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Abstract

This paper gives a new approach to decoding Hermite codes using the
key equation, avoiding the use of majority voting. Our approach corrects
up to (dmin − 1)/2 errors, and works up to some extent also beyond. We
present an efficient implementation of our algorithm based on a Sugiyama-
type iterative procedure for computing solutions of a key equation.
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Introduction

Algebraic-geometry codes (AG-codes) are a generalization of Reed–Solomon
codes (RS-codes), and have many nice properties ([7], [23], [24]). For exam-
ple, the family of AG-codes includes a rich variety of codes which are better
than the Varshamov–Gilbert bound ([25]). Several approaches to decoding of
AG-codes can be found in the literature (for example [11], [20], [22], [8], [1],
[17]). However, up to now AG-codes are not used in practical applications.
One of the reasons appears to be that understanding the proposed algorithms
requires quite some background in algebraic geometry.

The starting point of this paper is the well-known key equation for decoding
of AG-codes. In contrast to the situation for Reed–Solomon codes, there exist
many forms of the key equation for AG-codes (for example [18], [21], [5], [4],
[10], [1], [17]. See [17, Section 3.5] for an overview of all approaches). These
decoding algorithms correct up to (dmin− 1)/2− s errors where s is the Clifford
defect (Section 3) and dmin the minimum distance. There exists an extension
which corrects up to (dmin − 1)/2 errors. It uses majority voting to estimate
certain unknown syndromes, which are needed in the decoding (see e.g. [6], [9,
Chapter 6.3]).

In this paper, we present a new approach to decoding up to (dmin − 1)/2
errors, which does not use the unknown syndromes (and hence does not need
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majority voting). We define an approximate version of the key equation, which
we call the modified key equation and we show that it can be used for decoding.
For more than (dmin− 1)/2− s errors, not all solutions of the key equation may
be used for decoding. However, most false solutions are easily recognized.

The second part of the paper discusses algorithmic aspects. We present
an algorithm for computing solutions of the (modified) key equation. This
approach is essentially a simplification of the subresultant method of [21]. In
contrast to, for example, [11] and [17] we compute the error-locator polynomial
of smallest degree rather than a basis of the error-locator ideal. This significantly
decreases the number of iterations of the algorithm. The overall complexity of
our algorithm however is, at least for practical purposes, the same as that using
majority voting. In the last section, we briefly discuss an extension of the
algorithm for correcting more than (dmin − 1)/2 errors (Section 9). Using a
concrete implementation, we tested the practicality of the proposed algorithm.

Our presentation of the material is as elementary and self-contained as pos-
sible, formulating results from algebraic geometry as a black box. Reading the
paper requires only limited knowledge of algebraic geometry (the statement of
the Riemann–Roch Theorem and a working knowledge of local rings and val-
uations). The main results are formulated as easy to use and to implement
statements on polynomials. The restriction to Hermite curves also makes the
paper more accessible. This seems no great restriction, as Hermite codes are
most likely to be among the first AG-codes that become relevant for practical
applications. It seems relatively straightforward to adapt the main idea of the
algorithm to one-point codes or even general AG-codes (e.g. by comparing our
approach to the set-up of [18] and [17]). However, we do not claim to have
worked out all details.

Modeling the approach on the well-known case of Reed–Solomon codes, al-
lows the reader to easily recognize the differences and similarities between both
cases. Our approach is modeled on the usual Sugiyama algorithm which is based
on the Euclidean algorithm for RS-codes. (This is in contrast to for example
the approach of O’ Sullivan–Bras-Amarós, which is a generalization of Kötter’s
version of the Berlekamp–Massey algorithm ([17, Section 3.3.6]).

We now describe our algorithm in more detail. Let Xq be the Hermite curve
over Fq2 given by the affine equation xq+1 = yq + y. It is known that Xq(Fq2)
has cardinality q3 + 1. We denote by P the unique point at infinity, and by
{P0, . . . , Pn−1} := Xq(Fq2) \ {P}. For 2g(Xq)− 1 ≤ m < n = q3, we denote by
C the image of

ϕ : L(mP )→ Fq2 f 7→ (f(Pi))i,

where L(mP ) denotes the Riemann–Roch space as Fq2-vector space. We define
the degree of elements of L(mP ) by minus the valuation at P (Section 1).

Given a received word r, the first step of the decoding algorithm computes a
minimal error-locator polynomial Λ ∈ ∪νL(νP ). Here minimality is considered
with respect to the degree. We show that Λ is a solution to a (modified) key
equation

S̃ · Λ ≡ R̃ (mod ybm+1),
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where the degree of R̃ is bounded in terms of the degree of Λ (see Section 4 for a
precise statement). Here S̃ is the syndrome polynomial, which can be explicitly
computed from r (Section 4). To explain the relation between the modified and
the usual key equation, we present the latter in Section 3 in a way suitable for
our purposes.

We give an iterative algorithm for computing Λ and R̃, which is similar in
spirit to the Euclidean algorithm (also known as Sugiyama algorithm), which
is used for this task in the Reed–Solomon case. Since the ring R of functions
we work in here is not Euclidean, we need to use a division algorithm similar to
what is used in the Groebner-basis algorithm (Section 5). After the computation
of an error-locator polynomial Λ, we find the corresponding error values by
computing the residues of R̃/Λ at the error positions (Section 7, step 4b). This
step is analogous to the well-known Forney formula for RS-codes ([16, Section
10.2]). For AG-codes a similar formula can be found for example in [15].

Decoding is relatively straightforward in the case that the number of errors
t is less than or equal to b(dmin−1)c− s(Xq), where s(Xq) is the Clifford defect.
Namely, we show that in this case a minimal solution to the key equation always
yields an error-locator polynomial.

In Section 7 we describe an extension of the algorithm for

b(dmin − 1)c − s(Xq) < t ≤ b(dmin − 1)c.

In this situation the minimal solution (∆i, R̃i) of the key equation computed
by the iterative procedure described in Section 5 not always yields an error-
locator polynomial ∆i. However, the procedure produces a basis (∆j)j≤i of
the Riemann–Roch space L(ρ(∆i)P ). We therefore need to find an alternative
criterion for determining whether a given linear combination of suitable ∆i is an
error-locator polynomial. This problem is studied in Section 6. Algorithm 6.5
describes two variants of a criterion for recognizing error-locator polynomials.
One variant (d*) is fast and mostly works, the other variant (d) is a bit slower
but always works. In Section 7.1, we present simulations based on a MAGMA
implementation illustrating the efficiency of variant (d*). Running times are
analyzed in Section 8.

In Section 9, decoding beyond half the minimum distance is considered. We
show how to obtain a basis for all solutions to the key equation and calculate its
size. We also discuss why it is not feasible to try to decode this larger number
of errors without further information about the error. In a subsequent paper
[14], we present some methods that allow efficient decoding beyond half the
minimum distance.

