.2 (non diagonalizable
case) and Theorem 5.7 (diagonalizable case). In Section 6, we give an alternative
definition of the Gross—Keating invariants for anisotropic quadratic forms. The results
of Section 6 are due to Stefan Wewers, following a hint in [GK, Section 4].

Our main reference on quadratic forms over Z; is [C, Chapter 8]. Most of the of
the result of this paper can also be found in the work of Yang, in a somewhat different
form. The Gross—Keating invariants are computed in [Y1, Appendix B]. The question
whether a given form over Z- is isotropic or not (Section 5) is discussed in [Y2].

I would like to thank M. Rapoport for comments on an earlier version.

1. Definition of the invariants a;

In this section we give the general definition of the Gross—Keating invariants a; of
quadratic forms over Z; which are used in [GK].

Let L be a free Z Fmodule of rank n and choose a (for the moment) arbitrary basis
¥ = {¢1,¢2,...,¥,}. For the application to [GK] we are only interested in the case
n = 3 of ternary quadratic forms. Let (L, Q) be an integral quadratic form over Zj,
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that is,
Qz) = Q(Z Tit;) = Zbijxiﬂfj, with b;; € Zy.
i<j

Put b;; = b;; for j > 4. If we want to stress the dependence of the b;; on the basis, we
write b;;(1p) for b;;. We write (z,y) = Q(z +y) — Q(z) — Q(y) for the corresponding
symmetric bilinear form and B = ((¢;,¢;)) for the corresponding matrix. Note that
bi]', ifi < j,
2y;, ifi=j.
In the rest of the paper we only use the b;; and not the B;;, for simplicity. We denote
by ord the f-adic valuation on Z,. We always suppose that @Q is regular, that is,
det(B) # 0.

Changing the basis multiplies the determinant of B by an element of (Z,)?. There-
fore the determinant is a well defined element of Z,/(Z ).

B = (B,J) 5 where Bij = {

Lemma 1.1. — Suppose that either £ # 2 or n is odd. Define
1
A=A(Q) = 3 det(B).

Then A € Z,.

Proof. — The lemma is obvious if £ # 2. Suppose that £ = 2 and n odd. Write
A=3 cs 20(9)d(c), where d(o) = (1)) 7, b;,(;) and 6(c) + 1 is the number
of i € {1,2,...,n} which are fixed by o. The only problematic terms are those with
d(o) = —1. Suppose that o acts without fixed points on {1,2,...,n}. Then o= # o,

since n is odd. The matrix ((¢4,;)) is symmetric. It follows that d(c) = d(o7'),
hence 289 d(g) + 25 Vd(oc~1) € Zy. O

We now come to the definition of the Gross—Keating invariants of a quadratic
form. Let ¥ = (¢1,12,...,%,) be a basis of L. We write S(v) for the set of tuples
y = (y1,Y2,---,yn) € Z" such that

1) p<m<oo<y EIY <o) fori<i<j<n

Let S = US(v). We order tuples (y1,...,yn) € S lexicographically, as follows. For
given (y1,..-,Yn), (21,.-.,2,) € S, let j be the largest integer such that y; = z; for
all i < j. Then (y1,...,yn) > (21,...,2,) if y; > z;.

Definition 1.2. — The Gross—Keating invariants aq,...,a, are the maximum of
(Y1,---,Yn) € S. A basis ¢ is called optimal if (aq,...,a,) € S(¥).

If 1) is optimal, then
(1.2) a;+a; <2o0rd(bij(yp)) for 1<i<j<n, and a1 <ar<---<ap.

Since A is well defined up to (Z;)?, the integer ord(A) is well defined. The following
lemma will be useful in computing the Gross—Keating invariants.
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Lemma 1.3. — (a) Suppose that n is odd, then
ord(A) > ay +as + -+ ap.
(b) We have
a, = mrgignL ord (z,y) .
(¢) Define p := miny ord(det(A)), where A runs through the 2 by 2 minors of B.
Then

ay +az < p.

Proof. — This lemma is proved in [Y1, Lemma B.1, Lemma B.2]. Note that the
matrix 7" in [Y1] differs by a factor 2 from our matrix B. Let ¢ be an optimal basis.
We use the notation of the proof of Lemma 1.1.

First suppose that ¢ = 2. Write S for the set of equivalence classes in S,, un-
der the equivalence relation ¢ ~ o~!. The proof of Lemma 1.1 shows that A =
> es(—1)%0(028(9) d(g), where §'(5r) > 0. The choice of ¢ implies that

) " a; + Gy i
ord(2* (Dd(0)) = &' (o) + ord(H bio(i)) > Zl f(l) = ;ai.
This proves (a) in this case.

If ¢ # 2, define 6’(0) = 0 for all ¢ € S,,. Then the proof works also in this case.

Since a1 < az < --- < ap, it follows from (1.2) that ord(b;;(¢)) > aq for all i < j.
On the other hand, it is obvious that a; > min, yer ord (z,y). This implies (b).

Part (c) is similar to (a), compare to Lemma Bl.i in [Y1]. Let 41,i2,j1,J2 €
{1,2,...,n} be integers such that iy # iy and j; # j». Write B(i1,42;751,j2) for
the corresponding minor of B. After renumbering, we may suppose that i1 # jo
and s 75 j1. Then det(B(il,iQ;jl,jQ)) = :|:(2abi1’j1bi2,j2 — bil,jzbizﬁ)a where a €
{0,1,2} is the number of equalities i; = ji,i2 = j» that hold. We conclude that
ord(det(B(i1,i2; 41,72)) > (ai, + aip, + aj, + aj,)/2 > a1 + as. (Here we use that
a1 <ax <---<a,and iy # iz and j; # j2.) This proves (c).

O

2. Definition of the Gross—Keating invariants for ¢ # 2

We start this section with an elementary lemma which holds without assumption
on /.

Lemma 2.1. — Choose a basis ) = (1,...,%,) of L. Let~y,...,Vm € L be linearly
independent. The following are equivalent.

(a) There exists Yma1,---,Vn € L such that the (v;) form a basis.

(b) The matriz (y1,-..,vYm), expressing the ~y; in terms of the basis ¥, contains a
m X m minor whose determinant is a p-adic unit.

(¢) If >0, vivi € L for some v; € Qp, then v; € Zy.



124 IRENE 1. BOUW

Proof. — This is straightforward. See also [C, Chapter 8, Lemma 2.1]. O

In particular, a vector o = ), ay9); € L is part of a basis of L if and only if
min; ord(a;) = 0. We call such vectors primitive.
We have that

2.1)  2(zy) =2[Q+y) - Q) - Q] =(+y,z+y) — (z,2) — (y,9)-
If ¢ # 2, this implies that

2.2 i d = mi d .
(2.2) min, ord () = minord (z, )

In the rest of this section, we suppose that £ # 2. There is a « € L for which the
minimum in (2.2) is attained. This vector z is primitive. Lemma 2.1 implies that
can be extended to a basis of L. We will see in Section 4 that (2.2) does not hold for
¢ = 2; this is the main reason why things are more difficult for ¢ = 2.

Proposition 2.2. — Suppose that £ # 2. Then there exists a basis 1 of L such that
Qz) = Q(Z z;) = Z biix?, where  ord(b11) < ord(bas) < ... < ord(bpp)-

Proof. — Our proof follows [C, Chapter 8, Theorem 3.1].
The discussion before the statement of the theorem shows that we may choose ¢,
such that

ord(@(p1)) = ord (p1,¢1) = min, oxd (z,)

Here we use the equality (2.2).
Choose ¢3,...,pn € L such that ¢ = {p1,p2...,p,} is a basis of L. As before

we write Q(3_; Zipi) = D21 <icj<n bij(@)Tiz;. Then

B bra b\ 5
Q(x) = bt (az1 + anz +Ewn> + Q(22,...,n),

for some integral quadratic form Q in n — 1 variables.

