
12. INVARIANTS OF TERNARY QUADRATIC FORMS

by

Irene I. Bouw

This note provides details on [GK, Setion 4℄. The main goal is to de�ne and

ompute the Gross{Keating invariants a

1

; a

2

; a

3

of ternary quadrati forms over Z

`

(De�nition 1.2). If a

1

� a

2

mod 2 and a

3

> a

2

we de�ne an additional invariant

� 2 f�1g (De�nition 2.7, De�nition 4.8). If ` 6= 2 every quadrati form over Z

`

is

diagonalizable, and it is easy to determine these invariants from the diagonal form

(Setion 2). If ` = 2 not every quadrati form is diagonalizable. We determine a

normal form in Setion 3 and ompute the invariants in terms of this normal form

(Setion 4). In Setion 5 we determine expliitly when a ternary quadrati form is

anisotropi. A omplete table an be found in Proposition 5.2 (non diagonalizable

ase) and Theorem 5.7 (diagonalizable ase). In Setion 6, we give an alternative

de�nition of the Gross{Keating invariants for anisotropi quadrati forms. The results

of Setion 6 are due to Stefan Wewers, following a hint in [GK, Setion 4℄.

Our main referene on quadrati forms over Z

`

is [C, Chapter 8℄. Most of the of

the result of this paper an also be found in the work of Yang, in a somewhat di�erent

form. The Gross{Keating invariants are omputed in [Y1, Appendix B℄. The question

whether a given form over Z

2

is isotropi or not (Setion 5) is disussed in [Y2℄.

I would like to thank M. Rapoport for omments on an earlier version.

1. De�nition of the invariants a

i

In this setion we give the general de�nition of the Gross{Keating invariants a

i

of

quadrati forms over Z

`

whih are used in [GK℄.

Let L be a free Z

`

-module of rank n and hoose a (for the moment) arbitrary basis

 = f 

1

;  

2

; : : : ;  

n

g. For the appliation to [GK℄ we are only interested in the ase

n = 3 of ternary quadrati forms. Let (L;Q) be an integral quadrati form over Z

`

,
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that is,

Q(x) = Q(

X

x

i

 

i

) =

X

i�j

b

ij

x

i

x

j

; with b

ij

2 Z

`

:

Put b

ji

= b

ij

for j > i. If we want to stress the dependene of the b

ij

on the basis, we

write b

ij

( ) for b

ij

. We write (x; y) = Q(x+ y)�Q(x)�Q(y) for the orresponding

symmetri bilinear form and B = (( 

i

;  

j

)) for the orresponding matrix. Note that

B =

�

B

ij

�

; where B

ij

=

�

b

ij

; if i < j;

2b

ij

; if i = j:

In the rest of the paper we only use the b

ij

and not the B

ij

, for simpliity. We denote

by ord the `-adi valuation on Z

`

. We always suppose that Q is regular, that is,

det(B) 6= 0.

Changing the basis multiplies the determinant of B by an element of (Z

�

`

)

2

. There-

fore the determinant is a well de�ned element of Z

`

=(Z

�

`

)

2

.

Lemma 1.1. | Suppose that either ` 6= 2 or n is odd. De�ne

� = �(Q) =

1

2

det(B):

Then � 2 Z

`

.

Proof. | The lemma is obvious if ` 6= 2. Suppose that ` = 2 and n odd. Write

� =

P

�2S

n

2

Æ(�)

d(�), where d(�) = (�1)

sgn(�)

Q

n

i=1

b

i�(i)

and Æ(�)+1 is the number

of i 2 f1; 2; : : : ; ng whih are �xed by �. The only problemati terms are those with

Æ(�) = �1. Suppose that � ats without �xed points on f1; 2; : : : ; ng. Then �

�1

6= �,

sine n is odd. The matrix (( 

i

;  

j

)) is symmetri. It follows that d(�) = d(�

�1

),

hene 2

Æ(�)

d(�) + 2

Æ(�

�1

)

d(�

�1

) 2 Z

`

.

We now ome to the de�nition of the Gross{Keating invariants of a quadrati

form. Let  = ( 

1

;  

2

; : : : ;  

n

) be a basis of L. We write S( ) for the set of tuples

y = (y

1

; y

2

; : : : ; y

n

) 2 Z

n

suh that

(1.1) y

1

� y

2

� : : : � y

n

;

y

i

+ y

j

2

� ord(b

ij

( )) for 1 � i � j � n:

Let S = [S( ). We order tuples (y

1

; : : : ; y

n

) 2 S lexiographially, as follows. For

given (y

1

; : : : ; y

n

), (z

1

; : : : ; z

n

) 2 S, let j be the largest integer suh that y

i

= z

i

for

all i < j. Then (y

1

; : : : ; y

n

) > (z

1

; : : : ; z

n

) if y

j

> z

j

.

De�nition 1.2. | The Gross{Keating invariants a

1

; : : : ; a

n

are the maximum of

(y

1

; : : : ; y

n

) 2 S. A basis  is alled optimal if (a

1

; : : : ; a

n

) 2 S( ).

If  is optimal, then

(1.2) a

i

+ a

j

� 2 ord(b

ij

( )) for 1 � i � j � n; and a

1

� a

2

� � � � � a

n

:

Sine � is well de�ned up to (Z

�

`

)

2

, the integer ord(�) is well de�ned. The following

lemma will be useful in omputing the Gross{Keating invariants.
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Lemma 1.3. | (a) Suppose that n is odd, then

ord(�) � a

1

+ a

2

+ � � �+ a

n

:

(b) We have

a

1

= min

x;y2L

ord (x; y) :

() De�ne � := min

A

ord(det(A)), where A runs through the 2 by 2 minors of B.

Then

a

1

+ a

2

� �:

Proof. | This lemma is proved in [Y1, Lemma B.1, Lemma B.2℄. Note that the

matrix T in [Y1℄ di�ers by a fator 2 from our matrix B. Let ' be an optimal basis.

We use the notation of the proof of Lemma 1.1.

First suppose that ` = 2. Write S for the set of equivalene lasses in S

n

un-

der the equivalene relation � � �

�1

. The proof of Lemma 1.1 shows that � =

P

�2S

(�1)

sgn(�)

2

Æ

0

(�)

d(�), where Æ

0

(�) � 0. The hoie of ' implies that

ord(2

Æ

0

(�)

d(�)) = Æ

0

(�) + ord(

Y

i

b

i�(i)

) �

n

X

i=1

a

i

+ a

�(i)

2

=

n

X

i=1

a

i

:

This proves (a) in this ase.

If ` 6= 2, de�ne Æ

0

(�) = 0 for all � 2 S

n

. Then the proof works also in this ase.

Sine a

1

� a

2

� � � � � a

n

, it follows from (1.2) that ord(b

ij

(')) � a

1

for all i � j.

On the other hand, it is obvious that a

1

� min

x;y2L

ord (x; y). This implies (b).

Part () is similar to (a), ompare to Lemma B1.ii in [Y1℄. Let i

1

; i

2

; j

1

; j

2

2

f1; 2; : : : ; ng be integers suh that i

1

6= i

2

and j

1

6= j

2

. Write B(i

1

; i

2

; j

1

; j

2

) for

the orresponding minor of B. After renumbering, we may suppose that i

1

6= j

2

and i

2

6= j

1

. Then det(B(i

1

; i

2

; j

1

; j

2

)) = �(2

�

b

i

1

;j

1

b

i

2

;j

2

� b

i

1

;j

2

b

i

2

j

1

), where � 2

f0; 1; 2g is the number of equalities i

1

= j

1

; i

2

= j

2

that hold. We onlude that

ord(det(B(i

1

; i

2

; j

1

; j

2

)) � (a

i

1

+ a

i

2

+ a

j

1

+ a

j

2

)=2 � a

1

+ a

2

. (Here we use that

a

1

� a

2

� � � � � a

n

and i

1

6= i

2

and j

1

6= j

2

.) This proves ().

2. De�nition of the Gross{Keating invariants for ` 6= 2

We start this setion with an elementary lemma whih holds without assumption

on `.

Lemma 2.1. | Choose a basis  = ( 

1

; : : : ;  

n

) of L. Let 

1

; : : : ; 

m

2 L be linearly

independent. The following are equivalent.

(a) There exists 

m+1

; : : : ; 

n

2 L suh that the (

i

) form a basis.

(b) The matrix (

1

; : : : ; 

m

), expressing the 

i

in terms of the basis  , ontains a

m�m minor whose determinant is a p-adi unit.

() If

P

n

i=1

v

i



i

2 L for some v

i

2 Q

`

, then v

i

2 Z

`

.
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Proof. | This is straightforward. See also [C, Chapter 8, Lemma 2.1℄.

In partiular, a vetor � =

P

i

�

i

 

i

2 L is part of a basis of L if and only if

min

j

ord(�

j

) = 0. We all suh vetors primitive.

We have that

(2.1) 2 (x; y) = 2[Q(x+ y)�Q(x)�Q(y)℄ = (x+ y; x+ y)� (x; x) � (y; y) :

If ` 6= 2, this implies that

(2.2) min

x;y2L

ord (x; y) = min

x2L

ord (x; x) :

In the rest of this setion, we suppose that ` 6= 2. There is a x 2 L for whih the

minimum in (2.2) is attained. This vetor x is primitive. Lemma 2.1 implies that x

an be extended to a basis of L. We will see in Setion 4 that (2.2) does not hold for

` = 2; this is the main reason why things are more diÆult for ` = 2.