1 Preliminaries

Let Fq2 be a finite field and Xq the Hermite curve over Fq2 , i.e. the projective
curve defined by the affine equation

xq+1 = yq + y.
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Recall that the genus of Xq is g := q(q− 1)/2. Let P be the unique point of Xq
at infinity. We denote by

R = ∪m≥0L(mP )

the affine ring of Xq at P . For convenience, we refer to the elements of R as
polynomials. It is well-known that

Φ := {ϕa,b := xayb | 0 ≤ a ≤ q, 0 ≤ b}

is a basis of R.
For f ∈ Frac(R), we define ρ(f) = −ordP (f). Alternatively, one may define

ρ on monomials by ρ(xayb) = −ordP (xayb) = qa + (q + 1)b and extend ρ to
f =

∑
a,b fa,bx

ayb ∈ R by defining

ρ(f) = max
(a,b):fa,b 6=0

ρ(xayb),

and ρ(f/g) = ρ(f)− ρ(g) for f/g ∈ Frac(R).
In analogy to the situation for P1, we refer to ρ(f) as the degree of f . The

term fa,bx
ayb with ρ(xayb) = ρ(f) is called the leading term of f . If the leading

term of f is xayb, we call f monic.
It is well known that for every r ∈ N there is at most one monomial xayb ∈ Φ

with ρ(xayb) = r. Therefore we can order the monomials ϕa,b according to their
ρ-value. We sometimes also write ϕ0 = ϕ0,0 = 1, ϕ1 = ϕ1,0 = x, ϕ2 = ϕ0,1 =
y, . . . to refer to this ordering.

We denote by {P0 = (0, 0), . . . , Pn−1} = Xq(Fq2) \ {P}, and let D :=∑n−1
i=0 Pi. It is well known that n = q3. For 2g − 1 ≤ m < n, we consider

the code C := CL(D,mP ), which is defined as the image of

L(mP )→ Fnq2 , f 7→ (f(Pi))i=0..n−1.

We denote by k = m− g + 1 the dimension of the code, by dmin the minimum
distance of the code, d∗ = n −m the designed minimum distance, and by k⊥

the dimension of the dual code. In our situation, the dual code is isomorphic to
L(m⊥P ), where m⊥ = n+ 2g − 2−m. In particular, the check matrix of C is

H :=
(
ϕi(Pj)

)
0≤i≤k⊥,0≤j≤n−1

,

where also k⊥ = m⊥ − g + 1. The minimum distance dmin is computed in [26]
(see also [9, Section 5.3]). To avoid a case distinction, we sometimes rather use
the designed minimum distance.

2 Syndrome decoding and the key equation

In this and the next section, we review the well-known key equation for Hermite
codes, formulating it in a way convenient for our purposes. We mainly follow
[18] including some simplifications and corrections from [5] (see also [10]).
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Suppose that r = c + e = (ri) is a received vector, where c = (ci) is a
codeword and e = (ei) the corresponding error vector. Let t = wt(e) be the
number of errors. Denote by I ⊂ {0, 1, . . . , n − 1} the error positions and by
Q =

∑
i∈I Pi the error divisor. An error-locator polynomial Λ is a function

Λ ∈ R such that ordPiΛ > 0 for all i ∈ I. An error-locator polynomial of
minimal degree is called a minimal error locator. The set of all error-locator
polynomials forms an ideal Ie in R which is called the error-locator ideal.

Definition 2.1 For every ϕi ∈ Φ, we define a syndrome element as

si =

n−1∑
j=0

ejϕi(Pj) = sa,b if ϕi = ϕa,b.

For m⊥ as in Section 1, we put am = q, bm = max{b ≥ 0 | there exists 0 ≤ a ≤
q such that xayb ∈ Φ, ρ(xayb) ≤ m⊥}. We define the syndrome polynomial by

S :=
∑

0≤a≤am,0≤b≤bm

sa,bx
am−aybm−b ∈ R.

We remark that for ρ(xayb) ≤ m⊥, we may compute the syndromes s :=
(sa,b)ρ(xayb)≤m⊥ from the check matrix and the received vector, since Hrt =
Het = s. Sometimes, these syndromes are called the known syndromes in
contrast to the unknown syndromes sa,b for ρ(xayb) > m⊥. In Section 4 we
will see that these unknown syndromes are not actually used in our decoding
algorithm.

The following lemma gives an interpretation of the syndrome polynomial,
which plays a central role in our decoding algorithm. Basically the lemma states
that the syndrome polynomial S is an approximation of a rational function U
defined below, from which we may easily read off the error locations, and the
error values.

For every 0 ≤ i < n we define a rational function ui, as follows. We write
Pi = (αi, βi) and define

(1) ui =
yq + y − αq+1

i

(x− αi)(y − βi)
=

1 +
∑q−1
j=0(yjβq−1−j

i )

x− αi
.

Note that ui has a simple pole in Pi, a pole in P with ρ(ui) = q2 − q − 1, and
no other poles. Moreover, the polar part of ui at Pi is 1/(x− αi). Put

(2) U := −
∑
i∈I

eiβ
bm+1
i ui.

Since P0 = (0, 0) is the only point of the curve with y = 0, the set of poles
of U is exactly {i ∈ I | i 6= 0}. For i 6= 0, the polar part of U at Pi is

−eiβ
bm+1
i

x− αi
.
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This observation will be used in Section 4 to calculate the error values. The
point P0 = (0, 0) needs to be treated differently from the other points since all
basis functions ϕa,b for (a, b) 6= (0, 0) vanish at P0.

Lemma 2.2 The syndrome polynomial may also be written as

S(x, y) =
∑
i∈I

ei(y
bm+1 − βbm+1

i )ui.

Proof: Using the definition of the syndromes and (1), we can rewrite S as

S =
∑

0≤a≤q,0≤b≤bm

(
∑
i∈I

eiα
am−a
i βbm−bi )xayb =

∑
i∈I

ei(

bm∑
u=0

βbm−ui yu)(

q∑
v=0

αq−vi xv)

=
∑
i∈I

ei
(ybm+1 − βbm+1

i )(yq + y − αq+1
i )

(x− αi)(y − βi)
=
∑
i∈I

ei(y
bm+1 − βbm+1

i )ui.

2

Our definition of S mimics the usual definition of the syndrome polynomial
for RS-codes. In the literature one finds many definitions of similar objects,
which are sometimes also rational functions or differential forms. For exam-
ple, our polynomial S is an approximation of a transformation of the rational
function in [17, Lemma 3.14] (compare Lemma 2.2 also with [17, (3.30)]).

The proof of the following proposition uses an idea from [11].

Proposition 2.3 Let Λ ∈ R be an error-locator polynomial. Then there exists
a polynomial R ∈ R such that

(3)

{
ordP0

(Λ · S −R) ≥ ordP0
(ybm+1),

ρ(R)− ρ(Λ) ≤ qam + (q + 1)bm −m⊥ − 1 =: `.

Proof: Let Λ =
∑
a,b λa,bϕa,b be an error-locator polynomial, and let µ :=

ρ(Λ). We write Λ · S =
∑
a,b ta,bϕa,b.

We define
R :=

∑
qa+(q+1)b≤`+µ

ta,bx
ayb.