We define a new basis by 1 = @1, and ¢¥; = ¢; — (b1;/2b11)p1 for i # 1. The
choice of 1; ensures that v¢; € L, since e = ord(2b11) < ord(by;). With respect to this
new basis, the quadratic form is

Q) = b ()a] + QD wanhy).
i>2

The proposition follows by induction. O

Remark 2.3. — Cassels ([C, Chapter 8, Theorem 3.1]) proves a stronger statement
than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphic quadratic
forms such that every integral quadratic form is isomorphic to one of these. This
stronger statement implies that the definition of the invariants a; of Proposition 2.6
does not, depend of the choice of the orthogonal basis.
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We can give a simpler definition of the invariants a; in terms of a basis @ as in
Proposition 2.2. If ¥ € L is an element such that Q(y) # 0, we may define a reflection
T, by

2 (x,7)

pr(ac) =T — W’y

This is the reflection in the orthogonal complement of . Clearly, 7, is defined over
Z, if and only if ord (y,7) = min,ey, ord (z,z) . (In fact, this also holds for ¢ = 2.)
Since 7 is a reflection, it is clearly invertible. The following lemma is a partial analog
of Witt’s Lemma ([C, Corollary to Theorem 2.4.1]) which holds for quadratic forms
over fields.

Lemma 2.4. — Suppose that ¢, p € L satisfy
QW) =Q(p),  ord(Q(¥)) = ord(Q(v)) = minord(Q(z)).

zeLl

Then there exists an integral isometry o of (L, Q) such that o(¢) = ¢. Moreover, o
may be taken as a product of reflections T .

Proof. — This is [C, Lemma 8.3.3]. Our assumptions on ¢ and ¢ imply that
QW+ ) + QW —p) =2Q1¥) +2Q(v) = 4Q(¢). Since ord(Q(¥)) = ord (¢,7) =
minger, ord (z,z) =: e, it follows that one of the following holds:

(a) ordQ(¥ +¢) =,

(b) ord Qi — ¢) = .
Since £ # 2, it is also possible that both hold. If (a) holds, then 7y, is integral and
sends ¢ to ¢. If (b) holds, define o = 7y_, 0 7. O

Lemma 2.5. — Suppose u,v € L. Then uz? + vz3 ~z, 7 + uvzj.

Proof. — This is proved in the second corollary to [C, Lemma 8.3.3]. We give the
idea. Since ¢ # 2, there exists a,c € Z, such that a?u + c*v = 1. We may assume

that a is a unit. Then
a —cv
o-(% )
c au

defines the equivalence of the lemma. O

Proposition 2.6. — (a) Let ¥ = (1,%2,...,%,) be an orthogonal basis of L as
in Proposition 2.2 Write Q(z) = >, b;x?. Then the invariants a; (Definition
1.2) satisfy
a; = ord(b;).
In particular, ¥ is optimal.
(b) Suppose that n is odd. Then

ord(A) =ay + - + an.
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Proof. — Let ¢ be a basis such that the inequalities (1.2) hold. We claim that
ord (1, 1) = a1. Part (b) of Lemma 1.3 implies that a; = minger ord (z,2). The
choice of ¢ implies moreover that ord (o1, ¢1) = mingey, ord (z, ). The definition of
aq implies therefore that a; = ord (1, p1).

We apply the diagonalization process of the proof of Proposition 2.2 to the basis
. Define ¢; = ¢ and ¢; = ¢; — (b1:/2b11)p1 for i # 1. One computes that

2

b2
(¥j,1) =0, (i, v5) = ﬁ + 2bj;, (Vi by) =

B b1ib1;

by
2b11 + i,

for j # 1 and i # 1,j. The inequalities (1.2) imply that ord (¢;,%;) > a; and
2ord (¢4,v;) > a; + a;. Therefore the new basis also satisfies the inequalities (1.2).
This implies that there exists an orthogonal basis ¥ which satisfies (1.2). It follows
that the Gross—Keating invariants (a1, ..., a,) are the maximum of US(v), where the
union is taken over the orthogonal bases and US(¢) is as in (1.1).

Let ¢ and 9 be two orthogonal bases. Write Q(z) = bix3 + baz2 + - - - + b,z with
respect to the basis 1 and Q(z) = d12? + daz3 + - - - + d,x2 with respect to the basis
. We suppose that ord(b;) < ord(bz) < --- < ord(b,) and ord(d;) < ord(dz) <--- <
ord(dy,). We suppose moreover that ¢ satisfies (1.2). (Such ¢ exists by the above
argument.) We have to show that 1 satisfies (1.2), also. Write C' = (¢;5) for the
change of basis matrix expressing ¢ in terms ). As before, Lemma 1.3.(b) implies
that ord(b1) = ord(d;) = a;. Write by = ud;, for some unit u.

Suppose that ord(bz) > ord(b;). Then

n
dy =Y b = by mod .

=1

This implies that u is a quadratic residue. To prove the claim, we may therefore
assume that Q(11) = Q(y1) in this case.
Suppose that ord(b;) = ord(b2). Then Lemma 2.5 implies that @ is Z equivalent to
d17? +ubyr3 +bsr3 +- - -. Hence also in this case we may assume that Q (1) = Q(p1).
Lemma 2.4 implies that there exists an isometry o of ) which sends 1 to ;.
Then D := ¢~ !C fixes ;. Write

1 Dy
D = B =
< 0 D ) ’
where D, is an (n — 1) x (n — 1) matrix. One computes that

DtBD _ 2’)/2b1 2’)/D1
2vD} * '

2by 0

0 2by,
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Our assumption implies that D*BD is a diagonal matrix, with diagonal entries 2d;.
This implies that D; = (0,...,0). We conclude that D restricts to an integral and in-
vertible map from the sublattice of L spanned by s, ..., ¥, to the sublattice spanned
by a,...,p,. This implies (a).

Part (b) follows immediately from (a). O

Definition 2.7. — Suppose that n = 3 and £ # 2. Assume a; = az mod 2, and
az > az. Choose a basis ¥ = (¢1, 12, 13) of L as in Proposition 2.2. Write b;; = (% u;.
We define an invariant ¢ = €(1) by the Legendre symbol

(2.3) €= <_“l}“2> .

Lemma 2.8. — Assumptions and notations are as in Definition 2.7.

(a) The invariant e(vp) does not depend on the choice of the orthogonal basis 1p.
(b) We have that e = 1 if and only if the subspace of L ®z, Qp spanned by ¢ and
Yo s isotropic.

Proof. — Let ¢ = (¢1,12,13) be a basis of L as in Proposition 2.6, in particular 1
is orthogonal and the valuation of b; = (¢, ;) /2 is equal to a;, for i = 1,2, 3.

Suppose that as = a; mod2 and a3 > as. Write as = a; + 2y. Write Q' for the
restriction of ) to the sublattice of L spanned by ¢y and 5. Then Q'(z) = by x? +byz3
is equivalent to 91 (x? + ujuzl®7z3) (Lemma 2.5). It follows that Q' is isotropic if
€ = 1 and anisotropic if € = —1. This proves (b).