Proposition 2.2. | Suppose that ` 6= 2. Then there exists a basis  of L suh that

Q(x) = Q(

X

x

i

 

i

) =

X

i

b

ii

x

2

i

; where ord(b

11

) � ord(b

22

) � : : : � ord(b

nn

):

Proof. | Our proof follows [C, Chapter 8, Theorem 3.1℄.

The disussion before the statement of the theorem shows that we may hoose '

1

suh that

ord(Q('

1

)) = ord ('

1

; '

1

) = min

x;y2L

ord (x; y) :

Here we use the equality (2.2).

Choose '

2

; : : : ; '

n

2 L suh that ' = f'

1

; '

2

: : : ; '

n

g is a basis of L. As before

we write Q(

P

i

x

i

'

i

) =

P

1�i�j�n

b

ij

(')x

i

x

j

. Then

Q(x) = b

11

�

x

1

+

b

12

2b

11

x

2

+ � � �

b

1n

2b

11

x

n

�

2

+

~

Q(x

2

; : : : ; x

n

);

for some integral quadrati form

~

Q in n� 1 variables.

We de�ne a new basis by  

1

= '

1

, and  

i

= '

i

� (b

1i

=2b

11

)'

1

for i 6= 1. The

hoie of  

1

ensures that  

i

2 L, sine e = ord(2b

11

) � ord(b

1i

). With respet to this

new basis, the quadrati form is

Q(x) = b

11

( )x

2

1

+

~

Q(

X

i�2

x

i

 

i

):

The proposition follows by indution.

Remark 2.3. | Cassels ([C, Chapter 8, Theorem 3.1℄) proves a stronger statement

than Proposition 2.2. Namely, he gives a list of pairwise nonisomorphi quadrati

forms suh that every integral quadrati form is isomorphi to one of these. This

stronger statement implies that the de�nition of the invariants a

i

of Proposition 2.6

does not depend of the hoie of the orthogonal basis.



12. INVARIANTS OF TERNARY QUADRATIC FORMS 125

We an give a simpler de�nition of the invariants a

i

in terms of a basis  as in

Proposition 2.2. If  2 L is an element suh that Q() 6= 0, we may de�ne a reetion

�



by

�



(x) = x�

2 (x; )

(; )

:

This is the reetion in the orthogonal omplement of . Clearly, �



is de�ned over

Z

`

if and only if ord (; ) = min

x2L

ord (x; x) : (In fat, this also holds for ` = 2.)

Sine �



is a reetion, it is learly invertible. The following lemma is a partial analog

of Witt's Lemma ([C, Corollary to Theorem 2.4.1℄) whih holds for quadrati forms

over �elds.

Lemma 2.4. | Suppose that  ; ' 2 L satisfy

Q( ) = Q('); ord(Q( )) = ord(Q(')) = min

x2L

ord(Q(x)):

Then there exists an integral isometry � of (L;Q) suh that �( ) = '. Moreover, �

may be taken as a produt of reetions �



.

Proof. | This is [C, Lemma 8.3.3℄. Our assumptions on  and ' imply that

Q( + ') + Q( � ') = 2Q( ) + 2Q(') = 4Q( ): Sine ord(Q( )) = ord ( ;  ) =

min

x2L

ord (x; x) =: e, it follows that one of the following holds:

(a) ordQ( + ') = e,

(b) ordQ( � ') = e.

Sine ` 6= 2, it is also possible that both hold. If (a) holds, then �

 +'

is integral and

sends  to '. If (b) holds, de�ne � = �

 �'

Æ �

 

.

Lemma 2.5. | Suppose u; v 2 Z

�

`

. Then ux

2

1

+ vx

2

2

�

Z

`

x

2

1

+ uvx

2

2

.

Proof. | This is proved in the seond orollary to [C, Lemma 8.3.3℄. We give the

idea. Sine ` 6= 2, there exists a;  2 Z

`

suh that a

2

u + 

2

v = 1. We may assume

that a is a unit. Then

C =

�

a �v

 au

�

de�nes the equivalene of the lemma.

Proposition 2.6. | (a) Let  = ( 

1

;  

2

; : : : ;  

n

) be an orthogonal basis of L as

in Proposition 2.2 Write Q(x) =

P

i

b

i

x

2

i

. Then the invariants a

i

(De�nition

1.2) satisfy

a

i

= ord(b

i

):

In partiular,  is optimal.

(b) Suppose that n is odd. Then

ord(�) = a

1

+ � � �+ a

n

:
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Proof. | Let ' be a basis suh that the inequalities (1.2) hold. We laim that

ord ('

1

; '

1

) = a

1

. Part (b) of Lemma 1.3 implies that a

1

= min

x2L

ord (x; x). The

hoie of ' implies moreover that ord ('

1

; '

1

) = min

x2L

ord (x; x). The de�nition of

a

1

implies therefore that a

1

= ord ('

1

; '

1

).

We apply the diagonalization proess of the proof of Proposition 2.2 to the basis

'. De�ne  

1

= '

1

and  

i

= '

i

� (b

1i

=2b

11

)'

1

for i 6= 1. One omputes that

( 

j

;  

1

) = 0; ( 

j

;  

j

) =

b

2

1j

2b

11

+ 2b

jj

; ( 

i

;  

j

) = �

b

1i

b

1j

2b

11

+ b

ij

;

for j 6= 1 and i 6= 1; j. The inequalities (1.2) imply that ord ( 

j

;  

j

) � a

j

and

2 ord ( 

i

;  

j

) � a

i

+ a

j

. Therefore the new basis also satis�es the inequalities (1.2).

This implies that there exists an orthogonal basis  whih satis�es (1.2). It follows

that the Gross{Keating invariants (a

1

; : : : ; a

n

) are the maximum of [S( ), where the

union is taken over the orthogonal bases and [S( ) is as in (1.1).

Let ' and  be two orthogonal bases. Write Q(x) = b

1

x

2

2

+ b

2

x

2

2

+ � � �+ b

n

x

2

n

with

respet to the basis  and Q(x) = d

1

x

2

1

+ d

2

x

2

2

+ � � �+ d

n

x

2

n

with respet to the basis

'. We suppose that ord(b

1

) � ord(b

2

) � � � � � ord(b

n

) and ord(d

1

) � ord(d

2

) � � � � �

ord(d

n

). We suppose moreover that ' satis�es (1.2). (Suh ' exists by the above

argument.) We have to show that  satis�es (1.2), also. Write C = (

ij

) for the

hange of basis matrix expressing ' in terms  . As before, Lemma 1.3.(b) implies

that ord(b

1

) = ord(d

1

) = a

1

: Write b

1

= ud

1

, for some unit u.

Suppose that ord(b

2

) > ord(b

1

). Then

d

1

=

n

X

j=1



2

j1

b

j

� 

2

11

b

1

mod `

a

1

+1

:

This implies that u is a quadrati residue. To prove the laim, we may therefore

assume that Q( 

1

) = Q('

1

) in this ase.

Suppose that ord(b

1

) = ord(b

2

). Then Lemma 2.5 implies that Q is Z

`

-equivalent to

d

1

x

2

1

+ub

2

x

2

2

+b

3

x

2

3

+ � � � . Hene also in this ase we may assume that Q( 

1

) = Q('

1

).

Lemma 2.4 implies that there exists an isometry � of Q whih sends  

1

to '

1

.

Then D := �

�1

C �xes  

1

. Write

D =

�

1 D

1

0 D

2

�

; B :=

0

B

�

2b

1

0

.

.

.

0 2b

n

1

C

A

where D

2

is an (n� 1)� (n� 1) matrix. One omputes that

D

t

BD =

�

2

2

b

1

2D

1

2D

t

1

�

�

:
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Our assumption implies that D

t

BD is a diagonal matrix, with diagonal entries 2d

i

.

This implies that D

1

= (0; : : : ; 0). We onlude that D restrits to an integral and in-

vertible map from the sublattie of L spanned by  

2

; : : : ;  

n

to the sublattie spanned

by '

2

; : : : ; '

n

. This implies (a).

Part (b) follows immediately from (a).

De�nition 2.7. | Suppose that n = 3 and ` 6= 2. Assume a

1

� a

2

mod 2, and

a

3

> a

2

. Choose a basis  = ( 

1

;  

2

;  

3

) of L as in Proposition 2.2. Write b

ii

= `

a

i

u

i

.

We de�ne an invariant � = �( ) by the Legendre symbol

(2.3) � =

�

�u

1

u

2

`

�

:

Lemma 2.8. | Assumptions and notations are as in De�nition 2.7.

(a) The invariant �( ) does not depend on the hoie of the orthogonal basis  .

(b) We have that � = 1 if and only if the subspae of L


Z

`

Q

`

spanned by  

1

and

 

2

is isotropi.

Proof. | Let  = ( 

1

;  

2

;  

3

) be a basis of L as in Proposition 2.6, in partiular  

is orthogonal and the valuation of b

i

= ( 

i

;  

i

) =2 is equal to a

i

, for i = 1; 2; 3.