Then obviously ρ(R) ≤ `+ µ. Consider the coefficient ta,b of Λ · S for

(4) µ+ ` < ρ(xayb) and b ≤ bm,

i.e.

(5) ta,b =
∑

λi,jsam−a+i,bm−b+j .

We remark that for all (i, j) with λi,j 6= 0 we have that ρ(xiyj) ≤ ρ(Λ) = µ.
The assumption (4) on (a, b) implies that for all (i, j) in this range we have

q(am − a+ i) + (q + 1)(bm − b+ j) = ρ(xiyj) + ρ(xam−aybm−b)

< µ+ qam + (q + 1)bm − µ− `.
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The definition of ` therefore implies that

q(am − a+ i) + (q + 1)(bm − b+ j) < m⊥ + 1.

We conclude that for (i, j) with λi,j 6= 0, the syndromes sam−a+i,bm−b+j are
known syndromes. This implies that we may rewrite (5) as

ta,b =
∑
i,j

λi,jsam−a+i,bm−b+j =
∑
i,j

λi,j

(∑
u

euϕam−a+i,bm−b+j(Pu)

)

=
∑
u

euϕam−a,bm−b(Pu)

∑
i,j

λi,jϕi,j(Pu)


=

n−1∑
u=0

euϕam−a,bm−b(Pu)Λ(Pu).

(6)

Note that if u ∈ {0, . . . , n − 1} and eu 6= 0, then Λ(Pu) vanishes, since Λ is
an error-locator polynomial. Equation (6) implies now that ta,b = 0 for all (a, b)
satisfying (4). Since we defined am = q, it follows from this observation and
the definition of R that the polynomial T := Λ ·S−R contains only monomials
xayb with b > bm. We conclude that ordP0

(T ) ≥ ordP0
(ybm+1). 2

Definition 2.4 Let Λ, R be arbitrary elements of R. We say that (Λ, R) is a
solution of the key equation if both conditions of (3) are satisfied.

One easily shows that in R the first part of the key equation (3) is equivalent
to

ybm+1 | (ΛS −R),

or in a notation that is more similar to that used for RS-codes

Λ · S ≡ R (mod ybm+1).

The following lemma implies that for Λ ∈ R there exists at most one solution
R with ρ(R) ≤ ρ(ybm+1) such that (Λ, R) is a solution of the key equation. We
formulate it slightly more generally, since this will be used in Section 5.

Lemma 2.5 Let Λ ∈ R. There exists a unique polynomial R ∈ R such that

ordP0(ΛS −R) ≥ ordP0(ybm+1) and ρ(R) minimal.

Proof: We remark that ordP0
(ϕa,b) = a + (q + 1)b. Therefore all ϕa,b ∈ Φ

have distinct values ordP0
(ϕa,b). This immediately implies the existence of a

polynomial R as in the statement of the lemma: R is the unique polynomial
which is congruent to ΛS (mod ybm+1) which does not contain any monomials
with ρ(ϕa,b) ≥ ρ(ybm+1) = (q + 1)(bm + 1). The uniqueness of R follows from
this description. 2

We end this section with an easy lemma on the degree of a minimal error-
locator polynomial.
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Lemma 2.6 Let t = |I| be the number of errors and Λ a minimal error-locator
polynomial. Let N be minimal such that the dimension `(NP ) of the Riemann–
Roch space satisfies `(NP ) > t. Then

t ≤ ρ(Λ) ≤ N ≤ t+ g.

Proof: The first inequality follows since the number of zeros of Λ is less
than or equal to its degree. The second follows by elementary linear algebra.
The last follows from the Riemann–Roch Theorem. 2

3 Solutions of the key equation

The main result of this section is Corollary 3.2, which is a partial converse to
Proposition 2.3. We assume that (Λ, R) is a solution of the key equation. Then
Corollary 3.2 states that the solution Λ is an error-locator polynomial, provided
the number of errors t is small enough.

Proposition 3.1 Let (Λ, R) be a solution of the key equation. Write µ = ρ(Λ).
Then

R− ΛU ∈ L((µ+ `)P +Q− (q + 1)(bm + 1)P0).

Proof: The definition of U (Equations (1) and (2)) implies that the poles
of R−ΛU are contained in {Pi}i∈I ∪{P}. Moreover, in Pi with i ∈ I \ {0}, the
rational function R−ΛU has at most a simple pole. The order of the pole in P
equals −ρ(R− ΛU). Since ρ(Λ) = µ by definition, we conclude that

ρ(R− ΛU) ≤ ρ(Λ) + max

(
ρ

(
R

Λ

)
, ρ(U)

)
.

Since (Λ, R) is a solution of the key equation (3), it follows that ρ(R)−ρ(Λ) ≤
`. The definition of U implies that ρ(U) ≤ (q−1)(q+1)−q = q2−q−1 = 2g−1.
We conclude that

ρ(R− ΛU) ≤ µ+ max(`, 2g − 1).

The definition of bm implies that

(q + 1)bm ≤ m⊥ ≤ (q + 1)bm + q,

therefore 2g − 1 ≤ `. We conclude that ρ(R− ΛU) ≤ µ+ `.
It remains to estimate ordP0

(R− ΛU). Lemma 2.2 states that

S − U = (
∑
i∈I

eiui)y
bm+1.

We conclude that ordP0(S − U) ≥ ordP0(ybm+1) = (q + 1)(bm + 1) if 0 6∈ I. In
the case that 0 ∈ I, we have u0 = (yq−1 + 1)/x, and hence

(7) S − U = e0y
bmxq +

∑
i∈I\{0}

eiuiy
bm+1.
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We conclude that ordP0
(S − U) = (bm + 1)(q + 1)− 1.

Since (Λ, R) is a solution of the key equation (3), it follows that T = SΛ−R
satisfies ordP0

(T ) ≥ (q + 1)(bm + 1). We may write R − ΛU = Λ(S − U) − T .
Therefore it follows that

ordP0
(R− ΛU) ≥ (q + 1)(bm + 1)− 1.

2

The next corollary gives a necessary condition for a solution of the key
equation to be an error-locator polynomial. This result is also proved in [18,
Prop. 14] (see also [3, Section 1.4.6]). Recall that t = deg(Q) is the number of
errors. To state the corollary, we first need to recall the definition of the Clifford
defect. For ν ∈ Z, we consider the divisor νP and define the defect by

sν :=
deg(νP )

2
− (`(νP )− 1).

It follows from the Riemann–Roch Theorem that sν = s2g−2−ν , since νP and
K−νP have the same defect. It follows therefore that for ν ≤ 0 or ν ≥ 2g−2 we
have that sν ≤ 0. An elementary computation ([18, Prop. 16]) in the remaining
case 0 < ν < 2g − 2 now shows that

sν ≤

{
(q − 1)2/8 + 1/2, if q ≡ 1 (mod 2),

(q − 2)2/8 + 1/2, if q ≡ 0 (mod 2).

This upper bound for sν is called the Clifford defect s(Xq) of the Hermite curve
Xq.