Let ¢ be another orthogonal basis and write Q(3", zip;) = diz} +dax3 +dzzi. We
assume that ord(d;) = a;. Write C for the matrix expressing ¢ in terms of 1. The
argument of the proof of Proposition 2.6 together with the assumption that as < ag
implies that there exists an isometry o such that

U1 0 0
c'C=[0 vy, O ,
0 0 VU3
where the v; are units. This shows that d; = v?b;. The lemma follows. O

3. A normal form for quadratic forms over Z,

Not every quadratic form over Z5 is diagonalizable. In this section we give a normal
form for ternary quadratic forms over Zs, following [C, Section 8.4]. Cassels uses a
slightly stronger notion of integrality, namely he supposes that b;;/2 € Z,, for all
i # j. However, this does not make any difference.

Lemma 3.1. — Suppose £ = 2. Let Q) be a regular quadratic form over Z,. Then Q)
s Zo-equivalent to a sum of quadratic forms of the form

(3.1) 2°ux?,
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for e € Z>o and u € Z, and
(3.2) 2¢ (blm% +uziT0 + an:§),
with e € Z>o, and u € Z5.

The equality (2.1) holds for £ = 2, but (2.2) does not. However, (2.1) implies that

in ord 1 > min ord .
xrglenLor (x,y) + 2 minor (z, )

Therefore min, yer, ord (z,y) equals either ming ey, ord (z, ) or mingey ord (z,z) — 1.

Proof. — Let e = ming, yer, ord (z,y). We distinguish two cases.
(a) There exists a v € L such that ord (y,7) = e.
(b) For all v € L we have that ord (y,7) > e.
Suppose we are in case (a). Then ord (11,%;) > e, by definition. We can now

proceed as in the proof of Proposition 2.2. Namely, 2011 = 2Q (Y1) = (Y1,%1).
Therefore by; has valuation e — 1. For i # 1, we have that ord(by;) = ord (¢1,¢;) > e.

Therefore
_ b
i =i — (21)11) Y1
is an element of L and 91, s, ..., p, form a basis. With respect to this basis the
quadratic form @ becomes Q(x) = byyz? + Q(x2, . . ., y), for some quadratic form Q

in n — 1 variables.

Suppose we are in case (b). Then ord(v,v) > e for all vy € L. We may choose
1,12 € L such that ord (¢1,12) = e. The definition of e implies that (¢, +12)/2 & L.
Lemma 2.1 implies therefore that 1,2 can be extended to a basis ¥, ...,v¥, of L.

The choice of ¥; and 1 implies that the determinant of the matrix

2b1127¢ b1227¢
b1227¢ 2b9s27¢
is a unit in Z,. Therefore we can find A, AJ such that
—2Mbyy = Mbia +b1; =0,  —2Mbag — X by + baj = 0,

for j = 3,...,n. Define ¢; = 1; — A{wl — /\éwg. The choice of the /\Z implies that

(@), 1) = (pj,4h2) =0, for j =3,...,n.
With respect to the basis (¢1, 12, @3, - -, pn) the quadratic form @ becomes

Q(CE) = 26(1)1137% + bz 22 + bggﬂfg) + Q(ﬂ?g, R ,a:n).
This proves the lemma. O

Lemma 3.2. — Let Q2(x) = b112? + biaz172 + baox3 be a binary quadratic form
over Zo and Lo the corresponding free Zo-lattice of rank two.

(a) If min(ord(b11),ord(bez2)) < ord(bi2) then Q2 is diagonalizable.
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(b) Suppose that Qo is not diagonalizable. Then Qo is anisotropic if and only if
Ord(612) = ord(bn) = Ord(b22).
(¢) Suppose Q2 is anisotropic and not diagonalizable. Then Qo is equivalent to

26(x% +xiTy + x%),

for some e.
(d) Suppose that Qs is isotropic and not diagonalizable. Then Qo is equivalent to

26.’E1$2,
for some e.

Proof. — Part (a) follows from the proof of Lemma 3.1.

Suppose that @ is not diagonalizable. Then ord(bi2) < min(ord(by1),ord(ba2)),
by (a). Part (b) is an elementary Hilbert-symbol computation using [S, Theorem
IV.6).

Suppose that @2 is anisotropic and not diagonalizable. Then (b) implies that e :=
ord(b12) = ord(b11) = ord(ba2). Part (¢c) now follows from an elementary computation.

Suppose that Qs is isotropic and not diagonalizable. There exists a primitive vector
11 such that Q(v;) = 0. Lemma 2.1 together with the fact that the quadratic form
is nondegenerate, implies that there exists a vector 1) € Ly such that i,y form a
basis of Ly and (¢1,12) # 0. After multiplying . with a unit, we may suppose that
(11,19) = 28, for some e > 0.

We claim that ord (19, 12) > ord (¢1,12). Namely, if ord (v, 12) < ord (¢1,1)2)
then @ is diagonalizable by (a), but this contradicts our assumptions. Therefore

Py =12 — %@ZH € Lo.
Now ¢, ¢4 form a basis of L and (¢}, 44) = 0. This proves (d). O

Proposition 3.3. — Let (L,Q) be a ternary quadratic form over Z,. One of the
following two possibilities occurs.

(a) The form Q is diagonalizable; there exists a basis such that
Q(x) = byx} + box3 + bsxy, with 0 < ord(by) < ord(hz) < ord(hs).
(b) The form Q is not diagonalizable; there exists a basis such that
Q(7) = u 2" 22 4212 (va3+ w3 +vzl), with v € {0,1}, >0 and wuy € Z3.
Proof. — This follows immediately from Lemma 3.1 and Lemma 3.2. O

This classification is the same as the classification used (but not explicitly stated)
in [Y1, Appendix B]. Note that Yang’s matrix T differs by a factor 2 from the matrix
B we use. In particular, the invariant 8 used in [Y1, Proposition B.4] satisfies 8 > —1
rather than g > 0.
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4. The Gross—Keating invariants for /= 2

In this section we compute the Gross—Keating invariants of ternary quadratic forms
(L, Q) over Zs in terms of the normal form of Proposition 3.3. The computation of
the a; can be found in Proposition 4.1 (non-diagonalizable case) and Proposition 4.2
(diagonalizable case). The computation of € can be found in Proposition 4.9. This
section is based on [Y1, Appendix BJ.

We start by considering quadratic forms which are not diagonalizable. Recall from
Proposition 3.3 that if @) is not diagonalizable then there exists a basis 9 of L with
respect to which we have

(4.1)  Q(z) = w12 x] + 2" (va3 + zo3 +073), Wwith v € {0,1}, wuy € ZJ.
We do not suppose that 1 < po.
Proposition 4.1. — Suppose that Q is given by (4.1). Then

5 5 5 i S N
(ar,a2,a3) = { (v iz, p12) ,ful x
(2, o, 1), if g1 > pa.

Proof. — Lemma 1.3.(b) implies that a; = min(p1, p2). We distinguish two cases.

Suppose that g1 < ps. Then a1 = py and ord(A) = py + 2us > a1 + as + as
(Lemma 1.3.(a)). Therefore as < (as + a3)/2 < pa. The existence of a basis ¥ as in
(4.1) implies that (u1, u2, u2) € S(1p). We conclude that ay = ag = pus.

