
12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene I. Bouw

This note provides details on [GK, Se
tion 4℄. The main goal is to de�ne and


ompute the Gross{Keating invariants a

1

; a

2

; a

3

of ternary quadrati
 forms over Z

`

(De�nition 1.2). If a

1

� a

2

mod 2 and a

3

> a

2

we de�ne an additional invariant

� 2 f�1g (De�nition 2.7, De�nition 4.8). If ` 6= 2 every quadrati
 form over Z

`

is

diagonalizable, and it is easy to determine these invariants from the diagonal form

(Se
tion 2). If ` = 2 not every quadrati
 form is diagonalizable. We determine a

normal form in Se
tion 3 and 
ompute the invariants in terms of this normal form

(Se
tion 4). In Se
tion 5 we determine expli
itly when a ternary quadrati
 form is

anisotropi
. A 
omplete table 
an be found in Proposition 5.2 (non diagonalizable


ase) and Theorem 5.7 (diagonalizable 
ase). In Se
tion 6, we give an alternative

de�nition of the Gross{Keating invariants for anisotropi
 quadrati
 forms. The results

of Se
tion 6 are due to Stefan Wewers, following a hint in [GK, Se
tion 4℄.

Our main referen
e on quadrati
 forms over Z

`

is [C, Chapter 8℄. Most of the of

the result of this paper 
an also be found in the work of Yang, in a somewhat di�erent

form. The Gross{Keating invariants are 
omputed in [Y1, Appendix B℄. The question

whether a given form over Z

2

is isotropi
 or not (Se
tion 5) is dis
ussed in [Y2℄.

I would like to thank M. Rapoport for 
omments on an earlier version.

1. De�nition of the invariants a

i

In this se
tion we give the general de�nition of the Gross{Keating invariants a

i

of

quadrati
 forms over Z

`

whi
h are used in [GK℄.

Let L be a free Z

`

-module of rank n and 
hoose a (for the moment) arbitrary basis

 = f 

1

;  

2

; : : : ;  

n

g. For the appli
ation to [GK℄ we are only interested in the 
ase

n = 3 of ternary quadrati
 forms. Let (L;Q) be an integral quadrati
 form over Z

`

,
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that is,

Q(x) = Q(

X

x

i

 

i

) =

X

i�j

b

ij

x

i

x

j

; with b

ij

2 Z

`

:

Put b

ji

= b

ij

for j > i. If we want to stress the dependen
e of the b

ij

on the basis, we

write b

ij

( ) for b

ij

. We write (x; y) = Q(x+ y)�Q(x)�Q(y) for the 
orresponding

symmetri
 bilinear form and B = (( 

i

;  

j

)) for the 
orresponding matrix. Note that

B =

�

B

ij

�

; where B

ij

=

�

b

ij

; if i < j;

2b

ij

; if i = j:

In the rest of the paper we only use the b

ij

and not the B

ij

, for simpli
ity. We denote

by ord the `-adi
 valuation on Z

`

. We always suppose that Q is regular, that is,

det(B) 6= 0.

Changing the basis multiplies the determinant of B by an element of (Z

�

`

)

2

. There-

fore the determinant is a well de�ned element of Z

`

=(Z

�

`

)

2

.

Lemma 1.1. | Suppose that either ` 6= 2 or n is odd. De�ne

� = �(Q) =

1

2

det(B):

Then � 2 Z

`

.

Proof. | The lemma is obvious if ` 6= 2. Suppose that ` = 2 and n odd. Write

� =

P

�2S

n

2

Æ(�)

d(�), where d(�) = (�1)

sgn(�)

Q

n

i=1

b

i�(i)

and Æ(�)+1 is the number

of i 2 f1; 2; : : : ; ng whi
h are �xed by �. The only problemati
 terms are those with

Æ(�) = �1. Suppose that � a
ts without �xed points on f1; 2; : : : ; ng. Then �

�1

6= �,

sin
e n is odd. The matrix (( 

i

;  

j

)) is symmetri
. It follows that d(�) = d(�

�1

),

hen
e 2

Æ(�)

d(�) + 2

Æ(�

�1

)

d(�

�1

) 2 Z

`

.

We now 
ome to the de�nition of the Gross{Keating invariants of a quadrati


form. Let  = ( 

1

;  

2

; : : : ;  

n

) be a basis of L. We write S( ) for the set of tuples

y = (y

1

; y

2

; : : : ; y

n

) 2 Z

n

su
h that

(1.1) y

1

� y

2

� : : : � y

n

;

y

i

+ y

j

2

� ord(b

ij

( )) for 1 � i � j � n:

Let S = [S( ). We order tuples (y

1

; : : : ; y

n

) 2 S lexi
ographi
ally, as follows. For

given (y

1

; : : : ; y

n

), (z

1

; : : : ; z

n

) 2 S, let j be the largest integer su
h that y

i

= z

i

for

all i < j. Then (y

1

; : : : ; y

n

) > (z

1

; : : : ; z

n

) if y

j

> z

j

.

De�nition 1.2. | The Gross{Keating invariants a

1

; : : : ; a

n

are the maximum of

(y

1

; : : : ; y

n

) 2 S. A basis  is 
alled optimal if (a

1

; : : : ; a

n

) 2 S( ).

If  is optimal, then

(1.2) a

i

+ a

j

� 2 ord(b

ij

( )) for 1 � i � j � n; and a

1

� a

2

� � � � � a

n

:

Sin
e � is well de�ned up to (Z

�

`

)

2

, the integer ord(�) is well de�ned. The following

lemma will be useful in 
omputing the Gross{Keating invariants.
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Lemma 1.3. | (a) Suppose that n is odd, then

ord(�) � a

1

+ a

2

+ � � �+ a

n

:

(b) We have

a

1

= min

x;y2L

ord (x; y) :

(
) De�ne � := min

A

ord(det(A)), where A runs through the 2 by 2 minors of B.

Then

a

1

+ a

2

� �:

Proof. | This lemma is proved in [Y1, Lemma B.1, Lemma B.2℄. Note that the

matrix T in [Y1℄ di�ers by a fa
tor 2 from our matrix B. Let ' be an optimal basis.

We use the notation of the proof of Lemma 1.1.

First suppose that ` = 2. Write S for the set of equivalen
e 
lasses in S

n

un-

der the equivalen
e relation � � �

�1

. The proof of Lemma 1.1 shows that � =

P

�2S

(�1)

sgn(�)

2

Æ

0

(�)

d(�), where Æ

0

(�) � 0. The 
hoi
e of ' implies that

ord(2

Æ

0

(�)

d(�)) = Æ

0

(�) + ord(

Y

i

b

i�(i)

) �

n

X

i=1

a

i

+ a

�(i)

2

=

n

X

i=1

a

i

:

This proves (a) in this 
ase.

If ` 6= 2, de�ne Æ

0

(�) = 0 for all � 2 S

n

. Then the proof works also in this 
ase.

Sin
e a

1

� a

2

� � � � � a

n

, it follows from (1.2) that ord(b

ij

(')) � a

1

for all i � j.

On the other hand, it is obvious that a

1

� min

x;y2L

ord (x; y). This implies (b).

Part (
) is similar to (a), 
ompare to Lemma B1.ii in [Y1℄. Let i

1

; i

2

; j

1

; j

2

2

f1; 2; : : : ; ng be integers su
h that i

1

6= i

2

and j

1

6= j

2

. Write B(i

1

; i

2

; j

1

; j

2

) for

the 
orresponding minor of B. After renumbering, we may suppose that i

1

6= j

2

and i

2

6= j

1

. Then det(B(i

1

; i

2

; j

1

; j

2

)) = �(2

�

b

i

1

;j

1

b

i

2

;j

2

� b

i

1

;j

2

b

i

2

j

1

), where � 2

f0; 1; 2g is the number of equalities i

1

= j

1

; i

2

= j

2

that hold. We 
on
lude that

ord(det(B(i

1

; i

2

; j

1

; j

2

)) � (a

i

1

+ a

i

2

+ a

j

1

+ a

j

2

)=2 � a

1

+ a

2

. (Here we use that

a

1

� a

2

� � � � � a

n

and i

1

6= i

2

and j

1

6= j

2

.) This proves (
).

2. De�nition of the Gross{Keating invariants for ` 6= 2

We start this se
tion with an elementary lemma whi
h holds without assumption

on `.

Lemma 2.1. | Choose a basis  = ( 

1

; : : : ;  

n

) of L. Let 


1

; : : : ; 


m

2 L be linearly

independent. The following are equivalent.

(a) There exists 


m+1

; : : : ; 


n

2 L su
h that the (


i

) form a basis.

(b) The matrix (


1

; : : : ; 


m

), expressing the 


i

in terms of the basis  , 
ontains a

m�m minor whose determinant is a p-adi
 unit.

(
) If

P

n

i=1

v

i




i

2 L for some v

i

2 Q

`

, then v

i

2 Z

`

.



124 IRENE I. BOUW

Proof. | This is straightforward. See also [C, Chapter 8, Lemma 2.1℄.

In parti
ular, a ve
tor � =

P

i

�

i

 

i

2 L is part of a basis of L if and only if

min

j

ord(�

j

) = 0. We 
all su
h ve
tors primitive.

We have that

(2.1) 2 (x; y) = 2[Q(x+ y)�Q(x)�Q(y)℄ = (x+ y; x+ y)� (x; x) � (y; y) :

If ` 6= 2, this implies that

(2.2) min

x;y2L

ord (x; y) = min

x2L

ord (x; x) :

In the rest of this se
tion, we suppose that ` 6= 2. There is a x 2 L for whi
h the

minimum in (2.2) is attained. This ve
tor x is primitive. Lemma 2.1 implies that x


an be extended to a basis of L. We will see in Se
tion 4 that (2.2) does not hold for

` = 2; this is the main reason why things are more diÆ
ult for ` = 2.