Suppose that a

2

� a

1

mod 2 and a

3

> a

2

. Write a

2

= a

1

+ 2. Write Q

0

for the

restrition of Q to the sublattie of L spanned by  

1

and  

2

. Then Q

0

(x) = b

1

x

2

1

+b

2

x

2

2

is equivalent to `

a

1

(x

2

1

+ u

1

u

2

`

2

x

2

2

) (Lemma 2.5). It follows that Q

0

is isotropi if

� = 1 and anisotropi if � = �1. This proves (b).

Let ' be another orthogonal basis and write Q(

P

i

x

i

'

i

) = d

1

x

2

1

+d

2

x

2

2

+d

3

x

2

3

. We

assume that ord(d

i

) = a

i

. Write C for the matrix expressing ' in terms of  . The

argument of the proof of Proposition 2.6 together with the assumption that a

2

< a

3

implies that there exists an isometry � suh that

�

�1

C =

0

�

v

1

0 0

0 v

2

0

0 0 v

3

1

A

;

where the v

i

are units. This shows that d

i

= v

2

i

b

i

. The lemma follows.

3. A normal form for quadrati forms over Z

2

Not every quadrati form over Z

2

is diagonalizable. In this setion we give a normal

form for ternary quadrati forms over Z

2

, following [C, Setion 8.4℄. Cassels uses a

slightly stronger notion of integrality, namely he supposes that b

ij

=2 2 Z

`

, for all

i 6= j. However, this does not make any di�erene.

Lemma 3.1. | Suppose ` = 2. Let Q be a regular quadrati form over Z

2

. Then Q

is Z

2

-equivalent to a sum of quadrati forms of the form

(3.1) 2

e

ux

2

;
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for e 2 Z

�0

and u 2 Z

�

2

, and

(3.2) 2

e

(b

1

x

2

1

+ ux

1

x

2

+ b

2

x

2

2

);

with e 2 Z

�0

, and u 2 Z

�

2

.

The equality (2.1) holds for ` = 2, but (2.2) does not. However, (2.1) implies that

min

x;y2L

ord (x; y) + 1 � min

x2L

ord (x; x) :

Therefore min

x;y2L

ord (x; y) equals either min

x2L

ord (x; x) or min

x2L

ord (x; x)� 1.

Proof. | Let e = min

x;y2L

ord (x; y). We distinguish two ases.

(a) There exists a  2 L suh that ord (; ) = e.

(b) For all  2 L we have that ord (; ) > e.

Suppose we are in ase (a). Then ord ( 

1

;  

i

) � e, by de�nition. We an now

proeed as in the proof of Proposition 2.2. Namely, 2b

11

= 2Q( 

1

) = ( 

1

;  

1

).

Therefore b

11

has valuation e� 1. For i 6= 1, we have that ord(b

1i

) = ord ( 

1

;  

i

) � e.

Therefore

'

i

=  

i

�

�

b

1i

2b

11

�

 

1

:

is an element of L and  

1

; '

2

; : : : ; '

n

form a basis. With respet to this basis the

quadrati form Q beomes Q(x) = b

11

x

2

1

+

~

Q(x

2

; : : : ; x

n

), for some quadrati form

~

Q

in n� 1 variables.

Suppose we are in ase (b). Then ord (; ) > e for all  2 L. We may hoose

 

1

;  

2

2 L suh that ord ( 

1

;  

2

) = e. The de�nition of e implies that ( 

1

+ 

2

)=2 62 L.

Lemma 2.1 implies therefore that  

1

;  

2

an be extended to a basis  

1

; : : : ;  

n

of L.

The hoie of  

1

and  

2

implies that the determinant of the matrix

�

2b

11

2

�e

b

12

2

�e

b

12

2

�e

2b

22

2

�e

�

is a unit in Z

`

. Therefore we an �nd �

j

1

; �

j

2

suh that

�2�

j

1

b

11

� �

j

2

b

12

+ b

1j

= 0; �2�

j

2

b

22

� �

j

1

b

12

+ b

2j

= 0;

for j = 3; : : : ; n. De�ne '

j

=  

j

� �

j

1

 

1

� �

j

2

 

2

. The hoie of the �

j

i

implies that

('

j

;  

1

) = ('

j

;  

2

) = 0, for j = 3; : : : ; n.

With respet to the basis ( 

1

;  

2

; '

3

; : : : ; '

n

) the quadrati form Q beomes

Q(x) = 2

e

(b

11

x

2

1

+ b

12

x

1

x

2

+ b

22

x

2

2

) +

~

Q(x

3

; : : : ; x

n

):

This proves the lemma.

Lemma 3.2. | Let Q

2

(x) = b

11

x

2

1

+ b

12

x

1

x

2

+ b

22

x

2

2

be a binary quadrati form

over Z

2

and L

2

the orresponding free Z

2

-lattie of rank two.

(a) If min(ord(b

11

); ord(b

22

)) < ord(b

12

) then Q

2

is diagonalizable.
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(b) Suppose that Q

2

is not diagonalizable. Then Q

2

is anisotropi if and only if

ord(b

12

) = ord(b

11

) = ord(b

22

).

() Suppose Q

2

is anisotropi and not diagonalizable. Then Q

2

is equivalent to

2

e

(x

2

1

+ x

1

x

2

+ x

2

2

);

for some e.

(d) Suppose that Q

2

is isotropi and not diagonalizable. Then Q

2

is equivalent to

2

e

x

1

x

2

;

for some e.

Proof. | Part (a) follows from the proof of Lemma 3.1.

Suppose that Q

2

is not diagonalizable. Then ord(b

12

) � min(ord(b

11

); ord(b

22

)),

by (a). Part (b) is an elementary Hilbert-symbol omputation using [S, Theorem

IV.6℄.

Suppose that Q

2

is anisotropi and not diagonalizable. Then (b) implies that e :=

ord(b

12

) = ord(b

11

) = ord(b

22

). Part () now follows from an elementary omputation.

Suppose that Q

2

is isotropi and not diagonalizable. There exists a primitive vetor

 

1

suh that Q( 

1

) = 0. Lemma 2.1 together with the fat that the quadrati form

is nondegenerate, implies that there exists a vetor  

2

2 L

2

suh that  

1

;  

2

form a

basis of L

2

and ( 

1

;  

2

) 6= 0. After multiplying  

2

with a unit, we may suppose that

( 

1

;  

2

) = 2

e

, for some e � 0.

We laim that ord ( 

2

;  

2

) > ord ( 

1

;  

2

). Namely, if ord ( 

2

;  

2

) � ord ( 

1

;  

2

)

then Q

2

is diagonalizable by (a), but this ontradits our assumptions. Therefore

 

0

2

:=  

2

�

( 

2

;  

2

)

2 ( 

1

;  

2

)

 

1

2 L

2

:

Now  

1

;  

0

2

form a basis of L and ( 

0

2

;  

0

2

) = 0. This proves (d).

Proposition 3.3. | Let (L;Q) be a ternary quadrati form over Z

2

. One of the

following two possibilities ours.

(a) The form Q is diagonalizable; there exists a basis suh that

Q(x) = b

1

x

2

1

+ b

2

x

2

2

+ b

3

x

3

3

; with 0 � ord(b

1

) � ord(b

2

) � ord(b

3

):

(b) The form Q is not diagonalizable; there exists a basis suh that

Q(x) = u

1

2

�

1

x

2

1

+2

�

2

(vx

2

2

+x

2

x

3

+vx

2

3

); with v 2 f0; 1g; �

i

� 0 and u

1

2 Z

�

2

:

Proof. | This follows immediately from Lemma 3.1 and Lemma 3.2.

This lassi�ation is the same as the lassi�ation used (but not expliitly stated)

in [Y1, Appendix B℄. Note that Yang's matrix T di�ers by a fator 2 from the matrix

B we use. In partiular, the invariant � used in [Y1, Proposition B.4℄ satis�es � � �1

rather than � � 0.
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4. The Gross{Keating invariants for ` = 2

In this setion we ompute the Gross{Keating invariants of ternary quadrati forms

(L;Q) over Z

2

in terms of the normal form of Proposition 3.3. The omputation of

the a

i

an be found in Proposition 4.1 (non-diagonalizable ase) and Proposition 4.2

(diagonalizable ase). The omputation of � an be found in Proposition 4.9. This

setion is based on [Y1, Appendix B℄.

We start by onsidering quadrati forms whih are not diagonalizable. Reall from

Proposition 3.3 that if Q is not diagonalizable then there exists a basis  of L with

respet to whih we have

(4.1) Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+ x

2

x

3

+ vx

2

3

); with v 2 f0; 1g; u

1

2 Z

�

2

:

We do not suppose that �

1

� �

2

.

Proposition 4.1. | Suppose that Q is given by (4.1). Then

(a

1

; a

2

; a

3

) =

�

(�

1

; �

2

; �

2

); if �

1

� �

2

;

(�

2

; �

2

; �

1

); if �

1

> �

2

:

Proof. | Lemma 1.3.(b) implies that a

1

= min(�

1

; �

2

). We distinguish two ases.

Suppose that �

1

� �

2

. Then a

1

= �

1

and ord(�) = �

1

+ 2�

2

� a

1

+ a

2

+ a

3

(Lemma 1.3.(a)). Therefore a

2

� (a

2

+ a

3

)=2 � �

2

. The existene of a basis  as in

(4.1) implies that (�

1

; �

2

; �

2

) 2 S( ). We onlude that a

2

= a

3

= �

2

.