Suppose that g1 > po. In this case we have that a; = us. Recall that we defined
p as the minimum of the valuation of the determinant of the 2 x 2-minors of B.
One computes that p = min(2u2,1 + p1 + p2) = 2u2, since we assumed that py >
p2 + 1. Lemma 1.3.(c) implies that p > a1 + az, hence as < ps. The existence of a
basis ¥ as in (4.1) implies that (ua2, u2, 1) € S(¢0). We conclude that (ay,as,as) =
(H2, pi2, i) u

We now consider diagonalizable quadratic forms . Contrary to the situation for
£ # 2, a basis ¥ which diagonalizes @ is not optimal (Definition 1.2).

Proposition 4.2. — Suppose that Q) is diagonalizable. Let 1 be a basis of L such
that
(4.2

Q

~—

) = ble + ngg + b3$§, with by = w;2", w; € Zy and < po < ps.

)
(a) Suppose that py Z p mod2. Then (a1,az,a3) = (p1, 2, pz + 2).
(b) Suppose that p1 = ps mod 2.

(i) Ifui+us =2mod4 or uz < u2+1, then (a1, a2, a3) = (1, p2+1, us+1).

(ii) Otherwise, (a1, az2,a3) = (p1, p2 + 2, p3)-

—_ o~

The proof of this proposition is divided in several lemmas. We use the notation of
Proposition 4.2. In particular, 1 is a basis of L with respect to which @ is as in (4.2).
Let ¢ be an optimal basis, i.e. suppose that the inequalities (1.2) hold. We write
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C = (c¢;j) for the change of basis matrix expressing ¢ in terms of ¢». We write the
quadratic form @ in terms of the basis ¢ as Q(z) = ZZS]. d;jz;z;. In other words,
the d;; are the coefficients of the matrix obtained by dividing the diagonal elements
of C*BC by two. One computes that

(43) du = C%ibl + C%ibg + Cgibg.

Lemma 4.3. — Suppose that Q is diagonal and py Z ps mod 2. Then (a1, az2,a3) =
(1, pi2, i3 + 2).

Proof. — We have already seen that a; = uq. Therefore it follows from the definition
of the a; that as > us. We claim that as = us. Suppose that as > po.

Write po = p1 + 2y 4+ 1. The inequalities (1.2) imply that ord(dss) > as > pe + 1
and ord(dss) > a3 > as > pa + 1. Since p; #Z po mod 2, it follows from (4.3) that
ord(ci2) > v+ 1 and ord(cy3) > v+ 1.

We first suppose that ps > ps. Then ord(ces) > 1 and ord(esz) > 1. But this
implies that det(C') = 0 mod 2. This gives a contradiction.

If p2 = ps, we proceed similarly. In this case ¢oo = ¢33 mod 2 and a3 = ¢33 mod 2.
This implies again that det(C') = 0 mod 2. We conclude that as = po.

Since ord(A) = ord(det(B)) + 2 = py + p2 + p3 + 2, it follows from Lemma 1.3.(a)
that a3 < ps + 2. To show that az = us + 2 it suffices to find a basis ¢ such that
(1, po, p3 + 2) € S(p). We now construct such a basis.

Our assumptions imply that us is congruent to py or ps (modulo 2). We suppose
that us = w1 mod2. (The case uz = p2 mod?2 is similar.) Write po = pg + 2y + 1
and ps = p1 + 2X. We distinguish two cases:

— u1 + uz = 0 mod4,

— w1 +uz = 2 mod4.

In the first case define

With respect to the new basis we have Q(z) = by 2?2 +box3+2 by 21 23+ (b3 +22 by )23.

In the second case we define

1 0 22
C = 0 1 227
0 0 1
With respect to the new basis we have Q(z) = by2? +box3 +2 b 2y 23+ (b3 +22 b1 +

220" Mby) a2 + 2 7 hyxaws. Tt is easy to check that the basis ¢ corresponding to C
satisfies (1.2) for a; = p1, as = po and ag = ps + 2. This proves the lemma. O

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of
Lemma 4.3.
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Lemma 4.4. — Suppose that Q is diagonalizable, py = ps mod2 and psz < pz + 1.
Then (a1, az,a3) = (pu1, p2 + 1, u3 +1).

Proof. — Since a; = py and ord(A) = py + pe + pus + 2 it follows from Lemma 1.3
that a; + 2a2 < ay +as + a3z < g + po + ps + 2 < pg + 22 + 3. This implies that
as < pe + 1.
We now construct a basis ¢ such that (u1, u2+1, uz+1) € S(¢). The lemma follows
from this. Let C be the corresponding change of basis matrix. Write pe = p1 + 27.
If gy = ps define

1 27 2
C= 0 1 0
0 0 1
With respect to the new basis we have Q(x) = byz? + (227by + by)23 + 27 by (v122 +

.’B11‘3) + (b3 + 22Vb1)ac§ + 21+2vb1$21‘3.
If us = po + 1 and uy + us = 2 mod 4 define

1 27 27
c=10 1 1
0 0 1

With respect to the new basis we have Q(z) = byz? + (ba + 2270y )23 + 27 by (v122 +
.’E11‘3) + (b3 + 22’Yb1 + b2)$§ + (227+1b1 + 2b2)1‘2$3.
If usg = po + 1 and uy + uz = 0 mod 4 define

1 27 27
c=10 1 1
0 1 2

With respect to the new basis we have Q(x) = by 2% +(227by +ba+b3)x3+27T1by (2172 +
.’E11‘3) + (4b3 + 22761 + b2)$§ + (22V+1b1 + 262 + 463)$21‘3.
In each of these cases one checks that (u1,us + 1, u3 +1) € S(¢). O

Lemma 4.5. — Suppose that Q is diagonal, py = pz mod2 and uy + us = 2 mod 4.
Then (a1,a2,a3) = (/1/17/1/2 + 17/1/3 + 1)

Proof. — By Lemma 4.4 we may assume that pug > pz+2. We claim that as < pus+1.
Suppose that as > ps + 2. As before, we suppose that ¢ is an optimal basis. As
before, we write C' = (c¢;;) for the change of basis matrix and D = C*BC = (d;;) for
the matrix corresponding to the new basis. Write us = uy + 27.

The assumption as > pe + 2 implies that ord(dss) > a2 > ps + 2 and ord(dss) >
as > as > po + 2. It follows from (4.3) that ord(ei2) > 7 and ord(c;3) > 7. Suppose
that ord(ci2) = 7. Then ord(css) = 1 and das = 292 (u; + uz) Z 0 mod 2#2+2, This
gives a contradiction. Similarly, we obtain a contradiction if ord(ci3) = «. Therefore
ord(e1;) > v for j = 2,3 and das = ¢3,b2 mod 2#272. Since ord(da2) > po + 2 and
ord(bs) = p2, we conclude that ord(eze) > 0. Similarly, d33 = ;b2 mod 2#272; this
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implies that ord(ces) > 0. But then det(C) = 0 mod2. This gives a contradiction.
We conclude that as < us + 1.

To prove the lemma, we construct a basis ¢ such that (u1,p2 + 1,3 +1) € S(p).
We distinguish two subcases:

— p3 = w1 mod 2,

— p3 Z p1 mod 2.

Suppose that ps = p; mod 2. Write ps = p1 + 2y and pz = p1 + 2X. Let ¢ be the
basis of L corresponding to the change of basis matrix

1 2r 22
C=(0 1 0
0 0 1

With respect to the new basis we have Q(z) = byx? + (227by + b2)x3 + 27 b2y 22 +
2>‘+1b1$1$3 + (b3 + 22>‘b1)$§ + 27+)‘+1b1$2$3.