Proposition 2.2. | Suppose that ` 6= 2. Then there exists a basis  of L su
h that

Q(x) = Q(

X

x

i

 

i

) =

X

i

b

ii

x

2

i

; where ord(b

11

) � ord(b

22

) � : : : � ord(b

nn

):

Proof. | Our proof follows [C, Chapter 8, Theorem 3.1℄.

The dis
ussion before the statement of the theorem shows that we may 
hoose '

1

su
h that

ord(Q('

1

)) = ord ('

1

; '

1

) = min

x;y2L

ord (x; y) :

Here we use the equality (2.2).

Choose '

2

; : : : ; '

n

2 L su
h that ' = f'

1

; '

2

: : : ; '

n

g is a basis of L. As before

we write Q(

P

i

x

i

'

i

) =

P

1�i�j�n

b

ij

(')x

i

x

j

. Then

Q(x) = b

11

�

x

1

+

b

12

2b

11

x

2

+ � � �

b

1n

2b

11

x

n

�

2

+

~

Q(x

2

; : : : ; x

n

);

for some integral quadrati
 form

~

Q in n� 1 variables.

We de�ne a new basis by  

1

= '

1

, and  

i

= '

i

� (b

1i

=2b

11

)'

1

for i 6= 1. The


hoi
e of  

1

ensures that  

i

2 L, sin
e e = ord(2b

11

) � ord(b

1i

). With respe
t to this

new basis, the quadrati
 form is

Q(x) = b

11

( )x

2

1

+

~

Q(

X

i�2

x

i

 

i

):

The proposition follows by indu
tion.

Remark 2.3. | Cassels ([C, Chapter 8, Theorem 3.1℄) proves a stronger statement

than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphi
 quadrati


forms su
h that every integral quadrati
 form is isomorphi
 to one of these. This

stronger statement implies that the de�nition of the invariants a

i

of Proposition 2.6

does not depend of the 
hoi
e of the orthogonal basis.
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We 
an give a simpler de�nition of the invariants a

i

in terms of a basis  as in

Proposition 2.2. If 
 2 L is an element su
h that Q(
) 6= 0, we may de�ne a re
e
tion

�




by

�




(x) = x�

2 (x; 
)

(
; 
)


:

This is the re
e
tion in the orthogonal 
omplement of 
. Clearly, �




is de�ned over

Z

`

if and only if ord (
; 
) = min

x2L

ord (x; x) : (In fa
t, this also holds for ` = 2.)

Sin
e �




is a re
e
tion, it is 
learly invertible. The following lemma is a partial analog

of Witt's Lemma ([C, Corollary to Theorem 2.4.1℄) whi
h holds for quadrati
 forms

over �elds.

Lemma 2.4. | Suppose that  ; ' 2 L satisfy

Q( ) = Q('); ord(Q( )) = ord(Q(')) = min

x2L

ord(Q(x)):

Then there exists an integral isometry � of (L;Q) su
h that �( ) = '. Moreover, �

may be taken as a produ
t of re
e
tions �




.

Proof. | This is [C, Lemma 8.3.3℄. Our assumptions on  and ' imply that

Q( + ') + Q( � ') = 2Q( ) + 2Q(') = 4Q( ): Sin
e ord(Q( )) = ord ( ;  ) =

min

x2L

ord (x; x) =: e, it follows that one of the following holds:

(a) ordQ( + ') = e,

(b) ordQ( � ') = e.

Sin
e ` 6= 2, it is also possible that both hold. If (a) holds, then �

 +'

is integral and

sends  to '. If (b) holds, de�ne � = �

 �'

Æ �

 

.

Lemma 2.5. | Suppose u; v 2 Z

�

`

. Then ux

2

1

+ vx

2

2

�

Z

`

x

2

1

+ uvx

2

2

.

Proof. | This is proved in the se
ond 
orollary to [C, Lemma 8.3.3℄. We give the

idea. Sin
e ` 6= 2, there exists a; 
 2 Z

`

su
h that a

2

u + 


2

v = 1. We may assume

that a is a unit. Then

C =

�

a �
v


 au

�

de�nes the equivalen
e of the lemma.

Proposition 2.6. | (a) Let  = ( 

1

;  

2

; : : : ;  

n

) be an orthogonal basis of L as

in Proposition 2.2 Write Q(x) =

P

i

b

i

x

2

i

. Then the invariants a

i

(De�nition

1.2) satisfy

a

i

= ord(b

i

):

In parti
ular,  is optimal.

(b) Suppose that n is odd. Then

ord(�) = a

1

+ � � �+ a

n

:
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Proof. | Let ' be a basis su
h that the inequalities (1.2) hold. We 
laim that

ord ('

1

; '

1

) = a

1

. Part (b) of Lemma 1.3 implies that a

1

= min

x2L

ord (x; x). The


hoi
e of ' implies moreover that ord ('

1

; '

1

) = min

x2L

ord (x; x). The de�nition of

a

1

implies therefore that a

1

= ord ('

1

; '

1

).

We apply the diagonalization pro
ess of the proof of Proposition 2.2 to the basis

'. De�ne  

1

= '

1

and  

i

= '

i

� (b

1i

=2b

11

)'

1

for i 6= 1. One 
omputes that

( 

j

;  

1

) = 0; ( 

j

;  

j

) =

b

2

1j

2b

11

+ 2b

jj

; ( 

i

;  

j

) = �

b

1i

b

1j

2b

11

+ b

ij

;

for j 6= 1 and i 6= 1; j. The inequalities (1.2) imply that ord ( 

j

;  

j

) � a

j

and

2 ord ( 

i

;  

j

) � a

i

+ a

j

. Therefore the new basis also satis�es the inequalities (1.2).

This implies that there exists an orthogonal basis  whi
h satis�es (1.2). It follows

that the Gross{Keating invariants (a

1

; : : : ; a

n

) are the maximum of [S( ), where the

union is taken over the orthogonal bases and [S( ) is as in (1.1).

Let ' and  be two orthogonal bases. Write Q(x) = b

1

x

2

2

+ b

2

x

2

2

+ � � �+ b

n

x

2

n

with

respe
t to the basis  and Q(x) = d

1

x

2

1

+ d

2

x

2

2

+ � � �+ d

n

x

2

n

with respe
t to the basis

'. We suppose that ord(b

1

) � ord(b

2

) � � � � � ord(b

n

) and ord(d

1

) � ord(d

2

) � � � � �

ord(d

n

). We suppose moreover that ' satis�es (1.2). (Su
h ' exists by the above

argument.) We have to show that  satis�es (1.2), also. Write C = (


ij

) for the


hange of basis matrix expressing ' in terms  . As before, Lemma 1.3.(b) implies

that ord(b

1

) = ord(d

1

) = a

1

: Write b

1

= ud

1

, for some unit u.

Suppose that ord(b

2

) > ord(b

1

). Then

d

1

=

n

X

j=1




2

j1

b

j

� 


2

11

b

1

mod `

a

1

+1

:

This implies that u is a quadrati
 residue. To prove the 
laim, we may therefore

assume that Q( 

1

) = Q('

1

) in this 
ase.

Suppose that ord(b

1

) = ord(b

2

). Then Lemma 2.5 implies that Q is Z

`

-equivalent to

d

1

x

2

1

+ub

2

x

2

2

+b

3

x

2

3

+ � � � . Hen
e also in this 
ase we may assume that Q( 

1

) = Q('

1

).

Lemma 2.4 implies that there exists an isometry � of Q whi
h sends  

1

to '

1

.

Then D := �

�1

C �xes  

1

. Write

D =

�

1 D

1

0 D

2

�

; B :=

0

B

�

2b

1

0

.

.

.

0 2b

n

1

C

A

where D

2

is an (n� 1)� (n� 1) matrix. One 
omputes that

D

t

BD =

�

2


2

b

1

2
D

1

2
D

t

1

�

�

:
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Our assumption implies that D

t

BD is a diagonal matrix, with diagonal entries 2d

i

.

This implies that D

1

= (0; : : : ; 0). We 
on
lude that D restri
ts to an integral and in-

vertible map from the sublatti
e of L spanned by  

2

; : : : ;  

n

to the sublatti
e spanned

by '

2

; : : : ; '

n

. This implies (a).

Part (b) follows immediately from (a).

De�nition 2.7. | Suppose that n = 3 and ` 6= 2. Assume a

1

� a

2

mod 2, and

a

3

> a

2

. Choose a basis  = ( 

1

;  

2

;  

3

) of L as in Proposition 2.2. Write b

ii

= `

a

i

u

i

.

We de�ne an invariant � = �( ) by the Legendre symbol

(2.3) � =

�

�u

1

u

2

`

�

:

Lemma 2.8. | Assumptions and notations are as in De�nition 2.7.

(a) The invariant �( ) does not depend on the 
hoi
e of the orthogonal basis  .

(b) We have that � = 1 if and only if the subspa
e of L


Z

`

Q

`

spanned by  

1

and

 

2

is isotropi
.

Proof. | Let  = ( 

1

;  

2

;  

3

) be a basis of L as in Proposition 2.6, in parti
ular  

is orthogonal and the valuation of b

i

= ( 

i

;  

i

) =2 is equal to a

i

, for i = 1; 2; 3.