Corollary 3.2 Let (Λ, R) be a solution of the key equation (3) with t ≤ (d∗ −
1)/2− s(Xq). Then Λ is an error-locator polynomial.

Proof: Let (Λ, R) be as in the statement of the corollary, and define U as
before. Define µ = ρ(Λ). We first assume that t + µ < d∗. Proposition 3.1
implies that R− UΛ ∈ L(Q+ (µ+ `)P − (q + 1)(bm + 1)P0). Since

deg(Q+ (µ+ `)P − (q + 1)(bm + 1)P0) =t+ µ+ `− (q + 1)(bm + 1)

<d∗ + q2 − q − 1−m⊥ − 1 = 0,

it follows from the Riemann–Roch Theorem that

L(Q+ (µ+ `)P − (q + 1)(bm + 1)P0) = {0}.

Now let µ = ρ(Λ) be arbitrary, and define

∆µ = Q+ (µ+ `)P − (q + 1)(bm + 1)P0.

We claim that for t < (d∗ − 1)/2− s the space L(∆µ) is still trivial. We prove
this statement inductively raising µ by one in each step as long as the condition
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t < (d∗− 1)/2− s is still satisfied. We define A = µP −Q and B = ∆µ+1. Note
that A+B ∼ deg(A+B)P = (2µ+ 1− d∗)P . It therefore follows that

`(A+B) = deg(A+B)/2− s(A+B) + 1

≥ deg(A+B)/2− s(Xq) + 1 = µ− (d∗ − 1)/2− s+ 1 > deg(B).

The last inequality uses the assumption on t. We now apply [3, Lemma 1.52].
This lemma states that for any divisors A,B such that deg(B) < `(A+B) and
`(B) 6= 0, we have that `(A) 6= 0. In our situation, if Λ is not an error-locator
polynomial, it follows that `(A) = 0, and hence that `(B) = `(∆µ+1) = 0. This
proves the claim.

The statement L(∆µ) = {0} implies that

(8)
R

Λ
= U.

Since U has poles in I \ {0}, it follows immediately that all error locations Pi,
except possibly P0, are zeros of Λ.

It remains to determine whether P0 is an error location. We assume that
e0 6= 0 and Λ(P0) 6= 0. Equation (7) implies that the value of

S − U
ybmxq

at P0 is e0 which is nonzero. In particular this implies that S−U −e0y
bmxq has

valuation at P0 greater than or equal to (bm + 1)(q+ 1). Recall that this means
that this term is divisible by ybm+1. As in the proof of Proposition 3.1, we write
R−ΛU = Λ(S−U)−T . Since T is also divisible by ybm+1, the assumption that
Λ(P0) 6= 0 implies that ordP0

(R − ΛU) = ordP0
(e0y

bmxq) < (q + 1)(bm + 1).
Hence in particular, R − ΛU is nonzero. But this contradicts the fact that
R − ΛU = 0 (8). We conclude that Λ(P0) = 0. Hence Λ is an error-locator
polynomial. 2

Note that in the situation of Corollary 3.2 the error values can be easily read
off from R/Λ = U and the definition of U . The corollary unfortunately only
applies when the number of errors is relatively small. In the next sections, we
discuss an extension of the idea which corrects up to (d∗−1)/2 errors. Example
5.1 below illustrates that this is indeed more general.

The following proposition explores the potential of the key equation for cor-
recting errors even beyond half the minimum distance. The bottleneck for the
algorithm is assuring whether a solution of the key equation indeed is an error-
locator polynomial. The error values are determined in Lemma 4.3.

Proposition 3.3 Suppose that Λ is an error-locator polynomial with ρ(Λ) <
d∗. Let (Λ, R) be the corresponding solution of the key equation. Then

R

Λ
= U.

In particular, the error locations i 6= 0 are exactly the simple poles of R/Λ.
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Proof: We suppose that Λ is an error-locator polynomial with µ := ρ(Λ) <
d∗. Then ΛU does not have poles outside P . Proposition 3.1 implies that

R− ΛU ∈ L((µ+ `)P − (q + 1)(bm + 1)P0).

The assumption on µ implies that

deg((µ+ `)P − (q + 1)(bm + 1)P0) = µ+ q2 − q − 2−m⊥ = µ− d∗ < 0.

As in the proof of Proposition 3.1, we conclude that

R

Λ
= U.

2

4 The modified key equation

In this section, we address the problem that the syndrome polynomial S as
defined in Section 2 not only involves those syndromes which can be computed
in terms of the received vector but also so-called unknown syndromes sa,b with
ρ(xayb) > m⊥. The following lemma shows that to compute an error-locator
polynomial Λ it suffices to use the known syndromes. To show this, we define
the modified syndrome polynomial as :

S̃ :=
∑

ρ(xayb)≤m⊥

sa,bx
am−aybm−b.

We say that (Λ, R̃) ∈ R2 satisfies the modified key equation if

(9)

{
ordP0

(Λ · S̃ − R̃) ≥ ordP0
(ybm+1),

ρ(R̃)− ρ(Λ) ≤ qam + (q + 1)bm −m⊥ − 1 =: `.

Lemma 4.1 For R ∈ R define R̃ = R − Λ(S − S̃). Then (Λ, R) is a solution
of the key equation (3) if and only if (Λ, R̃) is a solution of the modified key
equation.

Proof: This follows immediately from the observation that S − S̃ only con-
tains monomials xayb with ρ(xayb) < q2 + (q + 1)bm −m⊥. 2

Remark 4.2 The above lemma immediately implies that the statement of
Lemma 2.5 also holds for the modified key equation.

Lemma 4.3 Let Λ be an error-locator polynomial, and assume that ρ(Λ) < d∗.
We write (Λ, R) (resp. (Λ, R̃)) for the corresponding solution of the key equation
(resp. modified key equation).

11



(a) Let Pi \ {P, P0}. Then the polar part of R/Λ and R̃/Λ in Pi are equal.
More precisely, the polar part of R̃/Λ in Pi = (αi, βi) is

−eiβ
bm+1
i

x− αi
.

(b) We have that

e0 = s0,0 −
n−1∑
j=1

ej .

In particular, i = 0 is an error position if and only if s0,0 6=
∑n−1
j=1 ej .

Remark 4.4 As an alternative for the criterion of Lemma 4.3.(b) one may also
use that

R− ΛU ≡ eoybmxq (mod ybm+1)

(compare with the proof of Corollary 3.2.)

Proof: We note that
R̃

Λ
=
R

Λ
+ S̃ − S,

where S̃−S is a polynomial. Statement (a) follows immediately from this obser-
vation. The expression for the polar part of R̃/Λ in Pi follows from Proposition
3.3. Statement (b) follows immediately from the definition of the syndrome s0,0.