Suppose that ps Z p; mod2. Write us = p1 + 2y and pz = pg + 2\ + 1. Let ¢ be
the basis of L corresponding to the change of basis matrix

1 2v 2
c=10 1 227
0 0 1

With respect to the new basis we have Q(x) = bia? + (227by + ba)x3 + 27 b2y 22 +
2>‘+1b1$1$3 + (b3 + 22>‘b1 + 22()‘_7)1)2):13% + (2’7+>‘+1b1 + 2)‘_’7+1b2)$2$3.
In each of these cases one checks that (1, u2 + 1, u3 + 1) € S(ep). O

Lemma 4.6. — Suppose that Q is diagonal, p; = ps mod 2, puz > pz + 2 and uy +
uz = 0mod4. Then (ay1,as,a3) = (p1, 2 + 2, u3).

Proof. — Write ps = p1 + 2y. We already know that a1 = p;. We claim that
az < pus + 2. Suppose az > us + 3. The same reasoning as in the beginning of the
proof of Lemma 4.4 shows that we may assume that puz > ps +4. If ca0 = 23 =0
mod 2, we conclude as in the proof of Lemma 4.5 that det(C') = 0 mod 2. This gives
a contradiction, hence either coo or co3 is a unit.

Suppose that cos is a unit. (The argument in the case that co3 is a unit is similar,
and we omit it.) Then ord(ci2) = . One computes that

(44) dis = 2¢12¢11b1 + 2¢21 9202 mod QH2+3
It follows from (1.2) that 2ord(di2) > a1 + as > p1 + pe + 3 = 21 + 2y + 3. Hence
(4.5) ord(di2) > p1 + v+ 2.

Recall that Lemma 1.3.(b) implies that ord(di1) = a1.
First suppose that p; < pso, that is v # 0. Since dy; has valuation aq, ¢1; is a unit.
It follows from (4.4) that ord(d;2) = p1 + v + 1. This contradicts (4.5).
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Now suppose that p; = ps. Since di; = c¢3ob; + ¢3,by mod 2171, Since dy; has
valuation a; = 1, it follows that either
(i) ¢12 =1 mod 2 and c¢z1 = 0 mod 2, or
(ii) ¢12 =0 mod 2 and cp1 = 1 mod 2.
Since ord(di2) > p1 + 2, it follows from (4.4) that (i) holds and that ¢;; = 0 mod 2.
One computes that

d23 = 201201361 + 2022023b2 = 201361 + 202362 mod 2M1+2,

since c12 and coo are units. It follows that ci3 = c¢23 mod2. But this implies that
det(C) =0 mod 2. (In case u; +u2 = 4 mod 8 one could alternatively argue as in the
proof of Lemma 4.5.)

Let ¢ be the basis of L corresponding to the change of basis matrix

1 27 0
cC=(0 1 0
0 0 1

Then baa(¢) = 0 mod 24272, With respect to the new basis we have Q(z) = bix? +
(227b1 + ba)x3 + 27 by w29 + b3x3. Therefore (u1, 2 + 1,u3) € S(p). This proves
the lemma. O

The following proposition is an immediate consequence of the computation of the
invariants a;. It illustrates that the a; satisfy similar properties for £ = 2 and £ # 2,
which is not so clear from the definition.

Proposition 4.7. — Let Q be a ternary quadratic form over Zy for £ > 2. Then
ord(A) = ay + a2 + as.

Proof. — For £ # 2 this is Proposition 2.6.(b). For £ = 2 the theorem follows from
the Propositions 4.1 and 4.2. O

In the rest of this section we define the Gross—Keating invariant e for ¢ = 2 and
show that it is well defined (compare to Lemma 2.8).

Definition 4.8. — Suppose that a; = as mod2 and a3 > as. Let ¢ be an optimal
basis. We define € = ¢(¢) by € = 1 if the subspace of L ®z, Q» spanned by ¢; and
2 is isotropic, and € = —1, otherwise.

Proposition 4.9. — Suppose that a; = az mod2 and az > as.

(a) The invariant € does not depend on the choice of the basis.
(b) (i) If Q is not diagonalizable we may write Q(x) = w12 x? + 22 (va3 +
Tox3 +vzd) with v € {0,1} and p1 > po. In this case

e=(-1)".
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(ii) If Q is diagonalizable we may write Q(z) = w121 73 + uz2t2x3 + uz2tsx3
with uy + us =0 mod4, u; = pe mod2 and us > ps + 2. We have that
€= (—1)(mtu)/4,

Proof. — The fact that one of the two cases of (b) holds follows immediately from
Propositions 4.1 and 4.2.

Suppose that @ is not diagonalizable. Write Q(z) = u12*1 2} + 2#2(vx3 + T2w3 +
vzl), as in the statement of the proposition, and let 1 be the corresponding basis.
Write Q2 for the restriction of () to the sublattice spanned by the basis vectors
Y2,13. Lemma 3.2 implies that (- is isotropic if and only v = 0. This implies that
() = (~1)",

We now show that € is well defined in this case. It suffices to show that e(¢) =
e(1p) for optimal bases ¢ and v with respect to which @ is in a normal form as
in Proposition 3.3. By assumption, @ is not diagonalizable. (In fact, it follows
from Proposition 4.2 that no quadratic form Q(z) = wi2*1z? + 2#2(va3 + zox3 +
vr3) with v € {0,1} and p; > ps is diagonalizable. Hence we could have dropped
this assumption from the statement of the proposition.) Write Q'(z) = uj2* 2% +
242 (v'x3 + wows + v'23) for @ expressed with respect to the basis . Since A(Q) =
A(Q') we have that uy (4v% —1) = u (4(v')? —1), therefore v = v’ implies that u; = u}.
Hence, to show that e(¢) = e(¢p), it suffices to show that v = »’. We assume that
v =1 and v' =0, and derive a contradiction.

The basis vector ¢ is isotropic. Write w2 = ¢191 + ca2 + c3tp3. The fact that
Q(p2) = 0 implies that p; = po mod2. Moreover, it follows that ord(c;) > (p1 —
p2)/2 > 0 for j = 2,3. Since g5 is primitive, it follows that ¢; = 1 mod2. An easy
computation shows that ord (2, ;) > ps for i = 1,2, 3. In particular ord (p2, p3) >
w2 But this contradicts the assumption that ord (2, p3) = po.

Next we assume that @) is diagonalizable, and let Q(z) be as in the statement of
(b.ii). Write ¢ for the corresponding basis of L. Let Q2 be the restriction of @ to the
subspace spanned by 1, ¢s. Then @5 is isotropic if and only if — det(Q) is a square
([S, Theorem IV.6]). It is easy to see that this happens if and only if u; +us =0
mod 8.

We now show that € is independent of the choice of the optimal basis in this case.
Let ¢ be an optimal basis. Let C' = (¢;;) be the corresponding change of basis matrix
expressing ¢ in terms of ¥. Write p1 = p2 + 27.

We suppose that ps > p1, that is v > 0. (The case u; = p2 is analogous and left
to the reader.) We use the notation of the proof of Lemma 4.6. In particular, we
write Q(x) = Zigj dijx;x; for the representation of () in terms of the basis .

We showed in the proof of Lemma 4.6 that either cos or co3 is a unit. Suppose
that c22 = 0 mod 2 and ¢23 = 1 mod 2. It follows that ord(dss) > az = usz > p2 + 3.
Therefore (4.3) implies that ord(c;3) = 7. We showed in the proof of Lemma 4.6
that c¢i1; is a unit. Since dis = 2ciici13b1 + 2¢21 62302 mod 24371 we conclude that
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2ord(diz) = 24+ 2y + 2u1 = p1 + po + 2. (Here we use that v > 0.) But this
contradicts 2ord(dy3) > a1 + ag = p1 + puz > p1 + p2 + 3. We conclude that coo is a
unit. Recall from the proof of Lemma 4.6 that this implies that ¢;2 = 1 mod 2 and
c21 = 0 mod 2. Therefore the determinant of the submatrix

~ C11 C12
C =
C21 €22

c !t o
D_< i 1).