Suppose that a

2

� a

1

mod 2 and a

3

> a

2

. Write a

2

= a

1

+ 2
. Write Q

0

for the

restri
tion of Q to the sublatti
e of L spanned by  

1

and  

2

. Then Q

0

(x) = b

1

x

2

1

+b

2

x

2

2

is equivalent to `

a

1

(x

2

1

+ u

1

u

2

`

2


x

2

2

) (Lemma 2.5). It follows that Q

0

is isotropi
 if

� = 1 and anisotropi
 if � = �1. This proves (b).

Let ' be another orthogonal basis and write Q(

P

i

x

i

'

i

) = d

1

x

2

1

+d

2

x

2

2

+d

3

x

2

3

. We

assume that ord(d

i

) = a

i

. Write C for the matrix expressing ' in terms of  . The

argument of the proof of Proposition 2.6 together with the assumption that a

2

< a

3

implies that there exists an isometry � su
h that

�

�1

C =

0

�

v

1

0 0

0 v

2

0

0 0 v

3

1

A

;

where the v

i

are units. This shows that d

i

= v

2

i

b

i

. The lemma follows.

3. A normal form for quadrati
 forms over Z

2

Not every quadrati
 form over Z

2

is diagonalizable. In this se
tion we give a normal

form for ternary quadrati
 forms over Z

2

, following [C, Se
tion 8.4℄. Cassels uses a

slightly stronger notion of integrality, namely he supposes that b

ij

=2 2 Z

`

, for all

i 6= j. However, this does not make any di�eren
e.

Lemma 3.1. | Suppose ` = 2. Let Q be a regular quadrati
 form over Z

2

. Then Q

is Z

2

-equivalent to a sum of quadrati
 forms of the form

(3.1) 2

e

ux

2

;
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for e 2 Z

�0

and u 2 Z

�

2

, and

(3.2) 2

e

(b

1

x

2

1

+ ux

1

x

2

+ b

2

x

2

2

);

with e 2 Z

�0

, and u 2 Z

�

2

.

The equality (2.1) holds for ` = 2, but (2.2) does not. However, (2.1) implies that

min

x;y2L

ord (x; y) + 1 � min

x2L

ord (x; x) :

Therefore min

x;y2L

ord (x; y) equals either min

x2L

ord (x; x) or min

x2L

ord (x; x)� 1.

Proof. | Let e = min

x;y2L

ord (x; y). We distinguish two 
ases.

(a) There exists a 
 2 L su
h that ord (
; 
) = e.

(b) For all 
 2 L we have that ord (
; 
) > e.

Suppose we are in 
ase (a). Then ord ( 

1

;  

i

) � e, by de�nition. We 
an now

pro
eed as in the proof of Proposition 2.2. Namely, 2b

11

= 2Q( 

1

) = ( 

1

;  

1

).

Therefore b

11

has valuation e� 1. For i 6= 1, we have that ord(b

1i

) = ord ( 

1

;  

i

) � e.

Therefore

'

i

=  

i

�

�

b

1i

2b

11

�

 

1

:

is an element of L and  

1

; '

2

; : : : ; '

n

form a basis. With respe
t to this basis the

quadrati
 form Q be
omes Q(x) = b

11

x

2

1

+

~

Q(x

2

; : : : ; x

n

), for some quadrati
 form

~

Q

in n� 1 variables.

Suppose we are in 
ase (b). Then ord (
; 
) > e for all 
 2 L. We may 
hoose

 

1

;  

2

2 L su
h that ord ( 

1

;  

2

) = e. The de�nition of e implies that ( 

1

+ 

2

)=2 62 L.

Lemma 2.1 implies therefore that  

1

;  

2


an be extended to a basis  

1

; : : : ;  

n

of L.

The 
hoi
e of  

1

and  

2

implies that the determinant of the matrix

�

2b

11

2

�e

b

12

2

�e

b

12

2

�e

2b

22

2

�e

�

is a unit in Z

`

. Therefore we 
an �nd �

j

1

; �

j

2

su
h that

�2�

j

1

b

11

� �

j

2

b

12

+ b

1j

= 0; �2�

j

2

b

22

� �

j

1

b

12

+ b

2j

= 0;

for j = 3; : : : ; n. De�ne '

j

=  

j

� �

j

1

 

1

� �

j

2

 

2

. The 
hoi
e of the �

j

i

implies that

('

j

;  

1

) = ('

j

;  

2

) = 0, for j = 3; : : : ; n.

With respe
t to the basis ( 

1

;  

2

; '

3

; : : : ; '

n

) the quadrati
 form Q be
omes

Q(x) = 2

e

(b

11

x

2

1

+ b

12

x

1

x

2

+ b

22

x

2

2

) +

~

Q(x

3

; : : : ; x

n

):

This proves the lemma.

Lemma 3.2. | Let Q

2

(x) = b

11

x

2

1

+ b

12

x

1

x

2

+ b

22

x

2

2

be a binary quadrati
 form

over Z

2

and L

2

the 
orresponding free Z

2

-latti
e of rank two.

(a) If min(ord(b

11

); ord(b

22

)) < ord(b

12

) then Q

2

is diagonalizable.
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(b) Suppose that Q

2

is not diagonalizable. Then Q

2

is anisotropi
 if and only if

ord(b

12

) = ord(b

11

) = ord(b

22

).

(
) Suppose Q

2

is anisotropi
 and not diagonalizable. Then Q

2

is equivalent to

2

e

(x

2

1

+ x

1

x

2

+ x

2

2

);

for some e.

(d) Suppose that Q

2

is isotropi
 and not diagonalizable. Then Q

2

is equivalent to

2

e

x

1

x

2

;

for some e.

Proof. | Part (a) follows from the proof of Lemma 3.1.

Suppose that Q

2

is not diagonalizable. Then ord(b

12

) � min(ord(b

11

); ord(b

22

)),

by (a). Part (b) is an elementary Hilbert-symbol 
omputation using [S, Theorem

IV.6℄.

Suppose that Q

2

is anisotropi
 and not diagonalizable. Then (b) implies that e :=

ord(b

12

) = ord(b

11

) = ord(b

22

). Part (
) now follows from an elementary 
omputation.

Suppose that Q

2

is isotropi
 and not diagonalizable. There exists a primitive ve
tor

 

1

su
h that Q( 

1

) = 0. Lemma 2.1 together with the fa
t that the quadrati
 form

is nondegenerate, implies that there exists a ve
tor  

2

2 L

2

su
h that  

1

;  

2

form a

basis of L

2

and ( 

1

;  

2

) 6= 0. After multiplying  

2

with a unit, we may suppose that

( 

1

;  

2

) = 2

e

, for some e � 0.

We 
laim that ord ( 

2

;  

2

) > ord ( 

1

;  

2

). Namely, if ord ( 

2

;  

2

) � ord ( 

1

;  

2

)

then Q

2

is diagonalizable by (a), but this 
ontradi
ts our assumptions. Therefore

 

0

2

:=  

2

�

( 

2

;  

2

)

2 ( 

1

;  

2

)

 

1

2 L

2

:

Now  

1

;  

0

2

form a basis of L and ( 

0

2

;  

0

2

) = 0. This proves (d).

Proposition 3.3. | Let (L;Q) be a ternary quadrati
 form over Z

2

. One of the

following two possibilities o

urs.

(a) The form Q is diagonalizable; there exists a basis su
h that

Q(x) = b

1

x

2

1

+ b

2

x

2

2

+ b

3

x

3

3

; with 0 � ord(b

1

) � ord(b

2

) � ord(b

3

):

(b) The form Q is not diagonalizable; there exists a basis su
h that

Q(x) = u

1

2

�

1

x

2

1

+2

�

2

(vx

2

2

+x

2

x

3

+vx

2

3

); with v 2 f0; 1g; �

i

� 0 and u

1

2 Z

�

2

:

Proof. | This follows immediately from Lemma 3.1 and Lemma 3.2.

This 
lassi�
ation is the same as the 
lassi�
ation used (but not expli
itly stated)

in [Y1, Appendix B℄. Note that Yang's matrix T di�ers by a fa
tor 2 from the matrix

B we use. In parti
ular, the invariant � used in [Y1, Proposition B.4℄ satis�es � � �1

rather than � � 0.
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4. The Gross{Keating invariants for ` = 2

In this se
tion we 
ompute the Gross{Keating invariants of ternary quadrati
 forms

(L;Q) over Z

2

in terms of the normal form of Proposition 3.3. The 
omputation of

the a

i


an be found in Proposition 4.1 (non-diagonalizable 
ase) and Proposition 4.2

(diagonalizable 
ase). The 
omputation of � 
an be found in Proposition 4.9. This

se
tion is based on [Y1, Appendix B℄.

We start by 
onsidering quadrati
 forms whi
h are not diagonalizable. Re
all from

Proposition 3.3 that if Q is not diagonalizable then there exists a basis  of L with

respe
t to whi
h we have

(4.1) Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+ x

2

x

3

+ vx

2

3

); with v 2 f0; 1g; u

1

2 Z

�

2

:

We do not suppose that �

1

� �

2

.

Proposition 4.1. | Suppose that Q is given by (4.1). Then

(a

1

; a

2

; a

3

) =

�

(�

1

; �

2

; �

2

); if �

1

� �

2

;

(�

2

; �

2

; �

1

); if �

1

> �

2

:

Proof. | Lemma 1.3.(b) implies that a

1

= min(�

1

; �

2

). We distinguish two 
ases.