Suppose that �

1

> �

2

. In this ase we have that a

1

= �

2

. Reall that we de�ned

� as the minimum of the valuation of the determinant of the 2 � 2-minors of B.

One omputes that � = min(2�

2

; 1 + �

1

+ �

2

) = 2�

2

, sine we assumed that �

1

�

�

2

+ 1. Lemma 1.3.() implies that � � a

1

+ a

2

, hene a

2

� �

2

. The existene of a

basis  as in (4.1) implies that (�

2

; �

2

; �

1

) 2 S( ). We onlude that (a

1

; a

2

; a

3

) =

(�

2

; �

2

; �

1

).

We now onsider diagonalizable quadrati forms Q. Contrary to the situation for

` 6= 2, a basis  whih diagonalizes Q is not optimal (De�nition 1.2).

Proposition 4.2. | Suppose that Q is diagonalizable. Let  be a basis of L suh

that

(4.2)

Q(x) = b

1

x

2

1

+ b

2

x

2

2

+ b

3

x

2

3

; with b

i

= u

i

2

�

i

; u

i

2 Z

�

2

and �

1

� �

2

� �

3

:

(a) Suppose that �

1

6� �

2

mod 2. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

; �

3

+ 2).

(b) Suppose that �

1

� �

2

mod 2:

(i) If u

1

+u

2

� 2 mod 4 or �

3

� �

2

+1, then (a

1

; a

2

; a

3

) = (�

1

; �

2

+1; �

3

+1).

(ii) Otherwise, (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 2; �

3

).

The proof of this proposition is divided in several lemmas. We use the notation of

Proposition 4.2. In partiular,  is a basis of L with respet to whih Q is as in (4.2).

Let ' be an optimal basis, i.e. suppose that the inequalities (1.2) hold. We write
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C = (

ij

) for the hange of basis matrix expressing ' in terms of  . We write the

quadrati form Q in terms of the basis ' as Q(x) =

P

i�j

d

ij

x

i

x

j

. In other words,

the d

ij

are the oeÆients of the matrix obtained by dividing the diagonal elements

of C

t

BC by two. One omputes that

(4.3) d

ii

= 

2

1i

b

1

+ 

2

2i

b

2

+ 

2

3i

b

3

:

Lemma 4.3. | Suppose that Q is diagonal and �

1

6� �

2

mod 2. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

; �

3

+ 2).

Proof. | We have already seen that a

1

= �

1

. Therefore it follows from the de�nition

of the a

i

that a

2

� �

2

. We laim that a

2

= �

2

. Suppose that a

2

> �

2

.

Write �

2

= �

1

+ 2 + 1. The inequalities (1.2) imply that ord(d

22

) � a

2

� �

2

+ 1

and ord(d

33

) � a

3

� a

2

� �

2

+ 1. Sine �

1

6� �

2

mod 2, it follows from (4.3) that

ord(

12

) �  + 1 and ord(

13

) �  + 1.

We �rst suppose that �

3

> �

2

. Then ord(

22

) � 1 and ord(

33

) � 1. But this

implies that det(C) � 0 mod 2: This gives a ontradition.

If �

2

= �

3

, we proeed similarly. In this ase 

22

� 

32

mod 2 and 

23

� 

33

mod 2.

This implies again that det(C) � 0 mod 2. We onlude that a

2

= �

2

.

Sine ord(�) = ord(det(B)) + 2 = �

1

+ �

2

+�

3

+2, it follows from Lemma 1.3.(a)

that a

3

� �

3

+ 2. To show that a

3

= �

3

+ 2 it suÆes to �nd a basis ' suh that

(�

1

; �

2

; �

3

+ 2) 2 S('). We now onstrut suh a basis.

Our assumptions imply that �

3

is ongruent to �

1

or �

2

(modulo 2). We suppose

that �

3

� �

1

mod 2. (The ase �

3

� �

2

mod 2 is similar.) Write �

2

= �

1

+ 2 + 1

and �

3

= �

1

+ 2�. We distinguish two ases:

{ u

1

+ u

3

� 0 mod 4,

{ u

1

+ u

3

� 2 mod 4.

In the �rst ase de�ne

C =

0

�

1 0 2

�

0 1 0

0 0 1

1

A

:

With respet to the new basis we haveQ(x) = b

1

x

2

1

+b

2

x

2

2

+2

�+1

b

1

x

1

x

3

+(b

3

+2

2�

b

1

)x

2

3

.

In the seond ase we de�ne

C =

0

�

1 0 2

�

0 1 2

��

0 0 1

1

A

:

With respet to the new basis we have Q(x) = b

1

x

2

1

+b

2

x

2

2

+2

�+1

b

1

x

1

x

3

+(b

3

+2

2�

b

1

+

2

2(��)

b

2

)x

2

3

+2

��+1

b

2

x

2

x

3

. It is easy to hek that the basis ' orresponding to C

satis�es (1.2) for a

1

= �

1

, a

2

= �

2

and a

3

= �

3

+ 2. This proves the lemma.

The proof of Lemmas 4.4, 4.5 and 4.6 follows the same pattern as the proof of

Lemma 4.3.
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Lemma 4.4. | Suppose that Q is diagonalizable, �

1

� �

2

mod 2 and �

3

� �

2

+ 1.

Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1).

Proof. | Sine a

1

= �

1

and ord(�) = �

1

+ �

2

+ �

3

+ 2 it follows from Lemma 1.3

that a

1

+ 2a

2

� a

1

+ a

2

+ a

3

� �

1

+ �

2

+ �

3

+ 2 � �

1

+ 2�

2

+ 3. This implies that

a

2

� �

2

+ 1.

We now onstrut a basis ' suh that (�

1

; �

2

+1; �

3

+1) 2 S('). The lemma follows

from this. Let C be the orresponding hange of basis matrix. Write �

2

= �

1

+ 2.

If �

2

= �

3

de�ne

C =

0

�

1 2



2



0 1 0

0 0 1

1

A

:

With respet to the new basis we have Q(x) = b

1

x

2

1

+(2

2

b

1

+ b

2

)x

2

2

+2

+1

b

1

(x

1

x

2

+

x

1

x

3

) + (b

3

+ 2

2

b

1

)x

2

3

+ 2

1+2

b

1

x

2

x

3

.

If �

3

= �

2

+ 1 and u

1

+ u

2

� 2 mod 4 de�ne

C =

0

�

1 2



2



0 1 1

0 0 1

1

A

:

With respet to the new basis we have Q(x) = b

1

x

2

1

+(b

2

+2

2

b

1

)x

2

2

+2

+1

b

1

(x

1

x

2

+

x

1

x

3

) + (b

3

+ 2

2

b

1

+ b

2

)x

2

3

+ (2

2+1

b

1

+ 2b

2

)x

2

x

3

.

If �

3

= �

2

+ 1 and u

1

+ u

2

� 0 mod 4 de�ne

C =

0

�

1 2



2



0 1 1

0 1 2

1

A

:

With respet to the new basis we haveQ(x) = b

1

x

2

1

+(2

2

b

1

+b

2

+b

3

)x

2

2

+2

+1

b

1

(x

1

x

2

+

x

1

x

3

) + (4b

3

+ 2

2

b

1

+ b

2

)x

2

3

+ (2

2+1

b

1

+ 2b

2

+ 4b

3

)x

2

x

3

.

In eah of these ases one heks that (�

1

; �

2

+ 1; �

3

+ 1) 2 S(').

Lemma 4.5. | Suppose that Q is diagonal, �

1

� �

2

mod 2 and u

1

+ u

2

� 2 mod 4.

Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1).

Proof. | By Lemma 4.4 we may assume that �

3

� �

2

+2. We laim that a

2

� �

2

+1.

Suppose that a

2

� �

2

+ 2. As before, we suppose that ' is an optimal basis. As

before, we write C = (

ij

) for the hange of basis matrix and D = C

t

BC = (d

ij

) for

the matrix orresponding to the new basis. Write �

2

= �

1

+ 2.

The assumption a

2

� �

2

+ 2 implies that ord(d

22

) � a

2

� �

2

+ 2 and ord(d

33

) �

a

3

� a

2

� �

2

+ 2. It follows from (4.3) that ord(

12

) �  and ord(

13

) � . Suppose

that ord(

12

) = . Then ord(

22

) = 1 and d

22

� 2

�

2

(u

1

+ u

2

) 6� 0 mod 2

�

2

+2

. This

gives a ontradition. Similarly, we obtain a ontradition if ord(

13

) = . Therefore

ord(

1j

) >  for j = 2; 3 and d

22

� 

2

22

b

2

mod 2

�

2

+2

. Sine ord(d

22

) � �

2

+ 2 and

ord(b

2

) = �

2

, we onlude that ord(

22

) > 0. Similarly, d

33

� 

2

23

b

2

mod 2

�

2

+2

; this
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implies that ord(

23

) > 0. But then det(C) � 0 mod 2. This gives a ontradition.

We onlude that a

2

� �

2

+ 1.

To prove the lemma, we onstrut a basis ' suh that (�

1

; �

2

+1; �

3

+1) 2 S(').