With respect to the basis corresponding to C'D, the quadratic form ¢ becomes Q(z) =
(b + 82b3)x} + (ba + 83b3)23 + 261 b3x1 72 + 23(0ther terms), for certain d1,d2 € Zo.
Since ord(b3) > ord(bz) + 3 this implies that the subspace spanned by o1 and s is
isotropic if and only if the space spanned by v, and 1), is isotropic. O

of C is a unit. We may define

5. Anisotropic quadratic forms

The goal is to classify all anisotropic ternary quadratic forms over Zs, starting from
the normal form of Proposition 3.3. We will see that for anisotropic forms we may
choose an optimal basis ¢ so that ord(Q(y;)) = a;, similar to what we had for £ # 2
(Corollary 5.8).

Proposition 5.1. — Let QQ be a ternary quadratic form over Q. Write Q(z) =
bix? + baxs + b3z, We denote by det(Q) = bibabs the determinant of Q. Then Q is
isotropic if and only if

(—1,— det(Q)) = [ [ (bs, b))

i<j
Here (+,-) denotes the Hilbert symbol.
Proof. — This is [S, Theorem IV.6.ii]. O
Proposition 5.2. — Let Q be a ternary quadratic form over Zo which is not diago-

nalizable. Let 1) be an optimal basis such that Q(x) = ui 2" x3 + 22 (va3 + o235 +0v13)
with v € {0,1}. Then Q is isotropic if and only if v =10 or py = pz mod 2.

Proof. — If v = 0 then @ is obviously isotropic. Therefore suppose that v = 1. To
decide whether @ is isotropic, we may consider ) as quadratic form over Q. We have
Q(z) ~g, u12"12? + 2#2(x3 + 3x3). The proposition follows from Proposition 5.1 by
direct verification using the formula for the Hilbert symbol [S, Theorem III.1]. O

Lemma 5.3. — Let Q) be a ternary quadratic form over Zy. We do not assume that
£ = 2. Suppose that a1 = as = a3 mod 2. Then @ is isotropic.
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Proof. — If @ is not diagonalizable then the lemma follows from Proposition 5.2,
since (a1, az2,a3) € {(p1, p2, p2), (2, p2, f11) }-

Suppose that @ is diagonalizable. Write Q(z) = uif* 23 + ualt2x3 + ugltszl. If
£ # 2 we have that p; = a; hence u; = ps = pz mod 2. To show that @ is isotropic,
it suffices to consider @) over Q. After multiplying the basis vectors by a suitable
constant, we may assume that g1 = g2 = pg = 0. The lemma now follows immediately
from Proposition 5.1, since the Hilbert symbol is trivial on units for £ # 2.

Suppose that / = 2 and @ is diagonalizable. Proposition 4.2 implies that pu; =
po = pz mod 2 and uy +us = 0 mod 4. As for £ # 2, it is no restriction to suppose that
Q(z) = w13 + uaz3 + uzxr3. One computes that this quadratic form is anisotropic if
and only if u1 = us = u3 mod 4. Hence in our case () is isotropic. O

For future reference we record from the proof of Lemma 5.3 when a diagonal ternary
form over Zs is anisotropic.

Lemma 5.4. — Let Q(x) = u12"'2? + us2t222 + uz2”322 be a diagonal, ternary
quadratic form over Zs. Suppose that 1 = ps = p3 mod 2. Then @ is anisotropic if
and only if u1 = us = uz mod 4.

Lemma 5.5. — Let Q(x) = u12"2? + uz22x3 + uz2t*x3 be a diagonal, ternary
quadratic form over Zs. Suppose that p; = us mod 2 and ps Z pp mod 2.

(a) Suppose thatu; = us = uz mod4. Then Q is anisotropic if and only if us = fuy
mod 8.

(b) Suppose that the u; are not all equivalent modulo 4. Then Q is anisotropic if
and only if us = £3u; mod 8.

Proof. — The proof is similar to the proof of Lemma 5.3 and is left to the reader. [

Notation 5.6. — Let QQ be a ternary quadratic form with Gross—Keating invariants
(a1,a2,a3). For every 1 <i < j <3 we define
a; + a;j

dij = [~

1,

where [a] is the smallest integer greater than or equal to a.

Theorem 5.7. — Let Q(z) = u1 2" 23 +us2"2x3 +uz2"3x3 be a diagonal anisotropic
quadratic form over Zo with pu1 < ps < us. Then one of the following cases occurs.

(a) Suppose pi = psz Z p2 mod2 and uy = 3uz mod8. Then (ai,as,a3) =
(1, po, p3 + 2) and a1 Z az mod 2. There exists an optimal basis with respect
to which

Qz) = 2‘“u1m% + 2“21423:% + 298y my 23 + 2a3u1:n§.
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(b) Suppose pu; = pz Z pemod2 and uw; = ugzmod4. Then (ai,as,a3) =
(1, po, 3 + 2) and a; Z as mod 2. Moreover, us = u; mod4 if ug = uy mod 8

and us = —u; mod4 if us = buy mod8. There exists an optimal basis with
respect to which

Q(z) = 2% uyz? 4 2"2uyal + 2018 225 + 29 usmows + 2“3u1vx§.

Here v = (u1 +us2)/2 if us = uy mod4 and v = (3uy +us2)/2 if us = —u; mod 4.
(c) Suppose py Z ps = us mod2. Then (a1,as,a3) = (1, p2, t3 + 2) and as Z a1
mod 2. The quadratic form with respect to an optimal basis is as in (a) and (b)
with the role of x1 and x5 reversed.
(d) Suppose p1 = p2 mod2 and ps = pus. Then (a1,a2,a3) = (1, p2 + 1, u3 + 1)
and a1 Z az mod2. Moreover, u; = uy = uz mod4. There exists an optimal
basis with respect to which

Q(z) = 2‘“u1x% + 2“2021'% + 2013y, (122 + z123) + 20280 poxs + 2‘131131%.

Here v; = (u1 +u;)/2 fori=2,3.

(e) Suppose p1 = ps mod2, us = ps + 1 and uy = us mod4. Then (a1,as,a3) =
(1, 2 + 1, u3 + 1) and as # a; mod2. Moreover, us = u; mod8 if ug = uy
mod4 and us = 5u; mod8 if us = —u; mod4. There exists an optimal basis
with respect to which

Q(z) = 2% uyz? + 2%2vyx3 + 20134 (z1 20 + T123) + 2022 vymoms + 2039312

Here vy = (u1 + u2)/2 and vz = (u1 + u3z)/2 (resp. (Bur + u3)/2) depending on
whether us = u; mod 4 or not.

(f) Suppose p; = pz mod 2, uz = 2 + 1 and uy = —us mod4. Then (a1,as,a3) =
(1, o + 1, us +1) and ay = ax mod 2. Moreover, us = 3u; mod8. There exists
an optimal basis with respect to which

Q(z) = 2" uyz? + 2% voxl + 2034 (2122 + T123) + 20 vagTows + 203323,

Here vy = (u1 + ua + 2u3) /2, vaz = (u1 + u2 + 4u3)/2 and vz = ug + 2us.
(g) Suppose 1 = ps = pzmod2 and u; = up mod4 and ps > ps + 2. Then
(a1,a2,a3) = (p1,p2 + 1, u3 + 1) and as Z ax mod 2. Moreover, ug = u; mod 4.