Suppose that �

1

� �

2

. Then a

1

= �

1

and ord(�) = �

1

+ 2�

2

� a

1

+ a

2

+ a

3

(Lemma 1.3.(a)). Therefore a

2

� (a

2

+ a

3

)=2 � �

2

. The existen
e of a basis  as in

(4.1) implies that (�

1

; �

2

; �

2

) 2 S( ). We 
on
lude that a

2

= a

3

= �

2

.

Suppose that �

1

> �

2

. In this 
ase we have that a

1

= �

2

. Re
all that we de�ned

� as the minimum of the valuation of the determinant of the 2 � 2-minors of B.

One 
omputes that � = min(2�

2

; 1 + �

1

+ �

2

) = 2�

2

, sin
e we assumed that �

1

�

�

2

+ 1. Lemma 1.3.(
) implies that � � a

1

+ a

2

, hen
e a

2

� �

2

. The existen
e of a

basis  as in (4.1) implies that (�

2

; �

2

; �

1

) 2 S( ). We 
on
lude that (a

1

; a

2

; a

3

) =

(�

2

; �

2

; �

1

).

We now 
onsider diagonalizable quadrati
 forms Q. Contrary to the situation for

` 6= 2, a basis  whi
h diagonalizes Q is not optimal (De�nition 1.2).

Proposition 4.2. | Suppose that Q is diagonalizable. Let  be a basis of L su
h

that

(4.2)

Q(x) = b

1

x

2

1

+ b

2

x

2

2

+ b

3

x

2

3

; with b

i

= u

i

2

�

i

; u

i

2 Z

�

2

and �

1

� �

2

� �

3

:

(a) Suppose that �

1

6� �

2

mod 2. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

; �

3

+ 2).

(b) Suppose that �

1

� �

2

mod 2:

(i) If u

1

+u

2

� 2 mod 4 or �

3

� �

2

+1, then (a

1

; a

2

; a

3

) = (�

1

; �

2

+1; �

3

+1).

(ii) Otherwise, (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 2; �

3

).

The proof of this proposition is divided in several lemmas. We use the notation of

Proposition 4.2. In parti
ular,  is a basis of L with respe
t to whi
h Q is as in (4.2).

Let ' be an optimal basis, i.e. suppose that the inequalities (1.2) hold. We write
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C = (


ij

) for the 
hange of basis matrix expressing ' in terms of  . We write the

quadrati
 form Q in terms of the basis ' as Q(x) =

P

i�j

d

ij

x

i

x

j

. In other words,

the d

ij

are the 
oeÆ
ients of the matrix obtained by dividing the diagonal elements

of C

t

BC by two. One 
omputes that

(4.3) d

ii

= 


2

1i

b

1

+ 


2

2i

b

2

+ 


2

3i

b

3

:

Lemma 4.3. | Suppose that Q is diagonal and �

1

6� �

2

mod 2. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

; �

3

+ 2).

Proof. | We have already seen that a

1

= �

1

. Therefore it follows from the de�nition

of the a

i

that a

2

� �

2

. We 
laim that a

2

= �

2

. Suppose that a

2

> �

2

.

Write �

2

= �

1

+ 2
 + 1. The inequalities (1.2) imply that ord(d

22

) � a

2

� �

2

+ 1

and ord(d

33

) � a

3

� a

2

� �

2

+ 1. Sin
e �

1

6� �

2

mod 2, it follows from (4.3) that

ord(


12

) � 
 + 1 and ord(


13

) � 
 + 1.

We �rst suppose that �

3

> �

2

. Then ord(


22

) � 1 and ord(


33

) � 1. But this

implies that det(C) � 0 mod 2: This gives a 
ontradi
tion.

If �

2

= �

3

, we pro
eed similarly. In this 
ase 


22

� 


32

mod 2 and 


23

� 


33

mod 2.

This implies again that det(C) � 0 mod 2. We 
on
lude that a

2

= �

2

.

Sin
e ord(�) = ord(det(B)) + 2 = �

1

+ �

2

+�

3

+2, it follows from Lemma 1.3.(a)

that a

3

� �

3

+ 2. To show that a

3

= �

3

+ 2 it suÆ
es to �nd a basis ' su
h that

(�

1

; �

2

; �

3

+ 2) 2 S('). We now 
onstru
t su
h a basis.

Our assumptions imply that �

3

is 
ongruent to �

1

or �

2

(modulo 2). We suppose

that �

3

� �

1

mod 2. (The 
ase �

3

� �

2

mod 2 is similar.) Write �

2

= �

1

+ 2
 + 1

and �

3

= �

1

+ 2�. We distinguish two 
ases:

{ u

1

+ u

3

� 0 mod 4,

{ u

1

+ u

3

� 2 mod 4.

In the �rst 
ase de�ne

C =

0

�

1 0 2

�

0 1 0

0 0 1

1

A

:

With respe
t to the new basis we haveQ(x) = b

1

x

2

1

+b

2

x

2

2

+2

�+1

b

1

x

1

x

3

+(b

3

+2

2�

b

1

)x

2

3

.

In the se
ond 
ase we de�ne

C =

0

�

1 0 2

�

0 1 2

��


0 0 1

1

A

:

With respe
t to the new basis we have Q(x) = b

1

x

2

1

+b

2

x

2

2

+2

�+1

b

1

x

1

x

3

+(b

3

+2

2�

b

1

+

2

2(��
)

b

2

)x

2

3

+2

��
+1

b

2

x

2

x

3

. It is easy to 
he
k that the basis ' 
orresponding to C

satis�es (1.2) for a

1

= �

1

, a

2

= �

2

and a

3

= �

3

+ 2. This proves the lemma.

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of

Lemma 4.3.
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Lemma 4.4. | Suppose that Q is diagonalizable, �

1

� �

2

mod 2 and �

3

� �

2

+ 1.

Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1).

Proof. | Sin
e a

1

= �

1

and ord(�) = �

1

+ �

2

+ �

3

+ 2 it follows from Lemma 1.3

that a

1

+ 2a

2

� a

1

+ a

2

+ a

3

� �

1

+ �

2

+ �

3

+ 2 � �

1

+ 2�

2

+ 3. This implies that

a

2

� �

2

+ 1.

We now 
onstru
t a basis ' su
h that (�

1

; �

2

+1; �

3

+1) 2 S('). The lemma follows

from this. Let C be the 
orresponding 
hange of basis matrix. Write �

2

= �

1

+ 2
.

If �

2

= �

3

de�ne

C =

0

�

1 2




2




0 1 0

0 0 1

1

A

:

With respe
t to the new basis we have Q(x) = b

1

x

2

1

+(2

2


b

1

+ b

2

)x

2

2

+2


+1

b

1

(x

1

x

2

+

x

1

x

3

) + (b

3

+ 2

2


b

1

)x

2

3

+ 2

1+2


b

1

x

2

x

3

.

If �

3

= �

2

+ 1 and u

1

+ u

2

� 2 mod 4 de�ne

C =

0

�

1 2




2




0 1 1

0 0 1

1

A

:

With respe
t to the new basis we have Q(x) = b

1

x

2

1

+(b

2

+2

2


b

1

)x

2

2

+2


+1

b

1

(x

1

x

2

+

x

1

x

3

) + (b

3

+ 2

2


b

1

+ b

2

)x

2

3

+ (2

2
+1

b

1

+ 2b

2

)x

2

x

3

.

If �

3

= �

2

+ 1 and u

1

+ u

2

� 0 mod 4 de�ne

C =

0

�

1 2




2




0 1 1

0 1 2

1

A

:

With respe
t to the new basis we haveQ(x) = b

1

x

2

1

+(2

2


b

1

+b

2

+b

3

)x

2

2

+2


+1

b

1

(x

1

x

2

+

x

1

x

3

) + (4b

3

+ 2

2


b

1

+ b

2

)x

2

3

+ (2

2
+1

b

1

+ 2b

2

+ 4b

3

)x

2

x

3

.

In ea
h of these 
ases one 
he
ks that (�

1

; �

2

+ 1; �

3

+ 1) 2 S(').

Lemma 4.5. | Suppose that Q is diagonal, �

1

� �

2

mod 2 and u

1

+ u

2

� 2 mod 4.

Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1).

Proof. | By Lemma 4.4 we may assume that �

3

� �

2

+2. We 
laim that a

2

� �

2

+1.

Suppose that a

2

� �

2

+ 2. As before, we suppose that ' is an optimal basis. As

before, we write C = (


ij

) for the 
hange of basis matrix and D = C

t

BC = (d

ij

) for

the matrix 
orresponding to the new basis. Write �

2

= �

1

+ 2
.

The assumption a

2

� �

2

+ 2 implies that ord(d

22

) � a

2

� �

2

+ 2 and ord(d

33

) �

a

3

� a

2

� �

2

+ 2. It follows from (4.3) that ord(


12

) � 
 and ord(


13

) � 
. Suppose

that ord(


12

) = 
. Then ord(


22

) = 1 and d

22

� 2

�

2

(u

1

+ u

2

) 6� 0 mod 2

�

2

+2

. This

gives a 
ontradi
tion. Similarly, we obtain a 
ontradi
tion if ord(


13

) = 
. Therefore

ord(


1j

) > 
 for j = 2; 3 and d

22

� 


2

22

b

2

mod 2

�

2

+2

. Sin
e ord(d

22

) � �

2

+ 2 and

ord(b

2

) = �

2

, we 
on
lude that ord(


22

) > 0. Similarly, d

33

� 


2

23

b

2

mod 2

�

2

+2

; this
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implies that ord(


23

) > 0. But then det(C) � 0 mod 2. This gives a 
ontradi
tion.