2

Summarizing, we have shown that error-locator polynomials always cor-
respond to solutions of the modified key equation. Under the assumption
t ≤ (d∗ − 1)/2− s(Xq), we have shown moreover, that if (Λ, R) is a solution of
the modified key equation, then Λ is an error-locator polynomial. If we omit
the condition t ≤ (d∗ − 1)/2 − s(Xq) it is no longer true that every solution of
the modified key equation yields an error-locator polynomial. (See Example 5.1
for an example. Similar examples can also be found in [18, Section VIII] and [3,
Section 1.4.6].) In Section 6 we discuss the problem of how to recognize solu-
tions which yield error-locator polynomials. Before doing this, we first present
an algorithm for computing solutions of the modified key equation.

5 Calculating the minimal error-locator polyno-
mial

In this section we explain a practical algorithm for solving the modified key
equation. The algorithm explained here is an extension of a modification of the
subresultant-sequence algorithm introduced by Shen [21]. The main difference
between the two algorithms is that Shen’s algorithm uses matrix operations to
calculate a subresultant sequence which is known to yield the same polynomials

12



(up to a constant factor) as the Euclidean algorithm for univariate polynomials.
In contrast, our algorithm mimics the steps of the Sugiyama algorithm used for
decoding RS-codes more closely. Further, our algorithm easily extends to the
decoding of most error patterns of weight b(dmin − 1)/2c; such an extension is
not given in [21].

Our algorithm computes in particular a minimal solution (Λ, R̃) of the
modified key equation. Recall that if the number t of errors is less than
b(dmin − 1)c − s(Xq), then Λ is an error-locator polynomial (Lemma 4.3.(a)).
Therefore in this situation the division algorithm computes an error-locator
polynomial. Once the error-locator polynomial is known, the error values can
be computed by Lemma 4.3.(b+c) (see also Step 4 in Section 7).

The core part of the algorithm is the computation of a new basis ∆i of
L(µP ), together with polynomials Ri that satisfy the first part of the modified
key equation, i.e.

ordP0
(S̃∆i −Ri) ≥ (q + 1)(bm + 1).

Here µ is a bound that will be adapted as we go along. The (∆i, Ri) are
defined in such a way that ρ(∆i) = ρ(ϕi) and moreover the degree of Ri is
minimal. Certain additional choices are made to make the polynomials uniquely
determined. The iterative step of our algorithm (Step 1) mimics the division
algorithm as used in the Groebner-basis algorithm. We never actually compute
any Groebner basis. The degree function ρ plays the role of the ordering in
the Groebner-basis setting. A summary of our algorithm in pseudocode can be
found in [13].

For an introduction to the use of Groebner bases in coding theory, we refer
to [2, Chapter 9].

1. Compute (∆i, Ri) until ρ(Ri)− ρ(∆i) ≤ `
The computation is based on the division of a bivariate polynomial by j other
bivariate polynomials. In such a division, j quotient polynomials γ1, . . . , γj and
one remainder polynomial are obtained by repeatedly subtracting (multiples
of) the j divisor polynomials until no term in the dividend is a multiple of the
leading monomial of any divisor.

Since the first part of the modified key equation is a statement “modulo
ybm+1”, we will compute modulo this relation. Concretely, if we write f ≡ g
(mod ybm+1), we mean that ordP0

(f − g) ≥ ordP0
(ybm+1) = (q + 1)(bm + 1)

in the ring R. Similarly, by [f ] we denote the unique polynomial with [f ] ≡ f
(mod ybm+1) which does not contain any monomials xayb with ordP0(xayb) ≥
(q + 1)(bm + 1). (This is equivalent to b > bm.)

1.a Initialization
We set i = 0 and ∆0(x, y) = 1, R0(x, y) = S̃(x, y). Note that the first part
of the modified key equation (9) is trivially fulfilled. The second part is only
fulfilled if all syndrome elements are zero which is equivalent to the received
word being a codeword. In this case, no decoding is necessary, and we may stop
the algorithm here. Otherwise, continue with the next step.
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1.b Computing the quotients polynomials γi,j
Raise i by 1. Define

ϕi1 :=

{
xa−1 if ϕi = xa,

ϕi/y otherwise.

Put θ = [xRi1 ] if ϕi1 = xa−1 and θ = [yRi1 ] otherwise. In the following, we
restrict to the case that θ = [yRi1 ]. The other case is completely analogous.

Let γi,j be the quotients (mod ybm+1) of dividing θ by Ri−1, Ri−2, . . . , R0

(in that order) imposing the additional condition

(10) ρ(∆j) + ρ(γi,j) < ρ(ϕi).

Let Ri be the remainder (mod ybm+1) of this division. This means that we
may write

θ =
∑
j<i

γi,jRj +Ri.

Note that the polynomials γi,j and Ri are uniquely determined by these require-
ments. Moreover, it follows that the Ri have distinct degree.

We already know that Rj = ∆jS̃ (mod ybm+1) for all j < i. Therefore it
follows from the definition θ = yRi1 that

y∆i1 S̃ =
∑
j<i

γi,j∆jS̃ +Ri (mod ybm+1).

We define ∆i = y∆i1 −
∑
j<i γi,j∆j . It follows that (∆i, Ri) fulfills the first

part of (9). Equation (10) implies that ρ(∆i) = ρ(ϕi). In particular, ∆0, . . . ,∆i

form a basis of L(µiP ), for µi = ρ(∆i).

1c: Termination
In each step we compute ρ(Ri)− ρ(∆i), and stop as soon as this number is less
than or equal to `. Moreover, we have seen that the degree ρ(Λ) of a minimal
error-locator polynomial is less than t + g. This gives an upper bound on the
number of cycles we need.

We illustrate the division algorithm in a concrete example.

Example 5.1 Let q = 4 and n = 64, i.e. {P0, . . . , P63} = Xq(Fq2) \ {P}.
We consider the code corresponding to the Riemann–Roch space L(mP ) with
m = 51. One computes that ` = 12, m⊥ = 23, bm = 4 and d∗ = dmin = 13 (see
[9, Section 5.3]). We represent F16 ' F2[x]/(x4 + x+ 1). Let α ∈ F16 be a zero
of x4 + x + 1 = 0. Note that α ∈ F∗16 is an element of order 15. Suppose that
t = 6 = (dmin − 1)/2.

Suppose that the error positions are

P1 = (1, α), P2 = (1, α2), P3 = (1, α4), P4 = (1, α8), P5 = (α, α6), P6 = (α2, α3)
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and the error values ei = 1 for i = 1, . . . , 6. One computes that the modified
syndrome polynomial is

S̃ = α5x3y4 + α2x4y3 + α10x2y4 + α13x3y3 + α4x4y2 + α2xy4

+ α11x2y3 + α4x4y + α5y4 + α11x2y2 + α6x3y + α8x4

+ α14y3 + α11xy2 + α9x2y.

We compute the minimal solution (Λ, R) of the modified key equation using
the division algorithm.

Since the expressions for Ri are rather long, we only give the main terms.
Initialization: Set i = 0,∆0 = 1 and R0 = S̃.
The step i = 1: We have ϕ1 = x = x · 1, hence i1 = 0. Therefore

θ = [xR0] = α5x4y4 + α2y4 + · · · .