We distinguish two subases:

{ �

3

� �

1

mod 2,

{ �

3

6� �

1

mod 2.

Suppose that �

3

� �

1

mod 2. Write �

2

= �

1

+2 and �

3

= �

1

+2�. Let ' be the

basis of L orresponding to the hange of basis matrix

C =

0

�

1 2



2

�

0 1 0

0 0 1

1

A

:

With respet to the new basis we have Q(x) = b

1

x

2

1

+ (2

2

b

1

+ b

2

)x

2

2

+ 2

+1

b

1

x

1

x

2

+

2

�+1

b

1

x

1

x

3

+ (b

3

+ 2

2�

b

1

)x

2

3

+ 2

+�+1

b

1

x

2

x

3

.

Suppose that �

3

6� �

1

mod 2. Write �

2

= �

1

+2 and �

3

= �

1

+2�+1. Let ' be

the basis of L orresponding to the hange of basis matrix

C =

0

�

1 2



2

�

0 1 2

��

0 0 1

1

A

:

With respet to the new basis we have Q(x) = b

1

x

2

1

+ (2

2

b

1

+ b

2

)x

2

2

+ 2

+1

b

1

x

1

x

2

+

2

�+1

b

1

x

1

x

3

+ (b

3

+ 2

2�

b

1

+ 2

2(��)

b

2

)x

2

3

+ (2

+�+1

b

1

+ 2

��+1

b

2

)x

2

x

3

.

In eah of these ases one heks that (�

1

; �

2

+ 1; �

3

+ 1) 2 S(').

Lemma 4.6. | Suppose that Q is diagonal, �

1

� �

2

mod 2, �

3

� �

2

+ 2 and u

1

+

u

2

� 0 mod 4. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 2; �

3

).

Proof. | Write �

2

= �

1

+ 2. We already know that a

1

= �

1

. We laim that

a

2

� �

2

+ 2. Suppose a

2

� �

2

+ 3. The same reasoning as in the beginning of the

proof of Lemma 4.4 shows that we may assume that �

3

� �

2

+ 4. If 

22

� 

23

� 0

mod 2, we onlude as in the proof of Lemma 4.5 that det(C) � 0 mod 2. This gives

a ontradition, hene either 

22

or 

23

is a unit.

Suppose that 

22

is a unit. (The argument in the ase that 

23

is a unit is similar,

and we omit it.) Then ord(

12

) = . One omputes that

(4.4) d

12

� 2

12



11

b

1

+ 2

21



22

b

2

mod 2

�

2

+3

:

It follows from (1.2) that 2 ord(d

12

) � a

1

+ a

2

� �

1

+ �

2

+ 3 = 2�

1

+ 2 + 3. Hene

(4.5) ord(d

12

) � �

1

+  + 2:

Reall that Lemma 1.3.(b) implies that ord(d

11

) = a

1

.

First suppose that �

1

< �

2

, that is  6= 0. Sine d

11

has valuation a

1

, 

11

is a unit.

It follows from (4.4) that ord(d

12

) = �

1

+  + 1. This ontradits (4.5).
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Now suppose that �

1

= �

2

. Sine d

11

� 

2

12

b

1

+ 

2

21

b

2

mod 2

�

1

+1

. Sine d

11

has

valuation a

1

= �

1

, it follows that either

(i) 

12

� 1 mod 2 and 

21

� 0 mod 2, or

(ii) 

12

� 0 mod 2 and 

21

� 1 mod 2.

Sine ord(d

12

) � �

1

+ 2, it follows from (4.4) that (i) holds and that 

11

� 0 mod 2.

One omputes that

d

23

� 2

12



13

b

1

+ 2

22



23

b

2

� 2

13

b

1

+ 2

23

b

2

mod 2

�

1

+2

;

sine 

12

and 

22

are units. It follows that 

13

� 

23

mod 2. But this implies that

det(C) � 0 mod 2. (In ase u

1

+ u

2

� 4 mod 8 one ould alternatively argue as in the

proof of Lemma 4.5.)

Let ' be the basis of L orresponding to the hange of basis matrix

C =

0

�

1 2



0

0 1 0

0 0 1

1

A

:

Then b

22

(') � 0 mod 2

�

2

+2

. With respet to the new basis we have Q(x) = b

1

x

2

1

+

(2

2

b

1

+ b

2

)x

2

2

+ 2

+1

b

1

x

1

x

2

+ b

3

x

2

3

. Therefore (�

1

; �

2

+ 1; �

3

) 2 S('). This proves

the lemma.

The following proposition is an immediate onsequene of the omputation of the

invariants a

i

. It illustrates that the a

i

satisfy similar properties for ` = 2 and ` 6= 2,

whih is not so lear from the de�nition.

Proposition 4.7. | Let Q be a ternary quadrati form over Z

`

for ` � 2. Then

ord(�) = a

1

+ a

2

+ a

3

:

Proof. | For ` 6= 2 this is Proposition 2.6.(b). For ` = 2 the theorem follows from

the Propositions 4.1 and 4.2.

In the rest of this setion we de�ne the Gross{Keating invariant � for ` = 2 and

show that it is well de�ned (ompare to Lemma 2.8).

De�nition 4.8. | Suppose that a

1

� a

2

mod 2 and a

3

> a

2

. Let ' be an optimal

basis. We de�ne � = �(') by � = 1 if the subspae of L 


Z

2

Q

2

spanned by '

1

and

'

2

is isotropi, and � = �1, otherwise.

Proposition 4.9. | Suppose that a

1

� a

2

mod 2 and a

3

> a

2

.

(a) The invariant � does not depend on the hoie of the basis.

(b) (i) If Q is not diagonalizable we may write Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+

x

2

x

3

+ vx

2

3

) with v 2 f0; 1g and �

1

> �

2

. In this ase

� = (�1)

v

:
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(ii) If Q is diagonalizable we may write Q(x) = u

1

2

�

1

x

2

1

+u

2

2

�

2

x

2

2

+u

3

2

�

3

x

2

3

with u

1

+ u

2

� 0 mod 4, �

1

� �

2

mod 2 and �

3

� �

2

+ 2. We have that

� = (�1)

(u

1

+u

2

)=4

:

Proof. | The fat that one of the two ases of (b) holds follows immediately from

Propositions 4.1 and 4.2.

Suppose that Q is not diagonalizable. Write Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+ x

2

x

3

+

vx

2

3

), as in the statement of the proposition, and let  be the orresponding basis.

Write Q

2

for the restrition of Q to the sublattie spanned by the basis vetors

 

2

;  

3

. Lemma 3.2 implies that Q

2

is isotropi if and only v = 0. This implies that

�( ) = (�1)

v

.

We now show that � is well de�ned in this ase. It suÆes to show that �(') =

�( ) for optimal bases ' and  with respet to whih Q is in a normal form as

in Proposition 3.3. By assumption, Q is not diagonalizable. (In fat, it follows

from Proposition 4.2 that no quadrati form Q(x) = u

1

2

�

1

x

2

1

+ 2

�

2

(vx

2

2

+ x

2

x

3

+

vx

2

3

) with v 2 f0; 1g and �

1

> �

2

is diagonalizable. Hene we ould have dropped

this assumption from the statement of the proposition.) Write Q

0

(x) = u

0

1

2

�

1

x

2

1

+

2

�

2

(v

0

x

2

2

+ x

2

x

3

+ v

0

x

2

3

) for Q expressed with respet to the basis '. Sine �(Q) =

�(Q

0

) we have that u

1

(4v

2

�1) = u

0

1

(4(v

0

)

2

�1), therefore v = v

0

implies that u

1

= u

0

1

.

Hene, to show that �(') = �( ), it suÆes to show that v = v

0

. We assume that

v = 1 and v

0

= 0, and derive a ontradition.

The basis vetor '

2

is isotropi. Write '

2

= 

1

 

1

+ 

2

 

2

+ 

3

 

3

. The fat that

Q('

2

) = 0 implies that �

1

� �

2

mod 2. Moreover, it follows that ord(

j

) � (�

1

�

�

2

)=2 > 0 for j = 2; 3. Sine '

2

is primitive, it follows that 

1

� 1 mod 2. An easy

omputation shows that ord ('

2

;  

i

) > �

2

for i = 1; 2; 3. In partiular ord ('

2

; '

3

) >

�

2

. But this ontradits the assumption that ord ('

2

; '

3

) = �

2

.

Next we assume that Q is diagonalizable, and let Q(x) be as in the statement of

(b.ii). Write  for the orresponding basis of L. Let Q

2

be the restrition of Q to the

subspae spanned by  

1

;  

2

. Then Q

2

is isotropi if and only if � det(Q) is a square

([S, Theorem IV.6℄). It is easy to see that this happens if and only if u

1

+ u

2

� 0

mod 8.

We now show that � is independent of the hoie of the optimal basis in this ase.

Let ' be an optimal basis. Let C = (

ij

) be the orresponding hange of basis matrix

expressing ' in terms of  . Write �

1

= �

2

+ 2.

We suppose that �

2

> �

1

, that is  > 0. (The ase �

1

= �

2

is analogous and left

to the reader.) We use the notation of the proof of Lemma 4.6. In partiular, we

write Q(x) =

P

i�j

d

ij

x

i

x

j

for the representation of Q in terms of the basis '.