We 
on
lude that a

2

� �

2

+ 1.

To prove the lemma, we 
onstru
t a basis ' su
h that (�

1

; �

2

+1; �

3

+1) 2 S(').

We distinguish two sub
ases:

{ �

3

� �

1

mod 2,

{ �

3

6� �

1

mod 2.

Suppose that �

3

� �

1

mod 2. Write �

2

= �

1

+2
 and �

3

= �

1

+2�. Let ' be the

basis of L 
orresponding to the 
hange of basis matrix

C =

0

�

1 2




2

�

0 1 0

0 0 1

1

A

:

With respe
t to the new basis we have Q(x) = b

1

x

2

1

+ (2

2


b

1

+ b

2

)x

2

2

+ 2


+1

b

1

x

1

x

2

+

2

�+1

b

1

x

1

x

3

+ (b

3

+ 2

2�

b

1

)x

2

3

+ 2


+�+1

b

1

x

2

x

3

.

Suppose that �

3

6� �

1

mod 2. Write �

2

= �

1

+2
 and �

3

= �

1

+2�+1. Let ' be

the basis of L 
orresponding to the 
hange of basis matrix

C =

0

�

1 2




2

�

0 1 2

��


0 0 1

1

A

:

With respe
t to the new basis we have Q(x) = b

1

x

2

1

+ (2

2


b

1

+ b

2

)x

2

2

+ 2


+1

b

1

x

1

x

2

+

2

�+1

b

1

x

1

x

3

+ (b

3

+ 2

2�

b

1

+ 2

2(��
)

b

2

)x

2

3

+ (2


+�+1

b

1

+ 2

��
+1

b

2

)x

2

x

3

.

In ea
h of these 
ases one 
he
ks that (�

1

; �

2

+ 1; �

3

+ 1) 2 S(').

Lemma 4.6. | Suppose that Q is diagonal, �

1

� �

2

mod 2, �

3

� �

2

+ 2 and u

1

+

u

2

� 0 mod 4. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 2; �

3

).

Proof. | Write �

2

= �

1

+ 2
. We already know that a

1

= �

1

. We 
laim that

a

2

� �

2

+ 2. Suppose a

2

� �

2

+ 3. The same reasoning as in the beginning of the

proof of Lemma 4.4 shows that we may assume that �

3

� �

2

+ 4. If 


22

� 


23

� 0

mod 2, we 
on
lude as in the proof of Lemma 4.5 that det(C) � 0 mod 2. This gives

a 
ontradi
tion, hen
e either 


22

or 


23

is a unit.

Suppose that 


22

is a unit. (The argument in the 
ase that 


23

is a unit is similar,

and we omit it.) Then ord(


12

) = 
. One 
omputes that

(4.4) d

12

� 2


12




11

b

1

+ 2


21




22

b

2

mod 2

�

2

+3

:

It follows from (1.2) that 2 ord(d

12

) � a

1

+ a

2

� �

1

+ �

2

+ 3 = 2�

1

+ 2
 + 3. Hen
e

(4.5) ord(d

12

) � �

1

+ 
 + 2:

Re
all that Lemma 1.3.(b) implies that ord(d

11

) = a

1

.

First suppose that �

1

< �

2

, that is 
 6= 0. Sin
e d

11

has valuation a

1

, 


11

is a unit.

It follows from (4.4) that ord(d

12

) = �

1

+ 
 + 1. This 
ontradi
ts (4.5).
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Now suppose that �

1

= �

2

. Sin
e d

11

� 


2

12

b

1

+ 


2

21

b

2

mod 2

�

1

+1

. Sin
e d

11

has

valuation a

1

= �

1

, it follows that either

(i) 


12

� 1 mod 2 and 


21

� 0 mod 2, or

(ii) 


12

� 0 mod 2 and 


21

� 1 mod 2.

Sin
e ord(d

12

) � �

1

+ 2, it follows from (4.4) that (i) holds and that 


11

� 0 mod 2.

One 
omputes that

d

23

� 2


12




13

b

1

+ 2


22




23

b

2

� 2


13

b

1

+ 2


23

b

2

mod 2

�

1

+2

;

sin
e 


12

and 


22

are units. It follows that 


13

� 


23

mod 2. But this implies that

det(C) � 0 mod 2. (In 
ase u

1

+ u

2

� 4 mod 8 one 
ould alternatively argue as in the

proof of Lemma 4.5.)

Let ' be the basis of L 
orresponding to the 
hange of basis matrix

C =

0

�

1 2




0

0 1 0

0 0 1

1

A

:

Then b

22

(') � 0 mod 2

�

2

+2

. With respe
t to the new basis we have Q(x) = b

1

x

2

1

+

(2

2


b

1

+ b

2

)x

2

2

+ 2


+1

b

1

x

1

x

2

+ b

3

x

2

3

. Therefore (�

1

; �

2

+ 1; �

3

) 2 S('). This proves

the lemma.

The following proposition is an immediate 
onsequen
e of the 
omputation of the

invariants a

i

. It illustrates that the a

i

satisfy similar properties for ` = 2 and ` 6= 2,

whi
h is not so 
lear from the de�nition.

Proposition 4.7. | Let Q be a ternary quadrati
 form over Z

`

for ` � 2. Then

ord(�) = a

1

+ a

2

+ a

3

:

Proof. | For ` 6= 2 this is Proposition 2.6.(b). For ` = 2 the theorem follows from

the Propositions 4.1 and 4.2.

In the rest of this se
tion we de�ne the Gross{Keating invariant � for ` = 2 and

show that it is well de�ned (
ompare to Lemma 2.8).

De�nition 4.8. | Suppose that a

1

� a

2

mod 2 and a

3

> a

2

. Let ' be an optimal

basis. We de�ne � = �(') by � = 1 if the subspa
e of L 


Z

2

Q

2

spanned by '

1

and

'

2

is isotropi
, and � = �1, otherwise.

Proposition 4.9. | Suppose that a

1

� a

2

mod 2 and a

3

> a

2

.

(a) The invariant � does not depend on the 
hoi
e of the basis.

(b) (i) If Q is not diagonalizable we may write Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+

x

2

x

3

+ vx

2

3

) with v 2 f0; 1g and �

1

> �

2

. In this 
ase

� = (�1)

v

:
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(ii) If Q is diagonalizable we may write Q(x) = u

1

2

�

1

x

2

1

+u

2

2

�

2

x

2

2

+u

3

2

�

3

x

2

3

with u

1

+ u

2

� 0 mod 4, �

1

� �

2

mod 2 and �

3

� �

2

+ 2. We have that

� = (�1)

(u

1

+u

2

)=4

:

Proof. | The fa
t that one of the two 
ases of (b) holds follows immediately from

Propositions 4.1 and 4.2.

Suppose that Q is not diagonalizable. Write Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+ x

2

x

3

+

vx

2

3

), as in the statement of the proposition, and let  be the 
orresponding basis.

Write Q

2

for the restri
tion of Q to the sublatti
e spanned by the basis ve
tors

 

2

;  

3

. Lemma 3.2 implies that Q

2

is isotropi
 if and only v = 0. This implies that

�( ) = (�1)

v

.

We now show that � is well de�ned in this 
ase. It suÆ
es to show that �(') =

�( ) for optimal bases ' and  with respe
t to whi
h Q is in a normal form as

in Proposition 3.3. By assumption, Q is not diagonalizable. (In fa
t, it follows

from Proposition 4.2 that no quadrati
 form Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+ x

2

x

3

+

vx

2

3

) with v 2 f0; 1g and �

1

> �

2

is diagonalizable. Hen
e we 
ould have dropped

this assumption from the statement of the proposition.) Write Q

0

(x) = u

0

1

2

�

1

x

2

1

+

2

�

2

(v

0

x

2

2

+ x

2

x

3

+ v

0

x

2

3

) for Q expressed with respe
t to the basis '. Sin
e �(Q) =

�(Q

0

) we have that u

1

(4v

2

�1) = u

0

1

(4(v

0

)

2

�1), therefore v = v

0

implies that u

1

= u

0

1

.

Hen
e, to show that �(') = �( ), it suÆ
es to show that v = v

0

. We assume that

v = 1 and v

0

= 0, and derive a 
ontradi
tion.

The basis ve
tor '

2

is isotropi
. Write '

2

= 


1

 

1

+ 


2

 

2

+ 


3

 

3

. The fa
t that

Q('

2

) = 0 implies that �

1

� �

2

mod 2. Moreover, it follows that ord(


j

) � (�

1

�

�

2

)=2 > 0 for j = 2; 3. Sin
e '

2

is primitive, it follows that 


1

� 1 mod 2. An easy


omputation shows that ord ('

2

;  

i

) > �

2

for i = 1; 2; 3. In parti
ular ord ('

2

; '

3

) >

�

2

. But this 
ontradi
ts the assumption that ord ('

2

; '

3

) = �

2

.

Next we assume that Q is diagonalizable, and let Q(x) be as in the statement of

(b.ii). Write  for the 
orresponding basis of L. Let Q

2

be the restri
tion of Q to the

subspa
e spanned by  

1

;  

2

. Then Q

2

is isotropi
 if and only if � det(Q) is a square

([S, Theorem IV.6℄). It is easy to see that this happens if and only if u

1

+ u

2

� 0

mod 8.

We now show that � is independent of the 
hoi
e of the optimal basis in this 
ase.

Let ' be an optimal basis. Let C = (


ij

) be the 
orresponding 
hange of basis matrix

expressing ' in terms of  . Write �

1

= �

2

+ 2
.