Note that we compute modulo ybm+1 = y5 in R. Dividing θ by R0, under the
additional condition that ρ(γ1,0) < ρ(ϕ1)− ρ(δ0) = 4, has quotient γ1,0 = 0. It
follows that R1 = θ and ∆1 = x∆0 = x.

The step i = 2: We have that ϕ2 = y = y · 1, hence i1 = 0. Therefore

θ = [yR0] = α2x4y4 + α13x3y4 + α4x4y3 + · · · .

We divide θ first by R1. As before, we find quotient γ2,1 = α12 and remainder
ε := α5x3y4 + α2x4y3 + · · · . Dividing ε by R0 yields the quotient γ2,0 = 1 and
the remainder R2 = x4y2 + · · · . This yields ∆2 = y∆0 − γ2,1∆1 − γ2,0∆0 =
y + α12x+ 1.

Continuing, we find

i ∆i ρ(∆i) ρ(Ri)

0 1 0 32

1 x 4 36

2 y + α12x+ 1 5 26

3 x2 + α5x+ α3 8 21

4 xy + α5x2 + y + α13x+ α8 9 20

Note that i = 4 is minimal such that (∆i, Ri) satisfy the second part of the
modified key equation (9). Therefore a minimal solution (Λ, R) of the modified
key equation satisfies ρ(Λ) ≥ ρ(∆4) = 9.

We claim Lemma 2.6 implies that ∆4 cannot be an error-locator polynomial.
Namely, one checks that ∆4 has exactly three Fq2-rational zeros. Therefore if
∆4 were an error-locator polynomial, then we would have t ≤ 3. Since `(8P ) > 3
this contradicts the statement of Lemma 2.6. We conclude that ∆4 is not an
error-locator polynomial. Note that this is no contradiction to Lemma 4.3, since
t > (d∗ − 1)/2− s(Xq).
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This idea will be used in Section 6 below to formulate a practical criterion
for recognizing those solutions (Λ, R) of the modified key equation for which Λ
is an error-locator polynomial.

Remark 5.2 Simulations have shown that our algorithm works just as well if
we stop each iteration as soon as one term in θ could not be canceled instead
of performing the entire division. A justification for this is that ρ(Ri) does not
change with the modified division, and the minimality of the returned solution
depends on ρ(Ri) only, not on terms of smaller order. In the case that t ≤
b(dmin− 1)/2c− s(Xq), the uniqueness of the minimal solution follows from the
theory of Riemann-Roch spaces (Corollary 3.2).

Lemma 5.3 Let Λ ∈ L(µiP ) \ L((µi − 1)P ). Write Λ =
∑i
j=0 cj∆j with

cj ∈ Fq2 . Put R =
∑i
j=0 cjRj . Then ordP0

(ΛS̃ − R) ≥ (q + 1)(bm + 1).
Moreover, R is the unique polynomial with this property such that ρ(R)− ρ(Λ)
is minimal, for given Λ.

Proof: Let Λ, R be as in the statement of the lemma. Recall that the ∆j

form a basis of L(µiP ), therefore there exist unique cj as in the statement of the

lemma. The properties of (∆j , Rj) imply that ordP0(∆jS̃−Rj) ≥ (q+1)(bm+1).
Therefore the same property holds for (Λ, R). The uniqueness of R follows from
Remark 4.2. 2

The following theorem follows immediately from Lemma 5.3. A minimal
solution of the modified key equation is a solution (Λ, R) such that ρ(Λ) is
minimal.

Theorem 5.4 Step 1 of the algorithm computes a minimal solution of the key
equation.

Proof: Our algorithm constructs a series of pairs (∆i, Ri), where every
possible ρ(∆i) is obtained in increasing order. The algorithm stops as soon as
the second part of (3) is fulfilled for (∆i, Ri). Let i be the value for which the
algorithm terminates, and let µ = ρ(Λ) be the degree of a minimal solution
of the modified key equation. To prove the algorithm, it suffices to show that
µ = µi.

Assume that µ = ρ(Λ) is the degree of a minimal solution (Λ, R) of the
modified key equation. Choose j such that µj = µ. We need to show that
(∆j , Rj) is a solution of the modified key equation. Since ∆0, . . . ,∆j form a
basis of L(µP ), we may write Λ =

∑
s≤j csΛs. Recall that R =

∑
s≤j csRs.

Since ρ(Λ) = ρ(∆j) = µj , we have cj 6= 0.
Assume that (∆j , Rj) is not a solution of the modified key equation. Then

ρ(R) ≤ ` + µ and ρ(Rj) > ` + µ. In particular, we have that ρ(R) < ρ(Rj).
But this contradicts R =

∑
s≤j csRs with cj 6= 0, since by construction the

polynomials Rs have different degree. 2
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6 Recognizing error-locator polynomials for t ≤
b(dmin − 1)/2c

In Example 5.1 we have seen that a minimal solution need not yield an error-
locator polynomial if t > (dmin − 1)/2 − s(Xq). In that example it was easy
to see that the polynomial ∆4 we computed using the division algorithm is not
an error-locator polynomial. In this section we explain that this idea yields a
criterion which may be used in most cases to recognize those solutions of the
modified key equation which yields error-locator polynomials.

The idea of the modification is that the (∆j)j≤i form a basis of L(ρ(∆i)P ).
Therefore an error-locator polynomial Λ with ρ(Λ) ≤ ρ(∆i) (if it exists) may
be written as linear combination of the (∆j)j≤i. Our criterion (Proposition
6.1) determines whether such a linear combination could be an error-locator
polynomial. To obtain a reasonable running time, one has to limit those ∆js
which may occur in the expression for an error-locator polynomial. This aspect
is discussed in Section 7 which deals with algorithmic aspects.

To formulate the criterion, we need to introduce some notation.
Let (Λ, R̃) be a solution of the modified key equation. Consider the set

ZΛ ⊂ Xq(Fq2) \ {P0, P} of poles of R̃/Λ different from P, P0. Note that ZΛ is
a subset of the set of Fq2-rational zeros of Λ. For Pi ∈ ZΛ, we define numbers

eΛ,i by writing the polar part of R̃/Λ in Pi = (αi, βi) as

(11) −eΛ,iβ
bm+1
i

x− αi
.

For P0, define

(12) eΛ,0 =

{
s0,0 −

∑n−1
j=1 eΛ,j if P0 is a zero of Λ ,

0 otherwise.

For i ∈ Xq(Fq2) \ {P0, P} ∪ ZΛ, we define eΛ,i = 0. We write eΛ = (eΛ,i).
Denote by t(Λ) the cardinality of ZΛ if e0 = 0 and the cardinality of ZΛ + 1

otherwise. (Alternatively, t(Λ) is the weight of the vector eΛ = (eΛ,i).)

We claim that R̃/Λ does not have poles outside Xq(Fq2). Given (Λ, R̃), we
define R by the formula of Lemma 4.1. Lemma 4.3 implies that if R/Λ does not
have any poles outside Xq(Fq2), then the same holds for R̃/Λ.