There exists an optimal basis with respect to which
Q(x) = 2 ur 2 + 2% v0x3 + 222Uy oo + 293w 2 3 4 20 Uy Tows + 2% vz,

Here v; = (u1 +u;)/2 fori=2,3.

(h) Suppose p3 = ps # pz mod2 and uy = us mod4 and psz > ps + 2. Then
(a1,a2,a3) = (u1, e + 1, u3 + 1) and as #Z a1 mod2. One of the following two
cases holds:

us = w1 mod8 and uz = u; mod4,
us = dup mod 8 and us = —uq mod 4.
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There exists an optimal basis with respect to which

Qz) = 2“1u1x% + 2“211230% + 2002 2y 2o + 20830y 2y 75 + 2009 TaTs + 2“3v3x§.
Here vy = (u1 +u2)/2 and vz = (uy +u3)/2 (resp. vs = (3uy +us)/2) depending
on whether w1 = usz mod4 or not.

(i) Suppose p1 = po Z pzmod2, us > ps + 2 and uz = 3uy mod8. Then
(a1,as2,a3) = (p1, 2 + 2, u3) and a; = as mod 2. There exists an optimal basis
with respect to which

Q(z) = 2‘“u1x% + 2“202x§ + 202 220 + 2“3U3x§.

Here vy = (u1 + u2)/2.

Proof. — This follows from the results of Section 4 together with the Lemmas 5.4,

5.5. O
Corollary 5.8. — Suppose that Q is anisotropic. Then there exists an optimal basis
@ such that

ord(bii(p)) = a;

fori=1,2,3.
Proof. — This follows immediately from Theorem 5.7 (diagonal case) and Proposition
5.2 (non-diagonal case). O

In Section 6, we give a more conceptual proof of Corollary 5.8. In fact, we prove
that any optimal basis has the property in Corollary 5.8. The following lemma gives
a list of the small cases.

Lemma 5.9. — Let QQ be an anisotropic ternary quadratic form over Zs and suppose
that az < 1. Then one of the following possibilities occurs.

(a) We have (a1, az2,a3) = (0,0,1). In this case Q is not diagonalizable; it is of the
form

Q(z) = 23 + 2120 + 75 + uz273.
(b) We have (a1,az2,a3) = (0,1,1) and Q is not diagonalizable. Then Q is of the
form
Q(z) = w12? + 2(x3 + w3 + 23).

(c) We have (a1,a2,a3) = (0,1,1) and Q is diagonalizable. Then Q is as in Theorem
5.7.(d) with a1 = 613 =0 and as = a3 = a3 = 1.
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6. Alternative version of the Gross—Keating invariants for anisotropic
forms

We fix an arbitrary prime number ¢ and a free quadratic module (L, Q) over Z, of
rank n. We assume that (L, Q) is anisotropic, i.e. that Q(+)) = 0 implies ¢ = 0. Under
this assumption, there is an alternative definition of the Gross—Keating invariants and
a very useful characterization of optimal bases; see the remark at the end of section
4 in [?]. In this section we do not suppose that n = 3 to streamline some arguments.
Recall that n > 5 implies that (L, Q) is isotropic ([S, Theorem IV.6]). Therefore the
only additional case is anisotropic quadratic forms in four variables.

We define a function v : L — Z U {00} by the rule

v(¥) == ord; Q(¢).
For ¢ € L and = € Z, we have

(6.1) v(zp) = 2ords(z) + v(¢).
Lemma 6.1. — The function v satisfies the triangle inequality
(6.2) v(¢ +4") > min(v(e), v(¥")).

Moreover, if the inequality in (6.2) is strict we have v(y) = v(¢').

Proof. — If ¢ and ¢’ are linearly dependent the claim is obvious. We may hence
assume that they are linearly independent. For z,y € Z, we write

Q(z + y') = ax® + y°b + cxy.
Suppose that v(y) + ") < v()),v()"). Then orde(a + b + ¢) < ordg(a),ord,(b). The
usual triangle inequality for ord, implies
orde(c) = ordg(a + b+ ¢) < ordg(a),orde(d).

Lemma 3.2.(b) implies that (L, Q) is isotropic. This and proves (6.2). The second
assertion of the lemma follows from (6.2), applied to a suitable combination of the
vectors +1, +10’ and ¢ + 4. O

Remark 6.2. — If n < 3, one gets an alternative proof of Lemma 6.1 by noting that
(L, @) is represented by the quaternion division algebra D over Qy, equipped with its
norm form. The function v is then the restriction of the standard valuation of D.

Let ¥ = (1;) be a basis of L. For i = 1,...,n, let L;—; C L be the subspace (of
rank ¢ — 1) spanned by ¢1,...,9;—1. We define a function 9; : L/L;_1 — Z>oU {o0}
by the rule

(¢ + Li—1) == max(v(y) ' € ¢ + Li—1).
Note that 9;(¢) = oo if and only of ¢ € L;_1.
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Definition 6.3. — A basis ¥ = (¢;) of L is called ideal, if
v(thi) = 0i(Yi + Li—1) = IIZIGIILI(@WJ +Li 1))
holds fori = 1,...,n.

It is clear that there exists an ideal basis of L. The next lemma gives a useful
characterization of an ideal basis.

Lemma 6.4. — A basis ¥ = (¢;) of L is ideal if and only if

(6-3) v(¥i) <w(yy) fori <,
and for all (z;) € Z} we have
(6.4) ’U(Z z;;) = min v(x;9);).

Proof. — Let b = (¢;) be a basis of L. If (6.3) and (6.4) hold, then one easily checks
from Definition 6.3 that 1 is ideal.

Conversely, suppose that v is ideal. The inequality (6.3) follows directly from
Definition 6.3. It remains to prove (6.4). Fix (z;) € Z} and k with 1 < k < n. Set
Ok = D p, Tii. We claim that

(6.5) v(pr + Trtbr) = min(v(pr), v(TrPr)).

From this claim, (6.4) follows by induction.

For k = 1, the claim is obvious. To prove it for £ > 1 we may assume that it holds
for ¥ = k — 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is
greater than or equal to the right hand side. Suppose that the left hand side is strictly
greater than the right hand side. Then we have v(py) = v(zrtr). Using (6.1), (6.3)
and the claim for &' = k — 1, we find that ord,(zx) < ord,(x;) for all i < k. After
dividing by xj, we may therefore assume that z; = 1. However, by the definition of
an ideal basis we have

v(pr) = v(r) > v(er + Yr).

This contradicts our assumption and proves the claim. O
Let us fix an ideal basis 9 = (¢1,...,%,) of L, and set

a;:==v(;), i=1,...,n.

We want to show that the a; are the Gross—Keating invariants of (L, Q). We first
check that (a;) lies in the set S (Section 1). For this we write the quadratic form @

as follows:
Q) wih) = bimiz;.
i i<j
We set a;; := ordy(b;;). Note that a; = a;;.
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Proposition 6.5. — For1<i<j<n we have

Qi Z %
Proof. — The case ¢ = j being trivial, we may assume that ¢ < j. Our proof is by

contradiction. First we assume that 2a;;+1 < a; +a;. We set ¢ := max(a;; —a;+1,0)
and look at the right hand side of

Qi + 15) = biil> + bjj + bij .
The three terms of this sum have {-valuation a; + 2¢, a; and a;; + ¢, respectively. By
our choice of ¢ we have

a;; + ¢ < min(a; + 2¢, a;).