We suppose that �

2

> �

1

, that is 
 > 0. (The 
ase �

1

= �

2

is analogous and left

to the reader.) We use the notation of the proof of Lemma 4.6. In parti
ular, we

write Q(x) =

P

i�j

d

ij

x

i

x

j

for the representation of Q in terms of the basis '.

We showed in the proof of Lemma 4.6 that either 


22

or 


23

is a unit. Suppose

that 


22

� 0 mod 2 and 


23

� 1 mod 2. It follows that ord(d

33

) � a

3

= �

3

� �

2

+ 3.

Therefore (4.3) implies that ord(


13

) = 
. We showed in the proof of Lemma 4.6

that 


11

is a unit. Sin
e d

13

� 2


11




13

b

1

+ 2


21




23

b

2

mod 2

�

3

+1

, we 
on
lude that
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2 ord(d

13

) = 2 + 2
 + 2�

1

= �

1

+ �

2

+ 2. (Here we use that 
 > 0.) But this


ontradi
ts 2 ord(d

13

) � a

1

+ a

3

= �

1

+ �

3

� �

1

+ �

2

+ 3. We 
on
lude that 


22

is a

unit. Re
all from the proof of Lemma 4.6 that this implies that 


12

� 1 mod 2 and




21

� 0 mod 2. Therefore the determinant of the submatrix

~

C =

�




11




12




21




22

�

of C is a unit. We may de�ne

D =

�

~

C

�1

0

0 1

�

:

With respe
t to the basis 
orresponding to CD, the quadrati
 formQ be
omesQ(x) =

(b

1

+ Æ

2

1

b

3

)x

2

1

+ (b

2

+ Æ

2

2

b

3

)x

2

2

+ 2Æ

1

b

3

x

1

x

2

+ x

3

(other terms), for 
ertain Æ

1

; Æ

2

2 Z

2

.

Sin
e ord(b

3

) � ord(b

2

) + 3 this implies that the subspa
e spanned by '

1

and '

2

is

isotropi
 if and only if the spa
e spanned by  

1

and  

2

is isotropi
.

5. Anisotropi
 quadrati
 forms

The goal is to 
lassify all anisotropi
 ternary quadrati
 forms over Z

2

, starting from

the normal form of Proposition 3.3. We will see that for anisotropi
 forms we may


hoose an optimal basis ' so that ord(Q('

i

)) = a

i

, similar to what we had for ` 6= 2

(Corollary 5.8).

Proposition 5.1. | Let Q be a ternary quadrati
 form over Q

`

. Write Q(x) =

b

1

x

2

1

+ b

2

x

2

2

+ b

3

x

2

3

. We denote by det(Q) = b

1

b

2

b

3

the determinant of Q. Then Q is

isotropi
 if and only if

(�1;� det(Q)) =

Y

i<j

(b

i

; b

j

):

Here (�; �) denotes the Hilbert symbol.

Proof. | This is [S, Theorem IV.6.ii℄.

Proposition 5.2. | Let Q be a ternary quadrati
 form over Z

2

whi
h is not diago-

nalizable. Let  be an optimal basis su
h that Q(x) = u

1

2

�

1

x

2

1

+2

�

2

(vx

2

2

+x

2

x

3

+vx

2

3

)

with v 2 f0; 1g. Then Q is isotropi
 if and only if v = 0 or �

1

� �

2

mod 2.

Proof. | If v = 0 then Q is obviously isotropi
. Therefore suppose that v = 1. To

de
ide whether Q is isotropi
, we may 
onsider Q as quadrati
 form over Q

2

. We have

Q(x) �

Q

2

u

1

2

�

1

x

2

1

+ 2

�

2

(x

2

2

+ 3x

2

3

). The proposition follows from Proposition 5.1 by

dire
t veri�
ation using the formula for the Hilbert symbol [S, Theorem III.1℄.

Lemma 5.3. | Let Q be a ternary quadrati
 form over Z

`

. We do not assume that

` = 2. Suppose that a

1

� a

2

� a

3

mod 2. Then Q is isotropi
.
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Proof. | If Q is not diagonalizable then the lemma follows from Proposition 5.2,

sin
e (a

1

; a

2

; a

3

) 2 f(�

1

; �

2

; �

2

); (�

2

; �

2

; �

1

)g.

Suppose that Q is diagonalizable. Write Q(x) = u

1

`

�

1

x

2

1

+ u

2

`

�

2

x

2

2

+ u

3

`

�

3

x

2

3

. If

` 6= 2 we have that �

i

= a

i

hen
e �

1

� �

2

� �

3

mod 2. To show that Q is isotropi
,

it suÆ
es to 
onsider Q over Q

`

. After multiplying the basis ve
tors by a suitable


onstant, we may assume that �

1

= �

2

= �

3

= 0. The lemma now follows immediately

from Proposition 5.1, sin
e the Hilbert symbol is trivial on units for ` 6= 2.

Suppose that ` = 2 and Q is diagonalizable. Proposition 4.2 implies that �

1

�

�

2

� �

3

mod 2 and u

1

+u

2

� 0 mod 4. As for ` 6= 2, it is no restri
tion to suppose that

Q(x) = u

1

x

2

2

+ u

2

x

2

2

+ u

3

x

2

3

. One 
omputes that this quadrati
 form is anisotropi
 if

and only if u

1

� u

2

� u

3

mod 4. Hen
e in our 
ase Q is isotropi
.

For future referen
e we re
ord from the proof of Lemma 5.3 when a diagonal ternary

form over Z

2

is anisotropi
.

Lemma 5.4. | Let Q(x) = u

1

2

�

1

x

2

1

+ u

2

2

�

2

x

2

2

+ u

3

2

�

3

x

2

3

be a diagonal, ternary

quadrati
 form over Z

2

. Suppose that �

1

� �

2

� �

3

mod 2. Then Q is anisotropi
 if

and only if u

1

� u

2

� u

3

mod 4.

Lemma 5.5. | Let Q(x) = u

1

2

�

1

x

2

1

+ u

2

2

�

2

x

2

2

+ u

3

2

�

3

x

2

3

be a diagonal, ternary

quadrati
 form over Z

2

. Suppose that �

1

� �

2

mod 2 and �

3

6� �

1

mod 2.

(a) Suppose that u

1

� u

2

� u

3

mod 4. Then Q is anisotropi
 if and only if u

2

� �u

1

mod 8.

(b) Suppose that the u

i

are not all equivalent modulo 4. Then Q is anisotropi
 if

and only if u

2

� �3u

1

mod 8.

Proof. | The proof is similar to the proof of Lemma 5.3 and is left to the reader.

Notation 5.6. | Let Q be a ternary quadrati
 form with Gross{Keating invariants

(a

1

; a

2

; a

3

). For every 1 � i < j � 3 we de�ne

Æ

ij

= d

a

i

+ a

j

2

e;

where dae is the smallest integer greater than or equal to a.

Theorem 5.7. | Let Q(x) = u

1

2

�

1

x

2

1

+u

2

2

�

2

x

2

2

+u

3

2

�

3

x

2

3

be a diagonal anisotropi


quadrati
 form over Z

2

with �

1

� �

2

� �

3

. Then one of the following 
ases o

urs.

(a) Suppose �

1

� �

3

6� �

2

mod 2 and u

1

� 3u

3

mod 8. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

; �

3

+ 2) and a

1

6� a

2

mod 2. There exists an optimal basis with respe
t

to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

u

2

x

2

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

a

3

u

1

x

2

3

:
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(b) Suppose �

1

� �

3

6� �

2

mod 2 and u

1

� u

3

mod4. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

; �

3

+ 2) and a

1

6� a

2

mod 2. Moreover, u

2

� u

1

mod 4 if u

3

� u

1

mod 8

and u

2

� �u

1

mod 4 if u

3

� 5u

1

mod 8: There exists an optimal basis with

respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

u

2

x

2

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

Æ

23

u

2

x

2

x

3

+ 2

a

3

u

1

vx

2

3

:

Here v = (u

1

+u

2

)=2 if u

2

� u

1

mod 4 and v = (3u

1

+u

2

)=2 if u

2

� �u

1

mod 4.

(
) Suppose �

1

6� �

2

� �

3

mod 2. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

; �

3

+ 2) and a

2

6� a

1

mod 2. The quadrati
 form with respe
t to an optimal basis is as in (a) and (b)

with the role of x

1

and x

2

reversed.

(d) Suppose �

1

� �

2

mod 2 and �

2

= �

3

. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1)

and a

1

6� a

2

mod 2. Moreover, u

1

� u

2

� u

3

mod 4. There exists an optimal

basis with respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

13

u

1

(x

1

x

2

+ x

1

x

3

) + 2

Æ

23

u

1

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

i

= (u

1

+ u

i

)=2 for i = 2; 3.

(e) Suppose �

1

� �

2

mod2, �

3

= �

2

+ 1 and u

1

� u

2

mod 4. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

+ 1; �

3

+ 1) and a

2

6� a

1

mod 2. Moreover, u

2

� u

1

mod 8 if u

3

� u

1

mod 4 and u

2

� 5u

1

mod 8 if u

3

� �u

1

mod 4. There exists an optimal basis

with respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

13

u

1

(x

1

x

2

+ x

1

x

3

) + 2

Æ

23

v

2

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

2

= (u

1

+ u

2

)=2 and v

3

= (u

1

+ u

3

)=2 (resp. (3u

1

+ u

3

)=2) depending on

whether u

3

� u

1

mod 4 or not.