The statement of Lemma 4.1 implies that (Λ, R) is a solution of the key
equation (3). Therefore Proposition 3.1 implies that R − ΛU ∈ L((µ + `)P +
Q− (q+1)(bm+1)P0). It follows that R/Λ, hence also R̃/Λ does not have poles
outside Xq(Fq2). This implies that t(Λ) is less than or equal to the number of
Fq2 -rational zeros of Λ.

Proposition 6.1 Suppose that (Λ, R̃) is a solution of the modified key equa-
tion, such that µ := ρ(Λ) < d∗.

(a) If Λ is the minimal error-locator polynomial then µ ≤ N , where N is
minimal such that `(NP ) > t(Λ). In particular µ ≤ t(Λ) + g.
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(b) For eΛ as above, we have that Λ is an error-locator polynomial if and only
if r − eΛ is a codeword. (Recall that r denotes the received vector.).

Proof: The statement of (a) follows immediately from Lemma 2.6.
We now prove (b). Assume that Λ be an error-locator polynomial, and let

R ∈ R be such that (Λ, R) is a solution of the key equation. Let R̃ be as in
Lemma 4.1. Proposition 3.3 implies that U = R/Λ. Equation (2) implies that
the polar part in Pi 6= P0 of U = R/Λ is

−eiβbm+1
i

x− αi
.

Lemma 4.3.(a) implies that this is also the polar part of R̃/Λ. This proves the
statement for Pi 6= P0. The statement for Pi = P0 follows similarly, by using
Lemma 4.3.(b) instead.

For the other direction, we assume that cΛ := r − eΛ is a codeword. The
definition of eΛ,i immediately implies that Λ(Pi) = 0 for all i with ei 6= 0. Hence
Λ is an error-locator polynomial. 2

Remark 6.2 Suppose it is known that the number t of errors satisfies t ≤
(dmin−1)/2. Then the performance of the algorithm improves if one also removes
solutions with t(Λ) > (dmin − 1)/2.

Example 6.3 Let q = 4 and n = 64, i.e. {P0, . . . , P63} = Xq(Fq2) \ {P}.
We consider the code corresponding to the Riemann–Roch space L(mP ) with
m = 51 as Example 5.1. Suppose that t = 6 = (dmin − 1)/2.

We consider an example where P0 is among the error positions. We choose
error positions

P1 = (1, α), P2 = (1, α2), P3 = (α8, α14), P4 = (1, α8), P5 = (α, α6), P0 = (0, 0)

and error values ei = 1 for i = 1, . . . , 6.
The modified syndrome polynomial is

S̃ = α5x3y4+α5x4y3 + α10x2y4 + α4x3y3 + α10x4y2 + α4xy4 + α10x2y3

+α2x3y2 + α14x4y + α5y4 + α6xy3 + α8x2y2 + α7x3y + α5x4

+α5y3 + α12xy2 + α8x2y.

The minimal solution (Λ, R̃) of the modified key equation satisfies ρ(Λ) = 12.
We have that

Λ =x3 + αxy + α12x2 + αy + α11x = α(x+ 1)(α14x2 + y + α10x),

R̃ =α5xy4 + · · ·+ αy.

The Fq2-rational zeros of Λ are the error positions, together with (1, α4).
The other 5 zeros of Λ are not Fq2-rational, and hence certainly not poles of

R̃/Λ. This polynomial satisfies the criterion of Proposition 6.1.(a).
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By computing the polar part of R̃/Λ, one finds that ei = 1 for i 6= 0. We
remark that both R̃ and Λ have valuation one in (1, α4). Therefore R̃/Λ does
not have a pole or zero in this point. In fact one computes that the value of
R̃/Λ in (1, α4) is α12. This implies that (1, α4) is not an error location.

Note that R̃/Λ does not have a pole in P0. As already remarked in Section
2, we need to calculate the error value in P0 a bit differently. Since s0,0 = 0 6=∑5
j=1 ej , we conclude that P0 is an error position. Moreover, we conclude that

e0 =

5∑
j=1

ej = 1.

We now explain how to check the statement of Proposition 6.1.(b) in practice.
For this, we define

V :=
∑

i:Pi 6=(0,0)

eΛ,iui,

and

(13) G :=
R̃

Λ
− V.

As in the proof of Proposition 3.3, one shows that G ∈ L(`P ). We may compute
the coefficients of G =

∑
Giϕi, for example by substituting suitable points Pi

in (13).
We first suppose that Λ is an error-locator polynomial with ρ(Λ) < d∗. Let

(Λ, R) be the solution of the key equation corresponding to Λ. Then it follows
from Proposition 3.3 that V = U = R/Λ. Therefore

G =
R̃

Λ
− R

Λ
= S̃ − S.

We conclude that if Λ is an error-locator polynomial, then the coefficients of G
are precisely the unknown syndromes.

Now suppose that (Λ, R̃) is any solution of the modified key equation. Recall
that for j 6= 0 we computed the values ej = eΛ,j via the polar part of R̃/Λ. For
0 ≤ ρ(ϕi) ≤ `, we write ϕi = xam−aybm−b if such a monomial exists in R. We
may now check whether the coefficients Gi satisfy

(14) Gi = sa,b =

n∑
j=0

eΛ,jϕa,b(Pj).

Example 6.4 We apply this procedure to the solution (∆4, R4) of Example
5.1. (Recall that we have in fact already shown that ∆4 is not an error-locator
polynomial.) We first compute the polar parts ofR4/∆4 in the three Fq2-rational
zeros of ∆4 which we denote by {P1, P2, P3}. Since R4/∆4 has a simple pole in
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these three points Pi = (αi, βi), the polar part in Pi is a multiple of 1/(x−αi).
These “residues” satisfy:

e1 := Res(α,α6)
R4

∆4
= α10, e2 := Res(α5,α11)

R4

∆4
= α11, e3 := Res(α2,α3)

R4

∆4
= α2.

From this we compute that the polynomial G defined by (13) is given by

G = α14 + α13x+ α12y + x2 + α14y2.

This can for example be computed by substituting x = α, α2, α5 and simplifying
the obtained rational functions in one variable.

One checks that

G0 = α14 6= s4,4 =

3∑
j=1

ejϕ4,4(Pj) = α12.

This gives a second proof that ∆4 is not an error-locator polynomial.

The following algorithm summarizes our criterion for recognizing error-locator
polynomials as follows. Assume we are given a solution (Λ, R) of the modified
key equation such that µ := ρ(Λ) < dmin. Since we only need to find the mini-
mal error-locator polynomial, we may assume that no error-locator polynomial
with ρ(Λ) < µ exists. Assume moreover that the number t of errors is less than
or equal to (dmin − 1)/2. (Compare to Remark 6.2.)

Algorithm 6.5 Input: µ, together with several solutions (Λ, R) of the modified
key equation with ρ(Λ) = µ. Output: an error-locator polynomial. If (d*) is
applied instead of (d), one obtains a (smaller) list of candidates for the error-
locator polynomial, which will mostly consist of one element.

(a) Determine the Fq2 -rational zeros t0 of Λ. Let N0 be minimal such that
`(N0P ) > t0. If µ > N0 then reject Λ.