We showed in the proof of Lemma 4.6 that either 

22

or 

23

is a unit. Suppose

that 

22

� 0 mod 2 and 

23

� 1 mod 2. It follows that ord(d

33

) � a

3

= �

3

� �

2

+ 3.

Therefore (4.3) implies that ord(

13

) = . We showed in the proof of Lemma 4.6

that 

11

is a unit. Sine d

13

� 2

11



13

b

1

+ 2

21



23

b

2

mod 2

�

3

+1

, we onlude that
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2 ord(d

13

) = 2 + 2 + 2�

1

= �

1

+ �

2

+ 2. (Here we use that  > 0.) But this

ontradits 2 ord(d

13

) � a

1

+ a

3

= �

1

+ �

3

� �

1

+ �

2

+ 3. We onlude that 

22

is a

unit. Reall from the proof of Lemma 4.6 that this implies that 

12

� 1 mod 2 and



21

� 0 mod 2. Therefore the determinant of the submatrix

~

C =

�



11



12



21



22

�

of C is a unit. We may de�ne

D =

�

~

C

�1

0

0 1

�

:

With respet to the basis orresponding to CD, the quadrati formQ beomesQ(x) =

(b

1

+ Æ

2

1

b

3

)x

2

1

+ (b

2

+ Æ

2

2

b

3

)x

2

2

+ 2Æ

1

b

3

x

1

x

2

+ x

3

(other terms), for ertain Æ

1

; Æ

2

2 Z

2

.

Sine ord(b

3

) � ord(b

2

) + 3 this implies that the subspae spanned by '

1

and '

2

is

isotropi if and only if the spae spanned by  

1

and  

2

is isotropi.

5. Anisotropi quadrati forms

The goal is to lassify all anisotropi ternary quadrati forms over Z

2

, starting from

the normal form of Proposition 3.3. We will see that for anisotropi forms we may

hoose an optimal basis ' so that ord(Q('

i

)) = a

i

, similar to what we had for ` 6= 2

(Corollary 5.8).

Proposition 5.1. | Let Q be a ternary quadrati form over Q

`

. Write Q(x) =

b

1

x

2

1

+ b

2

x

2

2

+ b

3

x

2

3

. We denote by det(Q) = b

1

b

2

b

3

the determinant of Q. Then Q is

isotropi if and only if

(�1;� det(Q)) =

Y

i<j

(b

i

; b

j

):

Here (�; �) denotes the Hilbert symbol.

Proof. | This is [S, Theorem IV.6.ii℄.

Proposition 5.2. | Let Q be a ternary quadrati form over Z

2

whih is not diago-

nalizable. Let  be an optimal basis suh that Q(x) = u

1

2

�

1

x

2

1

+2

�

2

(vx

2

2

+x

2

x

3

+vx

2

3

)

with v 2 f0; 1g. Then Q is isotropi if and only if v = 0 or �

1

� �

2

mod 2.

Proof. | If v = 0 then Q is obviously isotropi. Therefore suppose that v = 1. To

deide whether Q is isotropi, we may onsider Q as quadrati form over Q

2

. We have

Q(x) �

Q

2

u

1

2

�

1

x

2

1

+ 2

�

2

(x

2

2

+ 3x

2

3

). The proposition follows from Proposition 5.1 by

diret veri�ation using the formula for the Hilbert symbol [S, Theorem III.1℄.

Lemma 5.3. | Let Q be a ternary quadrati form over Z

`

. We do not assume that

` = 2. Suppose that a

1

� a

2

� a

3

mod 2. Then Q is isotropi.
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Proof. | If Q is not diagonalizable then the lemma follows from Proposition 5.2,

sine (a

1

; a

2

; a

3

) 2 f(�

1

; �

2

; �

2

); (�

2

; �

2

; �

1

)g.

Suppose that Q is diagonalizable. Write Q(x) = u

1

`

�

1

x

2

1

+ u

2

`

�

2

x

2

2

+ u

3

`

�

3

x

2

3

. If

` 6= 2 we have that �

i

= a

i

hene �

1

� �

2

� �

3

mod 2. To show that Q is isotropi,

it suÆes to onsider Q over Q

`

. After multiplying the basis vetors by a suitable

onstant, we may assume that �

1

= �

2

= �

3

= 0. The lemma now follows immediately

from Proposition 5.1, sine the Hilbert symbol is trivial on units for ` 6= 2.

Suppose that ` = 2 and Q is diagonalizable. Proposition 4.2 implies that �

1

�

�

2

� �

3

mod 2 and u

1

+u

2

� 0 mod 4. As for ` 6= 2, it is no restrition to suppose that

Q(x) = u

1

x

2

2

+ u

2

x

2

2

+ u

3

x

2

3

. One omputes that this quadrati form is anisotropi if

and only if u

1

� u

2

� u

3

mod 4. Hene in our ase Q is isotropi.

For future referene we reord from the proof of Lemma 5.3 when a diagonal ternary

form over Z

2

is anisotropi.

Lemma 5.4. | Let Q(x) = u

1

2

�

1

x

2

1

+ u

2

2

�

2

x

2

2

+ u

3

2

�

3

x

2

3

be a diagonal, ternary

quadrati form over Z

2

. Suppose that �

1

� �

2

� �

3

mod 2. Then Q is anisotropi if

and only if u

1

� u

2

� u

3

mod 4.

Lemma 5.5. | Let Q(x) = u

1

2

�

1

x

2

1

+ u

2

2

�

2

x

2

2

+ u

3

2

�

3

x

2

3

be a diagonal, ternary

quadrati form over Z

2

. Suppose that �

1

� �

2

mod 2 and �

3

6� �

1

mod 2.

(a) Suppose that u

1

� u

2

� u

3

mod 4. Then Q is anisotropi if and only if u

2

� �u

1

mod 8.

(b) Suppose that the u

i

are not all equivalent modulo 4. Then Q is anisotropi if

and only if u

2

� �3u

1

mod 8.

Proof. | The proof is similar to the proof of Lemma 5.3 and is left to the reader.

Notation 5.6. | Let Q be a ternary quadrati form with Gross{Keating invariants

(a

1

; a

2

; a

3

). For every 1 � i < j � 3 we de�ne

Æ

ij

= d

a

i

+ a

j

2

e;

where dae is the smallest integer greater than or equal to a.

Theorem 5.7. | Let Q(x) = u

1

2

�

1

x

2

1

+u

2

2

�

2

x

2

2

+u

3

2

�

3

x

2

3

be a diagonal anisotropi

quadrati form over Z

2

with �

1

� �

2

� �

3

. Then one of the following ases ours.

(a) Suppose �

1

� �

3

6� �

2

mod 2 and u

1

� 3u

3

mod 8. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

; �

3

+ 2) and a

1

6� a

2

mod 2. There exists an optimal basis with respet

to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

u

2

x

2

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

a

3

u

1

x

2

3

:
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(b) Suppose �

1

� �

3

6� �

2

mod 2 and u

1

� u

3

mod4. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

; �

3

+ 2) and a

1

6� a

2

mod 2. Moreover, u

2

� u

1

mod 4 if u

3

� u

1

mod 8

and u

2

� �u

1

mod 4 if u

3

� 5u

1

mod 8: There exists an optimal basis with

respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

u

2

x

2

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

Æ

23

u

2

x

2

x

3

+ 2

a

3

u

1

vx

2

3

:

Here v = (u

1

+u

2

)=2 if u

2

� u

1

mod 4 and v = (3u

1

+u

2

)=2 if u

2

� �u

1

mod 4.

() Suppose �

1

6� �

2

� �

3

mod 2. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

; �

3

+ 2) and a

2

6� a

1

mod 2. The quadrati form with respet to an optimal basis is as in (a) and (b)

with the role of x

1

and x

2

reversed.

(d) Suppose �

1

� �

2

mod 2 and �

2

= �

3

. Then (a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1)

and a

1

6� a

2

mod 2. Moreover, u

1

� u

2

� u

3

mod 4. There exists an optimal

basis with respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

13

u

1

(x

1

x

2

+ x

1

x

3

) + 2

Æ

23

u

1

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

i

= (u

1

+ u

i

)=2 for i = 2; 3.

(e) Suppose �

1

� �

2

mod2, �

3

= �

2

+ 1 and u

1

� u

2

mod 4. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

+ 1; �

3

+ 1) and a

2

6� a

1

mod 2. Moreover, u

2

� u

1

mod 8 if u

3

� u

1

mod 4 and u

2

� 5u

1

mod 8 if u

3

� �u

1

mod 4. There exists an optimal basis

with respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

13

u

1

(x

1

x

2

+ x

1

x

3

) + 2

Æ

23

v

2

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

2

= (u

1

+ u

2

)=2 and v

3

= (u

1

+ u

3

)=2 (resp. (3u

1

+ u

3

)=2) depending on

whether u

3

� u

1

mod 4 or not.

(f) Suppose �

1

� �

2

mod 2, �

3

= �

2

+ 1 and u

1

� �u

2

mod 4. Then (a

1

; a

2

; a

3

) =

(�

1

; �

2

+1; �

3

+1) and a

1

� a

2

mod2. Moreover, u

2

� 3u

1

mod 8. There exists

an optimal basis with respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

13

u

1

(x

1

x

2

+ x

1

x

3

) + 2

Æ

23

v

23

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

2

= (u

1

+ u

2

+ 2u

3

)=2, v

23

= (u

1

+ u

2

+ 4u

3

)=2 and v

3

= u

1

+ 2u

3

.