(f) Suppose �

1

� �

2

mod 2, �

3

= �

2

+ 1 and u

1

� �u

2

mod 4. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

+1; �

3

+1) and a

1

� a

2

mod2. Moreover, u

2

� 3u

1

mod 8. There exists

an optimal basis with respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

13

u

1

(x

1

x

2

+ x

1

x

3

) + 2

Æ

23

v

23

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

2

= (u

1

+ u

2

+ 2u

3

)=2, v

23

= (u

1

+ u

2

+ 4u

3

)=2 and v

3

= u

1

+ 2u

3

.

(g) Suppose �

1

� �

2

� �

3

mod 2 and u

1

� u

2

mod 4 and �

3

� �

2

+ 2. Then

(a

1

; a

2

; a

3

) = (�

1

; �

2

+1; �

3

+1) and a

2

6� a

1

mod 2. Moreover, u

3

� u

1

mod 4.

There exists an optimal basis with respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

12

u

1

x

1

x

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

Æ

23

u

1

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

i

= (u

1

+ u

i

)=2 for i = 2; 3.

(h) Suppose �

1

� �

2

6� �

3

mod 2 and u

1

� u

2

mod 4 and �

3

� �

2

+ 2. Then

(a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1) and a

2

6� a

1

mod 2. One of the following two


ases holds:

�

u

2

� u

1

mod 8 and u

3

� u

1

mod 4;

u

2

� 5u

1

mod 8 and u

3

� �u

1

mod 4:
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There exists an optimal basis with respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

12

u

1

x

1

x

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

Æ

23

v

2

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

2

= (u

1

+u

2

)=2 and v

3

= (u

1

+u

3

)=2 (resp. v

3

= (3u

1

+u

3

)=2) depending

on whether u

1

� u

3

mod 4 or not.

(i) Suppose �

1

� �

2

6� �

3

mod 2, �

3

� �

2

+ 2 and u

2

� 3u

1

mod 8. Then

(a

1

; a

2

; a

3

) = (�

1

; �

2

+ 2; �

3

) and a

1

� a

2

mod 2. There exists an optimal basis

with respe
t to whi
h

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

12

u

1

x

1

x

2

+ 2

a

3

u

3

x

2

3

:

Here v

2

= (u

1

+ u

2

)=2.

Proof. | This follows from the results of Se
tion 4 together with the Lemmas 5.4,

5.5.

Corollary 5.8. | Suppose that Q is anisotropi
. Then there exists an optimal basis

' su
h that

ord(b

ii

(')) = a

i

for i = 1; 2; 3.

Proof. | This follows immediately from Theorem 5.7 (diagonal 
ase) and Proposition

5.2 (non-diagonal 
ase).

In Se
tion 6, we give a more 
on
eptual proof of Corollary 5.8. In fa
t, we prove

that any optimal basis has the property in Corollary 5.8. The following lemma gives

a list of the small 
ases.

Lemma 5.9. | Let Q be an anisotropi
 ternary quadrati
 form over Z

2

and suppose

that a

3

� 1. Then one of the following possibilities o

urs.

(a) We have (a

1

; a

2

; a

3

) = (0; 0; 1). In this 
ase Q is not diagonalizable; it is of the

form

Q(x) = x

2

1

+ x

1

x

2

+ x

2

2

+ u

3

2x

2

3

:

(b) We have (a

1

; a

2

; a

3

) = (0; 1; 1) and Q is not diagonalizable. Then Q is of the

form

Q(x) = u

1

x

2

1

+ 2(x

2

2

+ x

2

x

3

+ x

2

3

):

(
) We have (a

1

; a

2

; a

3

) = (0; 1; 1) and Q is diagonalizable. Then Q is as in Theorem

5.7.(d) with a

1

= Æ

13

= 0 and a

2

= a

3

= Æ

23

= 1.
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6. Alternative version of the Gross{Keating invariants for anisotropi


forms

We �x an arbitrary prime number ` and a free quadrati
 module (L;Q) over Z

`

of

rank n. We assume that (L;Q) is anisotropi
, i.e. that Q( ) = 0 implies  = 0. Under

this assumption, there is an alternative de�nition of the Gross{Keating invariants and

a very useful 
hara
terization of optimal bases; see the remark at the end of se
tion

4 in [?℄. In this se
tion we do not suppose that n = 3 to streamline some arguments.

Re
all that n � 5 implies that (L;Q) is isotropi
 ([S, Theorem IV.6℄). Therefore the

only additional 
ase is anisotropi
 quadrati
 forms in four variables.

We de�ne a fun
tion v : L! Z[ f1g by the rule

v( ) := ord

`

Q( ):

For  2 L and x 2 Z

p

we have

(6.1) v(x ) = 2 ord

`

(x) + v( ):

Lemma 6.1. | The fun
tion v satis�es the triangle inequality

(6.2) v( +  

0

) � min(v( ); v( 

0

)):

Moreover, if the inequality in (6.2) is stri
t we have v( ) = v( 

0

).

Proof. | If  and  

0

are linearly dependent the 
laim is obvious. We may hen
e

assume that they are linearly independent. For x; y 2 Z

`

we write

Q(x + y 

0

) = ax

2

+ y

2

b+ 
xy:

Suppose that v( +  

0

) < v( ); v( 

0

). Then ord

`

(a + b + 
) < ord

`

(a); ord

`

(b). The

usual triangle inequality for ord

`

implies

ord

`

(
) = ord

`

(a+ b+ 
) < ord

`

(a); ord

`

(b):

Lemma 3.2.(b) implies that (L;Q) is isotropi
. This and proves (6.2). The se
ond

assertion of the lemma follows from (6.2), applied to a suitable 
ombination of the

ve
tors � , � 

0

and  +  

0

.

Remark 6.2. | If n � 3, one gets an alternative proof of Lemma 6.1 by noting that

(L;Q) is represented by the quaternion division algebra D over Q

`

, equipped with its

norm form. The fun
tion v is then the restri
tion of the standard valuation of D.

Let  = ( 

i

) be a basis of L. For i = 1; : : : ; n, let L

i�1

� L be the subspa
e (of

rank i� 1) spanned by  

1

; : : : ;  

i�1

. We de�ne a fun
tion ~v

i

: L=L

i�1

! Z

�0

[ f1g

by the rule

~v

i

( + L

i�1

) := max(v( 

0

)j 

0

2  + L

i�1

):

Note that ~v

i

( ) =1 if and only of  2 L

i�1

.
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De�nition 6.3. | A basis  = ( 

i

) of L is 
alled ideal, if

v( 

i

) = ~v

i

( 

i

+ L

i�1

) = min

 2L

(~v

i

( + L

i�1

))

holds for i = 1; : : : ; n.

It is 
lear that there exists an ideal basis of L. The next lemma gives a useful


hara
terization of an ideal basis.

Lemma 6.4. | A basis  = ( 

i

) of L is ideal if and only if

(6.3) v( 

i

) � v( 

j

) for i � j,

and for all (x

i

) 2 Z

n

`

we have

(6.4) v(

X

i

x

i

 

i

) = min

i

v(x

i

 

i

):

Proof. | Let  = ( 

i

) be a basis of L. If (6.3) and (6.4) hold, then one easily 
he
ks

from De�nition 6.3 that  is ideal.

Conversely, suppose that  is ideal. The inequality (6.3) follows dire
tly from

De�nition 6.3. It remains to prove (6.4). Fix (x

i

) 2 Z

n

`

and k with 1 � k � n. Set

'

k

:=

P

i<k

x

i

 

i

. We 
laim that

(6.5) v('

k

+ x

k

 

k

) = min(v('

k

); v(x

k

 

k

)):

From this 
laim, (6.4) follows by indu
tion.

For k = 1, the 
laim is obvious. To prove it for k > 1 we may assume that it holds

for k

0

= k � 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is

greater than or equal to the right hand side. Suppose that the left hand side is stri
tly

greater than the right hand side. Then we have v('

k

) = v(x

k

 

k

). Using (6.1), (6.3)

and the 
laim for k

0

= k � 1, we �nd that ord

`

(x

k

) � ord

`

(x

i

) for all i � k. After

dividing by x

k

, we may therefore assume that x

k

= 1. However, by the de�nition of

an ideal basis we have

v('

k

) = v( 

k

) � v('

k

+  

k

):

This 
ontradi
ts our assumption and proves the 
laim.

Let us �x an ideal basis  = ( 

1

; : : : ;  

n

) of L, and set

a

i

:= v( 

i

); i = 1; : : : ; n:

We want to show that the a

i

are the Gross{Keating invariants of (L;Q). We �rst


he
k that (a

i

) lies in the set S (Se
tion 1). For this we write the quadrati
 form Q

as follows:

Q(

X

i

x

i

 

i

) =

X

i�j

b

ij

x

i

x

j

:

We set a

ij

:= ord

`

(b

ij

). Note that a

i

= a

ii

.
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Proposition 6.5. | For 1 � i � j � n we have

a

ij

�

a

i

+ a

j

2

:

Proof. | The 
ase i = j being trivial, we may assume that i < j. Our proof is by


ontradi
tion. First we assume that 2a

ij

+1 < a

i

+a

j

. We set 
 := max(a

ij

�a

i

+1; 0)

and look at the right hand side of

Q(`




 

i

+  

j

) = b

ii

`

2


+ b

jj

+ b

ij

`




:

The three terms of this sum have `-valuation a

i

+2
, a

j

and a

ij

+ 
, respe
tively. By

our 
hoi
e of 
 we have

a

ij

+ 
 < min(a

i

+ 2
; a

j

):

It follows that

v(`




 

i

+  

j

) = a

ij

+ 
 < min(v(`




 

i

); v( 

j

)):

This 
ontradi
ts the triangle inequality and ex
ludes the 
ase 2a

ij

+ 1 < a

i

+ a

j

.