It follows that
v(lPi +95) = ag; + ¢ < min(v(°Y;), v(1;)).
This contradicts the triangle inequality and excludes the case 2a;; + 1 < a; + a;.
It remains to exclude the case 2a;; + 1 = a; + a;. Since a; < a; we have ¢ :=

a;j —a; > 0. Let ¢ € Z be a (-adic unit. Then
(66) Q(fcx’(ﬁl + ’(ﬁ]) = biié2cl‘2 + b]’j + bijﬁcx.
By our choice of ¢ we have

a; +2c=a; —1=ua; +c

We see that on the right hand side of (6.6), the first and the last term have the
minimal valuation a; — 1, while the middle term has valuation a;. Therefore, for an
appropriate choice of x, we get

v(£xi + 1) > a; > min(v(zi;), v(¥y)).
But this contradicts Lemma 6.4, (6.4). The proposition follows. O
Proposition 6.6. — An ideal basis is also optimal (Definition 1.2). Moreover, if

¥ = () is an ideal basis of L, then (a; := v(v);)) are the Gross—Keating invariants
of (L, Q).

Proof. — The previous proposition says that (a;) is an element of S. It remains to
show that (a;) is a maximal element, with respect to the lexicographical ordering.

Let 9" = (¢!) be an arbitrary basis of L, and let (a}) be an element of S(3")
(Section 1). We will show that a}, < a, for £ = 1,...,n, which proves the proposition.
Write

¢; = Zwij¢ja with (:L””) S GLn(ZZ)-
J

The condition (a}) € S(¢') together with Lemma 6.4 shows that
(6.7) a; <v(y;) = min(a; + 2ordy(z;;)).
j
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Using that (z;;) is invertible, one shows that there exists at least one pair of indices
(i) with £ <4 and j < k such that z;; is a unit. Applying (6.7) and (6.3) we get
a, < a; <aj <ag.

This is what we had to prove. O

Corollary 6.7. — Let ¢ = (¢;) be an ideal basis of L and (y;) € Q) with y; # 0.
Set ' := (1)), where ¢! := yi1p; € L ®7,Qp, and let L' denote the Z,-lattice spanned
by . Let (a;) be the Gross—Keating invariants of L.

(a) The basis v’ of L' is ideal.
(b) The Gross—Keating invariants of L' are the numbers
ai = a; + 2ord(y;),

in some order.

Proof. — Choose an integer r such that {"y; € Zy, for all i. For (z;) € Z}, Lemma
6.4 shows that

U(Z ri;) = U(Z 0 xiyip;) — 2
= min(v({"z;y;¥;)) — 2r
= min(u(z:1)).

Again by Lemma 6.4 we conclude that 1’ (in some order) is an ideal basis of L. This
proves (a). Part (a) of the corollary follows now from the previous proposition. O

Remark 6.8. — Corollary 6.7 (a) is false without the assumption that (L, Q) is
anisotropic. Consider, for instance, the (isotropic) quadratic form Q(z) = 22 —23+422
over Z». Dividing the last vector of the standard basis by 2 we obtain the quadratic
form Q'(z) = z? — 2% + 23. According to Proposition 4.2(b), the Gross-Keating

invariants of @ are (0,2, 2), while the invariants of @' are (0,1, 1).

Proposition 6.9. — Let (L,Q) be an anisotropic free quadratic module over Z;.
Then every optimal basis is an ideal basis.

The proof of this proposition uses the following lemma.

Lemma 6.10. — Let (a1, ..., a,) be the Gross—Keating invariants of (L,Q), and let
1 be an optimal basis. Then v(vy;) = a;.

Proof. — Let 1 be an optimal basis and suppose that v(¢;) > a;, for some i. It
follows from the definition of the Gross—Keating invariants (Definition 1.2) that there
exists a j # i such that

ord(b;;) = (a; + a;)/2.
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In particular, we have that a; = a; mod 2. Lemma 5.3 implies therefore that a; #
a; mod 2 for all k # i,7, since (L,Q) is anisotropic. (The case that n = 4 easily
reduces to the case that n = 3 by using the existence of an ideal basis.)

Consider the restriction Q1 of @ to L1 = (¢;, ;). We distinguish three cases. First
suppose that a; = a;. Then (L1, Q1) is isotropic by Lemma 3.2.(b).

Next we suppose that a; < a;. Then ¢ < j. We have already seen that a; #
a; mod 2 for all k # i, j. Renumbering the indices, if necessary, we may assume that
a; < aj+1 and aj_1 < a;. Define (@;) by @; = a; +1 and a; = a; — 1, and a = ay, for
all k #14,7. Then (a;) € S(¢). This contradicts the definition of the Gross—Keating
invariants.

Finally, we suppose that a; > a;. Then i > j. If v(¢;) > a;, we interchange ¢
and j and obtain a contradiction by the previous case. Therefore v(¢;) = a;. Since
a; = aj mod 2, Lemma 3.2.(b) implies that L, is isotropic. This gives a contradiction.
We conclude that v(y);) = a; for all i. O

Proof of Proposition 6.9. — Let 1 be an optimal basis which is not ideal. Lemma
6.10 implies that v(¢);) = a; for all i. Let k be minimal such that there exists a
p = Zle z;¢; € L with v(p) # min;(2;4;). Lemma 6.4 implies that k exists. It
follows from the triangle inequality that v(¢) > min;(z;v;). Write ¢ = Zf;ll ;.
The choice of k implies that v(¢) = min;«f v(x;1;). Since v(p) = v(P + xRYy), we
conclude from Lemma 6.1 that v(@) = v(xkty). This implies that

(6.8) 2ord(z;) + a; > 2ord(zy) + ag.

In particular, ord(z;) > ord(zy), for all i. Therefore it is no restriction to assume
that z; is a unit.
We define a new basis ¢ = (p;) by w; = ; if i # k and ¢ = p. Write
Q(Z Yipi) = Z I;ijyi?/j-
i i<j

One computes that

Zi bl]x, fOI‘j > k.

b = { 2zjbjj + >, bijwi for j <k,

Equation (6.8) implies that ord(b;i) > (a; + ax)/2. Therefore ¢ is again an optimal
basis. But v(pr) = v(e) > min; v(z;;) = v(zkyr) = ag. This contradicts Lemma
6.10. 0

Lemma 6.11. — Let M C L be a sublattice, i.e. a sub-Z,-module of rank n. Let
bi,...,by be the Gross—Keating invariants of (M,Q|a). Then b; > a;.

Proof. — We choose ideal bases (¢1,...,%,) for L and (¢1,...,¢n) for M. Then
a; = v(¢;) and b; = v(p;). Let us fix an index ¢ € {1,...,n} and show b; > a;. For
an element ¢ = 3. z;1p; of L, we set o' := > . xj1p; and " := 37,5 ;9. Then
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Y =9 +9" and v(y") > a;. Since the vectors ¢f,..., ¢} lie in a subspace of rank
i — 1, there exist z1,...,2; € Zy, not all zero, such that ngi zj¢; = 0. Then
>_wipi =) wil.
J<i J<i
Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to
the right hand side, we conclude that

min(b; + 2ord,(z;)) > min(v(p}) + orde(z;)) > min(a; + 2 ord(z;)).
J<i J<i i<i

For the index j for which ord,(z;) takes its minimal value we get a; < b; < b;. This
proves the lemma. O
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