(g) Suppose �

1

� �

2

� �

3

mod 2 and u

1

� u

2

mod 4 and �

3

� �

2

+ 2. Then

(a

1

; a

2

; a

3

) = (�

1

; �

2

+1; �

3

+1) and a

2

6� a

1

mod 2. Moreover, u

3

� u

1

mod 4.

There exists an optimal basis with respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

12

u

1

x

1

x

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

Æ

23

u

1

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

i

= (u

1

+ u

i

)=2 for i = 2; 3.

(h) Suppose �

1

� �

2

6� �

3

mod 2 and u

1

� u

2

mod 4 and �

3

� �

2

+ 2. Then

(a

1

; a

2

; a

3

) = (�

1

; �

2

+ 1; �

3

+ 1) and a

2

6� a

1

mod 2. One of the following two

ases holds:

�

u

2

� u

1

mod 8 and u

3

� u

1

mod 4;

u

2

� 5u

1

mod 8 and u

3

� �u

1

mod 4:
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There exists an optimal basis with respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

12

u

1

x

1

x

2

+ 2

Æ

13

u

1

x

1

x

3

+ 2

Æ

23

v

2

x

2

x

3

+ 2

a

3

v

3

x

2

3

:

Here v

2

= (u

1

+u

2

)=2 and v

3

= (u

1

+u

3

)=2 (resp. v

3

= (3u

1

+u

3

)=2) depending

on whether u

1

� u

3

mod 4 or not.

(i) Suppose �

1

� �

2

6� �

3

mod 2, �

3

� �

2

+ 2 and u

2

� 3u

1

mod 8. Then

(a

1

; a

2

; a

3

) = (�

1

; �

2

+ 2; �

3

) and a

1

� a

2

mod 2. There exists an optimal basis

with respet to whih

Q(x) = 2

a

1

u

1

x

2

1

+ 2

a

2

v

2

x

2

2

+ 2

Æ

12

u

1

x

1

x

2

+ 2

a

3

u

3

x

2

3

:

Here v

2

= (u

1

+ u

2

)=2.

Proof. | This follows from the results of Setion 4 together with the Lemmas 5.4,

5.5.

Corollary 5.8. | Suppose that Q is anisotropi. Then there exists an optimal basis

' suh that

ord(b

ii

(')) = a

i

for i = 1; 2; 3.

Proof. | This follows immediately from Theorem 5.7 (diagonal ase) and Proposition

5.2 (non-diagonal ase).

In Setion 6, we give a more oneptual proof of Corollary 5.8. In fat, we prove

that any optimal basis has the property in Corollary 5.8. The following lemma gives

a list of the small ases.

Lemma 5.9. | Let Q be an anisotropi ternary quadrati form over Z

2

and suppose

that a

3

� 1. Then one of the following possibilities ours.

(a) We have (a

1

; a

2

; a

3

) = (0; 0; 1). In this ase Q is not diagonalizable; it is of the

form

Q(x) = x

2

1

+ x

1

x

2

+ x

2

2

+ u

3

2x

2

3

:

(b) We have (a

1

; a

2

; a

3

) = (0; 1; 1) and Q is not diagonalizable. Then Q is of the

form

Q(x) = u

1

x

2

1

+ 2(x

2

2

+ x

2

x

3

+ x

2

3

):

() We have (a

1

; a

2

; a

3

) = (0; 1; 1) and Q is diagonalizable. Then Q is as in Theorem

5.7.(d) with a

1

= Æ

13

= 0 and a

2

= a

3

= Æ

23

= 1.
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6. Alternative version of the Gross{Keating invariants for anisotropi

forms

We �x an arbitrary prime number ` and a free quadrati module (L;Q) over Z

`

of

rank n. We assume that (L;Q) is anisotropi, i.e. that Q( ) = 0 implies  = 0. Under

this assumption, there is an alternative de�nition of the Gross{Keating invariants and

a very useful haraterization of optimal bases; see the remark at the end of setion

4 in [?℄. In this setion we do not suppose that n = 3 to streamline some arguments.

Reall that n � 5 implies that (L;Q) is isotropi ([S, Theorem IV.6℄). Therefore the

only additional ase is anisotropi quadrati forms in four variables.

We de�ne a funtion v : L! Z[ f1g by the rule

v( ) := ord

`

Q( ):

For  2 L and x 2 Z

p

we have

(6.1) v(x ) = 2 ord

`

(x) + v( ):

Lemma 6.1. | The funtion v satis�es the triangle inequality

(6.2) v( +  

0

) � min(v( ); v( 

0

)):

Moreover, if the inequality in (6.2) is strit we have v( ) = v( 

0

).

Proof. | If  and  

0

are linearly dependent the laim is obvious. We may hene

assume that they are linearly independent. For x; y 2 Z

`

we write

Q(x + y 

0

) = ax

2

+ y

2

b+ xy:

Suppose that v( +  

0

) < v( ); v( 

0

). Then ord

`

(a + b + ) < ord

`

(a); ord

`

(b). The

usual triangle inequality for ord

`

implies

ord

`

() = ord

`

(a+ b+ ) < ord

`

(a); ord

`

(b):

Lemma 3.2.(b) implies that (L;Q) is isotropi. This and proves (6.2). The seond

assertion of the lemma follows from (6.2), applied to a suitable ombination of the

vetors � , � 

0

and  +  

0

.

Remark 6.2. | If n � 3, one gets an alternative proof of Lemma 6.1 by noting that

(L;Q) is represented by the quaternion division algebra D over Q

`

, equipped with its

norm form. The funtion v is then the restrition of the standard valuation of D.

Let  = ( 

i

) be a basis of L. For i = 1; : : : ; n, let L

i�1

� L be the subspae (of

rank i� 1) spanned by  

1

; : : : ;  

i�1

. We de�ne a funtion ~v

i

: L=L

i�1

! Z

�0

[ f1g

by the rule

~v

i

( + L

i�1

) := max(v( 

0

)j 

0

2  + L

i�1

):

Note that ~v

i

( ) =1 if and only of  2 L

i�1

.
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De�nition 6.3. | A basis  = ( 

i

) of L is alled ideal, if

v( 

i

) = ~v

i

( 

i

+ L

i�1

) = min

 2L

(~v

i

( + L

i�1

))

holds for i = 1; : : : ; n.

It is lear that there exists an ideal basis of L. The next lemma gives a useful

haraterization of an ideal basis.

Lemma 6.4. | A basis  = ( 

i

) of L is ideal if and only if

(6.3) v( 

i

) � v( 

j

) for i � j,

and for all (x

i

) 2 Z

n

`

we have

(6.4) v(

X

i

x

i

 

i

) = min

i

v(x

i

 

i

):

Proof. | Let  = ( 

i

) be a basis of L. If (6.3) and (6.4) hold, then one easily heks

from De�nition 6.3 that  is ideal.

Conversely, suppose that  is ideal. The inequality (6.3) follows diretly from

De�nition 6.3. It remains to prove (6.4). Fix (x

i

) 2 Z

n

`

and k with 1 � k � n. Set

'

k

:=

P

i<k

x

i

 

i

. We laim that

(6.5) v('

k

+ x

k

 

k

) = min(v('

k

); v(x

k

 

k

)):

From this laim, (6.4) follows by indution.

For k = 1, the laim is obvious. To prove it for k > 1 we may assume that it holds

for k

0

= k � 1. Also, by the triangle inequality (6.2), the left hand side of (6.5) is

greater than or equal to the right hand side. Suppose that the left hand side is stritly

greater than the right hand side. Then we have v('

k

) = v(x

k

 

k

). Using (6.1), (6.3)

and the laim for k

0

= k � 1, we �nd that ord

`

(x

k

) � ord

`

(x

i

) for all i � k. After

dividing by x

k

, we may therefore assume that x

k

= 1. However, by the de�nition of

an ideal basis we have

v('

k

) = v( 

k

) � v('

k

+  

k

):

This ontradits our assumption and proves the laim.

Let us �x an ideal basis  = ( 

1

; : : : ;  

n

) of L, and set

a

i

:= v( 

i

); i = 1; : : : ; n:

We want to show that the a

i

are the Gross{Keating invariants of (L;Q). We �rst

hek that (a

i

) lies in the set S (Setion 1). For this we write the quadrati form Q

as follows:

Q(

X

i

x

i

 

i

) =

X

i�j

b

ij

x

i

x

j

:

We set a

ij

:= ord

`

(b

ij

). Note that a

i

= a

ii

.
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Proposition 6.5. | For 1 � i � j � n we have

a

ij

�

a

i

+ a

j

2

:

Proof. | The ase i = j being trivial, we may assume that i < j. Our proof is by

ontradition. First we assume that 2a

ij

+1 < a

i

+a

j

. We set  := max(a

ij

�a

i

+1; 0)

and look at the right hand side of

Q(`



 

i

+  

j

) = b

ii

`

2

+ b

jj

+ b

ij

`



:

The three terms of this sum have `-valuation a

i

+2, a

j

and a

ij

+ , respetively. By

our hoie of  we have

a

ij

+  < min(a

i

+ 2; a

j

):

It follows that

v(`



 

i

+  

j

) = a

ij

+  < min(v(`



 

i

); v( 

j

)):

This ontradits the triangle inequality and exludes the ase 2a

ij

+ 1 < a

i

+ a

j

.