It remains to ex
lude the 
ase 2a

ij

+ 1 = a

i

+ a

j

. Sin
e a

i

� a

j

we have 
 :=

a

ij

� a

i

� 0. Let x 2 Z

�

`

be a `-adi
 unit. Then

(6.6) Q(`




x 

i

+  

j

) = b

ii

`

2


x

2

+ b

jj

+ b

ij

`




x:

By our 
hoi
e of 
 we have

a

i

+ 2
 = a

j

� 1 = a

ij

+ 
:

We see that on the right hand side of (6.6), the �rst and the last term have the

minimal valuation a

j

� 1, while the middle term has valuation a

j

. Therefore, for an

appropriate 
hoi
e of x, we get

v(`




x 

i

+  

j

) � a

j

> min(v(`




x 

i

); v( 

j

)):

But this 
ontradi
ts Lemma 6.4, (6.4). The proposition follows.

Proposition 6.6. | An ideal basis is also optimal (De�nition 1.2). Moreover, if

 = ( 

i

) is an ideal basis of L, then (a

i

:= v( 

i

)) are the Gross{Keating invariants

of (L;Q).

Proof. | The previous proposition says that (a

i

) is an element of S. It remains to

show that (a

i

) is a maximal element, with respe
t to the lexi
ographi
al ordering.

Let  

0

= ( 

0

i

) be an arbitrary basis of L, and let (a

0

i

) be an element of S( 

0

)

(Se
tion 1). We will show that a

0

k

� a

k

for k = 1; : : : ; n, whi
h proves the proposition.

Write

 

0

i

=

X

j

x

ij

 

j

; with (x

ij

) 2 GL

n

(Z

`

):

The 
ondition (a

0

i

) 2 S( 

0

) together with Lemma 6.4 shows that

(6.7) a

0

i

� v( 

0

i

) = min

j

(a

j

+ 2ord

`

(x

ij

)):



12. INVARIANTS OF TERNARY QUADRATIC FORMS 143

Using that (x

ij

) is invertible, one shows that there exists at least one pair of indi
es

(ij) with k � i and j � k su
h that x

ij

is a unit. Applying (6.7) and (6.3) we get

a

0

k

� a

0

i

� a

j

� a

k

:

This is what we had to prove.

Corollary 6.7. | Let  = ( 

i

) be an ideal basis of L and (y

i

) 2 Q

n

`

with y

i

6= 0.

Set  

0

:= ( 

0

i

), where  

0

i

:= y

i

 

i

2 L


Z

`

Q

`

, and let L

0

denote the Z

`

-latti
e spanned

by  

0

. Let (a

i

) be the Gross{Keating invariants of L.

(a) The basis  

0

of L

0

is ideal.

(b) The Gross{Keating invariants of L

0

are the numbers

a

0

i

:= a

i

+ 2ord

`

(y

i

);

in some order.

Proof. | Choose an integer r su
h that `

r

y

i

2 Z

`

, for all i. For (x

i

) 2 Z

n

`

, Lemma

6.4 shows that

v(

X

i

x

i

 

0

i

) = v(

X

i

`

r

x

i

y

i

 

i

)� 2r

= min

i

(v(`

r

x

i

y

i

 

i

))� 2r

= min

i

(v(x

i

 

0

i

)):

Again by Lemma 6.4 we 
on
lude that  

0

(in some order) is an ideal basis of L

0

. This

proves (a). Part (a) of the 
orollary follows now from the previous proposition.

Remark 6.8. | Corollary 6.7 (a) is false without the assumption that (L;Q) is

anisotropi
. Consider, for instan
e, the (isotropi
) quadrati
 formQ(x) = x

2

1

�x

2

2

+4x

2

3

over Z

2

. Dividing the last ve
tor of the standard basis by 2 we obtain the quadrati


form Q

0

(x) = x

2

1

� x

2

2

+ x

2

3

. A

ording to Proposition 4.2(b), the Gross{Keating

invariants of Q are (0; 2; 2), while the invariants of Q

0

are (0; 1; 1).

Proposition 6.9. | Let (L;Q) be an anisotropi
 free quadrati
 module over Z

`

.

Then every optimal basis is an ideal basis.

The proof of this proposition uses the following lemma.

Lemma 6.10. | Let (a

1

; : : : ; a

n

) be the Gross{Keating invariants of (L;Q), and let

 be an optimal basis. Then v( 

i

) = a

i

.

Proof. | Let  be an optimal basis and suppose that v( 

i

) > a

i

, for some i. It

follows from the de�nition of the Gross{Keating invariants (De�nition 1.2) that there

exists a j 6= i su
h that

ord(b

ij

) = (a

i

+ a

j

)=2:
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In parti
ular, we have that a

i

� a

j

mod 2. Lemma 5.3 implies therefore that a

k

6�

a

i

mod 2 for all k 6= i; j, sin
e (L;Q) is anisotropi
. (The 
ase that n = 4 easily

redu
es to the 
ase that n = 3 by using the existen
e of an ideal basis.)

Consider the restri
tion Q

1

of Q to L

1

= h 

i

;  

j

i. We distinguish three 
ases. First

suppose that a

i

= a

j

. Then (L

1

; Q

1

) is isotropi
 by Lemma 3.2.(b).

Next we suppose that a

i

< a

j

. Then i < j. We have already seen that a

k

6�

a

i

mod 2 for all k 6= i; j. Renumbering the indi
es, if ne
essary, we may assume that

a

i

< a

i+1

and a

j�1

< a

j

. De�ne (~a

i

) by ~a

i

= a

i

+1 and ~a

j

= a

j

� 1, and ~a

k

= a

k

for

all k 6= i; j. Then (~a

k

) 2 S( ). This 
ontradi
ts the de�nition of the Gross{Keating

invariants.

Finally, we suppose that a

i

> a

j

. Then i > j. If v( 

j

) > a

j

, we inter
hange i

and j and obtain a 
ontradi
tion by the previous 
ase. Therefore v( 

j

) = a

j

. Sin
e

a

i

� a

j

mod 2, Lemma 3.2.(b) implies that L

1

is isotropi
. This gives a 
ontradi
tion.

We 
on
lude that v( 

i

) = a

i

for all i.

Proof of Proposition 6.9. | Let  be an optimal basis whi
h is not ideal. Lemma

6.10 implies that v( 

i

) = a

i

for all i. Let k be minimal su
h that there exists a

' =

P

k

i=1

x

i

 

i

2 L with v(') 6= min

i

(x

i

 

i

). Lemma 6.4 implies that k exists. It

follows from the triangle inequality that v(') > min

i

(x

i

 

i

). Write ~' =

P

k�1

i=1

x

i

 

i

.

The 
hoi
e of k implies that v( ~') = min

i<k

v(x

i

 

i

): Sin
e v(') = v( ~' + x

k

 

k

), we


on
lude from Lemma 6.1 that v( ~') = v(x

k

 

k

): This implies that

(6.8) 2 ord(x

i

) + a

i

� 2 ord(x

k

) + a

k

:

In parti
ular, ord(x

i

) � ord(x

k

), for all i. Therefore it is no restri
tion to assume

that x

k

is a unit.

We de�ne a new basis ' = ('

i

) by '

i

=  

i

if i 6= k and '

k

= '. Write

~

Q(

X

i

y

i

'

i

) =

X

i�j

~

b

ij

y

i

y

j

:

One 
omputes that

~

b

jk

=

(

2x

j

b

jj

+

P

i 6=j

b

ij

x

i

for j < k;

P

i

b

ij

x

i

for j > k:

Equation (6.8) implies that ord(

~

b

jk

) � (a

j

+ a

k

)=2. Therefore ' is again an optimal

basis. But v('

k

) = v(') > min

i

v(x

i

 

i

) = v(x

k

 

k

) = a

k

. This 
ontradi
ts Lemma

6.10.

Lemma 6.11. | Let M � L be a sublatti
e, i.e. a sub-Z

`

-module of rank n. Let

b

1

; : : : ; b

n

be the Gross{Keating invariants of (M;Qj

M

). Then b

i

� a

i

.

Proof. | We 
hoose ideal bases ( 

1

; : : : ;  

n

) for L and ('

1

; : : : ; '

n

) for M . Then

a

i

= v( 

i

) and b

i

= v('

i

). Let us �x an index i 2 f1; : : : ; ng and show b

i

� a

i

. For

an element  =

P

j

x

j

 

j

of L, we set  

0

:=

P

j<i

x

j

 

j

and  

00

:=

P

j�i

x

j

 

j

. Then
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 =  

0

+  

00

and v( 

00

) � a

i

. Sin
e the ve
tors '

0

1

; : : : ; '

0

i

lie in a subspa
e of rank

i� 1, there exist x

1

; : : : ; x

i

2 Z

`

, not all zero, su
h that

P

j�i

x

j

'

0

j

= 0. Then

X

j�i

x

j

'

j

=

X

j�i

x

j

'

00

j

:

Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to

the right hand side, we 
on
lude that

min

j�i

(b

j

+ 2ord

`

(x

j

)) � min

j�i

(v('

00

j

) + ord

`

(x

j

)) � min

j�i

(a

i

+ 2ord

`

(x

j

)):

For the index j for whi
h ord

`

(x

j

) takes its minimal value we get a

i

� b

j

� b

i

. This

proves the lemma.
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