It remains to exlude the ase 2a

ij

+ 1 = a

i

+ a

j

. Sine a

i

� a

j

we have  :=

a

ij

� a

i

� 0. Let x 2 Z

�

`

be a `-adi unit. Then

(6.6) Q(`



x 

i

+  

j

) = b

ii

`

2

x

2

+ b

jj

+ b

ij

`



x:

By our hoie of  we have

a

i

+ 2 = a

j

� 1 = a

ij

+ :

We see that on the right hand side of (6.6), the �rst and the last term have the

minimal valuation a

j

� 1, while the middle term has valuation a

j

. Therefore, for an

appropriate hoie of x, we get

v(`



x 

i

+  

j

) � a

j

> min(v(`



x 

i

); v( 

j

)):

But this ontradits Lemma 6.4, (6.4). The proposition follows.

Proposition 6.6. | An ideal basis is also optimal (De�nition 1.2). Moreover, if

 = ( 

i

) is an ideal basis of L, then (a

i

:= v( 

i

)) are the Gross{Keating invariants

of (L;Q).

Proof. | The previous proposition says that (a

i

) is an element of S. It remains to

show that (a

i

) is a maximal element, with respet to the lexiographial ordering.

Let  

0

= ( 

0

i

) be an arbitrary basis of L, and let (a

0

i

) be an element of S( 

0

)

(Setion 1). We will show that a

0

k

� a

k

for k = 1; : : : ; n, whih proves the proposition.

Write

 

0

i

=

X

j

x

ij

 

j

; with (x

ij

) 2 GL

n

(Z

`

):

The ondition (a

0

i

) 2 S( 

0

) together with Lemma 6.4 shows that

(6.7) a

0

i

� v( 

0

i

) = min

j

(a

j

+ 2ord

`

(x

ij

)):
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Using that (x

ij

) is invertible, one shows that there exists at least one pair of indies

(ij) with k � i and j � k suh that x

ij

is a unit. Applying (6.7) and (6.3) we get

a

0

k

� a

0

i

� a

j

� a

k

:

This is what we had to prove.

Corollary 6.7. | Let  = ( 

i

) be an ideal basis of L and (y

i

) 2 Q

n

`

with y

i

6= 0.

Set  

0

:= ( 

0

i

), where  

0

i

:= y

i

 

i

2 L


Z

`

Q

`

, and let L

0

denote the Z

`

-lattie spanned

by  

0

. Let (a

i

) be the Gross{Keating invariants of L.

(a) The basis  

0

of L

0

is ideal.

(b) The Gross{Keating invariants of L

0

are the numbers

a

0

i

:= a

i

+ 2ord

`

(y

i

);

in some order.

Proof. | Choose an integer r suh that `

r

y

i

2 Z

`

, for all i. For (x

i

) 2 Z

n

`

, Lemma

6.4 shows that

v(

X

i

x

i

 

0

i

) = v(

X

i

`

r

x

i

y

i

 

i

)� 2r

= min

i

(v(`

r

x

i

y

i

 

i

))� 2r

= min

i

(v(x

i

 

0

i

)):

Again by Lemma 6.4 we onlude that  

0

(in some order) is an ideal basis of L

0

. This

proves (a). Part (a) of the orollary follows now from the previous proposition.

Remark 6.8. | Corollary 6.7 (a) is false without the assumption that (L;Q) is

anisotropi. Consider, for instane, the (isotropi) quadrati formQ(x) = x

2

1

�x

2

2

+4x

2

3

over Z

2

. Dividing the last vetor of the standard basis by 2 we obtain the quadrati

form Q

0

(x) = x

2

1

� x

2

2

+ x

2

3

. Aording to Proposition 4.2(b), the Gross{Keating

invariants of Q are (0; 2; 2), while the invariants of Q

0

are (0; 1; 1).

Proposition 6.9. | Let (L;Q) be an anisotropi free quadrati module over Z

`

.

Then every optimal basis is an ideal basis.

The proof of this proposition uses the following lemma.

Lemma 6.10. | Let (a

1

; : : : ; a

n

) be the Gross{Keating invariants of (L;Q), and let

 be an optimal basis. Then v( 

i

) = a

i

.

Proof. | Let  be an optimal basis and suppose that v( 

i

) > a

i

, for some i. It

follows from the de�nition of the Gross{Keating invariants (De�nition 1.2) that there

exists a j 6= i suh that

ord(b

ij

) = (a

i

+ a

j

)=2:
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In partiular, we have that a

i

� a

j

mod 2. Lemma 5.3 implies therefore that a

k

6�

a

i

mod 2 for all k 6= i; j, sine (L;Q) is anisotropi. (The ase that n = 4 easily

redues to the ase that n = 3 by using the existene of an ideal basis.)

Consider the restrition Q

1

of Q to L

1

= h 

i

;  

j

i. We distinguish three ases. First

suppose that a

i

= a

j

. Then (L

1

; Q

1

) is isotropi by Lemma 3.2.(b).

Next we suppose that a

i

< a

j

. Then i < j. We have already seen that a

k

6�

a

i

mod 2 for all k 6= i; j. Renumbering the indies, if neessary, we may assume that

a

i

< a

i+1

and a

j�1

< a

j

. De�ne (~a

i

) by ~a

i

= a

i

+1 and ~a

j

= a

j

� 1, and ~a

k

= a

k

for

all k 6= i; j. Then (~a

k

) 2 S( ). This ontradits the de�nition of the Gross{Keating

invariants.

Finally, we suppose that a

i

> a

j

. Then i > j. If v( 

j

) > a

j

, we interhange i

and j and obtain a ontradition by the previous ase. Therefore v( 

j

) = a

j

. Sine

a

i

� a

j

mod 2, Lemma 3.2.(b) implies that L

1

is isotropi. This gives a ontradition.

We onlude that v( 

i

) = a

i

for all i.

Proof of Proposition 6.9. | Let  be an optimal basis whih is not ideal. Lemma

6.10 implies that v( 

i

) = a

i

for all i. Let k be minimal suh that there exists a

' =

P

k

i=1

x

i

 

i

2 L with v(') 6= min

i

(x

i

 

i

). Lemma 6.4 implies that k exists. It

follows from the triangle inequality that v(') > min

i

(x

i

 

i

). Write ~' =

P

k�1

i=1

x

i

 

i

.

The hoie of k implies that v( ~') = min

i<k

v(x

i

 

i

): Sine v(') = v( ~' + x

k

 

k

), we

onlude from Lemma 6.1 that v( ~') = v(x

k

 

k

): This implies that

(6.8) 2 ord(x

i

) + a

i

� 2 ord(x

k

) + a

k

:

In partiular, ord(x

i

) � ord(x

k

), for all i. Therefore it is no restrition to assume

that x

k

is a unit.

We de�ne a new basis ' = ('

i

) by '

i

=  

i

if i 6= k and '

k

= '. Write

~

Q(

X

i

y

i

'

i

) =

X

i�j

~

b

ij

y

i

y

j

:

One omputes that

~

b

jk

=

(

2x

j

b

jj

+

P

i 6=j

b

ij

x

i

for j < k;

P

i

b

ij

x

i

for j > k:

Equation (6.8) implies that ord(

~

b

jk

) � (a

j

+ a

k

)=2. Therefore ' is again an optimal

basis. But v('

k

) = v(') > min

i

v(x

i

 

i

) = v(x

k

 

k

) = a

k

. This ontradits Lemma

6.10.

Lemma 6.11. | Let M � L be a sublattie, i.e. a sub-Z

`

-module of rank n. Let

b

1

; : : : ; b

n

be the Gross{Keating invariants of (M;Qj

M

). Then b

i

� a

i

.

Proof. | We hoose ideal bases ( 

1

; : : : ;  

n

) for L and ('

1

; : : : ; '

n

) for M . Then

a

i

= v( 

i

) and b

i

= v('

i

). Let us �x an index i 2 f1; : : : ; ng and show b

i

� a

i

. For

an element  =

P

j

x

j

 

j

of L, we set  

0

:=

P

j<i

x

j

 

j

and  

00

:=

P

j�i

x

j

 

j

. Then
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 =  

0

+  

00

and v( 

00

) � a

i

. Sine the vetors '

0

1

; : : : ; '

0

i

lie in a subspae of rank

i� 1, there exist x

1

; : : : ; x

i

2 Z

`

, not all zero, suh that

P

j�i

x

j

'

0

j

= 0. Then

X

j�i

x

j

'

j

=

X

j�i

x

j

'

00

j

:

Applying Lemma 6.4 (6.4) to the left hand side and the triangle inequality (6.2) to

the right hand side, we onlude that

min

j�i

(b

j

+ 2ord

`

(x

j

)) � min

j�i

(v('

00

j

) + ord

`

(x

j

)) � min

j�i

(a

i

+ 2ord

`

(x

j

)):

For the index j for whih ord

`

(x

j

) takes its minimal value we get a

i

� b

j

� b

i

. This

proves the lemma.
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