(b) Otherwise, determine eΛ,i for Λ(Pi) = 0 and i 6= 0 by (11). Determine
eΛ,0 by (12).

(c) Let t(Λ) be the number of i for which ei is nonzero, and compute N as
in the statement of Proposition 6.1.(a). If µ > N or t(Λ) > (dmin − 1)/2
then reject Λ.

(d) In case one has found more than one different candidate error-locator
polynomials Λi of the same degree, apply the criterion of Proposition
6.1.(b): compute cΛi := r − eΛi and determine for which i the word cΛi

is a codeword.

(d*) This step is an alternative to step (d) in the case that several candidates
are found. Choose the solution Λ for which the number t(Λ) is maximal,
if it is unique.
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Unfortunately, Step (d) of the above algorithm increases the running time of
the algorithm (Section 8). Simulation results show that this has to be invoked
only in a very small number of cases (see Section 7.1). Applying the alternative
step (d*) in stead of (d) works almost as well and is faster. The optimal version
seems to be to combine steps (d) and (d*) as follows: apply (d*) to see if
this yields a unique answer. Only apply (d) in the case that there are several
solutions Λi of the key equation with the same degree and the same number of
Fq2 -rational zeros such that eΛ,i 6= 0. An example of this very rare phenomenon
is given in Example 6.7.

Remark 6.6 We now explain why (d*) is a reasonable choice. Assume that
µ is the degree of a minimal error-locator polynomial of some code. Consider
all polynomials Λ ∈ L(µP ). Then the error-locator will have much more than
average many Fq2-rational points. Among other things, this is illustrated in the
examples we have computed (Section 7.1), but this can already been seen on a
small example.

Assume q = 2 and consider all polynomials y + ax + b with a, b ∈ F4 =
F2[α]/(α2 +α+ 1) with a 6= 0. There are 12 such polynomials. Of these 5 have
three F4-rational zeros, 1 has two F4-rational zeros and the other 6 have exactly
one F4-rational zeros. The polynomials with 2 or 3 rational zeros are minimal
error-locator polynomials, but those with 1 are not. In this simple example
it therefore holds that every polynomial with more than averagely many F4-
rational zeros is an error-locator polynomial.

As a second step, one recalls that, ignoring P0, the errors are Fq2-rational
poles of R/Λ. Zeros of Λ which are not poles of R/Λ may therefore be ignored.
Note moreover that we have shown that zeros of Λ which are not Fq2-rational
are never poles of R/Λ.

Example 6.7 We continue with Example 5.1, and illustrate the different steps
of Algorithm 6.5.

We have seen that i = 4 is the first value such that ρ(∆i)− ρ(Ri) ≤ ` = 12.
This implies immediately that the minimal error-locator polynomial has degree
greater than or equal to 9. Moreover, we have already checked that ∆4 is not
an error-locator polynomial (Example 5.1). Note that ρ(R3)− ρ(∆4) = 12 but
that for i = 0, 1, 2 we have that ρ(Ri) − ρ(∆4) > 12. This implies that an
error-locator polynomial Λ of degree 9, if it exists, may be written as

Λ = ∆4 + c∆3, with c ∈ F16.

Checking the criterion of Proposition 3.3 for all values of c yields as candidates

Λ1 := ∆4 + α14∆3 = (x− 1)(y + α12x+ 1),

Λ2 := ∆4 + ∆3 = xy + α10x2 + y + α7x+ α13 and

Λ3 := ∆4 + α6∆3 = xy + α9x2 + y + α4x+ α12

satisfying (a) of Algorithm 6.5, since the number t0(Λi) of Fq2-rational zeros of
these polynomials is t0(Λ1) = t0(Λ2) = 9 and t0(Λ3) = 6.
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We now apply the other steps of Algorithm 6.5. We write R̃i for the unique
polynomial as in Lemma 5.3. One computes that t(Λi) (defined in Algorithm
6.5.(c)) satisfies: t(Λ1) = t(Λ3) = 6 and t(Λ2) = 9. Since t(Λ2) > (dmin − 1)/2,
this solution is rejected by Algorithm 6.5.(c).

Since t(Λ1) = t(Λ3), criterion (d*) does not distinguish between the candi-
dates Λ1 and Λ3, therefore we apply (d). We compute the error values eΛ3 , and
find:

eΛ3,(α,α6) = α9, eΛ3,(α2,α3) = α6, eΛ3,(α6,α4) = 1, eΛ3,(α10,α7) = α,

eΛ3,(α13,α7) = α6, eΛ3,(α14,α3) = α.

One checks for example that s1,0 = α5 6=
∑
j ejϕ1,0(Pj) = α. We conclude that

Λ3 is not an error-locator polynomial, and therefore select Λ1. Alternatively,
one may also check that the criterion of Algorithm 6.5.(d) is satisfied for Λ1

which immediately proves that Λ1 is the minimal error-locator polynomial.
The method described in this section does not only work for the minimal

error-locator polynomial. Continuing the division algorithm, one may compute
further pairs (∆i, R̃i), which satisfy the first part of the modified key equation
(compare to Step 2 from the Algorithm of Section 7). One may apply Algorithm
6.5 to linear combinations of the ∆j in each iteration. One finds for example

Λ4 := ∆6 + α2∆4 = (x− 1)(x2 + α10y + α13x+ α12),

which is a further error-locator polynomial corresponding to the same codeword.
Since all common zeros of Λ1 and Λ4 on Xq are error locations, it follows

that (Λ1,Λ4) is a set of generators of the error-locator ideal. (Alternatively, one
may also check that dimFq R/〈Λ1,Λ4〉 = t = 6.)

We compare this to the method of [17]. Their algorithm needs 20 rounds
to compute a set of generators of the error-locator ideal Ie in this particular
example. In practice, the minimal generators are already computed in earlier
steps, but the algorithm does not check this.

7 Extension of the algorithm

In this section, we present an extension of the division algorithm which incor-
porates the results of the previous section. The assumptions and notations are
as in that section.

1. Compute (∆i, Ri) until ρ(Ri)−ρ(∆i) ≤ ` This step is identical to Step
1 from Section 5.

2. Obtaining the error-locator polynomial
From the previous step 1 (Section 5), we obtain (∆i, Ri) with ρ(Ri)−ρ(∆i) ≤ `.
Put µi = ρ(∆i). If there exists an error-locator polynomial Λ with ρ(Λ) ≤ µi
then we may write

(15) Λ =
∑
j≤i

cj∆j ,
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since the ∆i form a basis of L(µiP ). Recall that the corresponding polynomial
R such that (Λ, R) is a solution of the modified key equation can then be written
as

R =
∑
j≤i

cjRj .

The division algorithm implies that the ρ(Rj) are all distinct. Therefore for all
j with cj = 0 we have that

ρ(Rj)− ρ(∆i) > `.

This greatly limits the linear combinations to consider.
In the case that Λ = ∆i (i.e. cj = 0 for all j < i) we have defined R = Ri.

Therefore we need to check whether (Λ, R) is an error-locator polynomial using
Algorithm 6.5, which is particularly easy since we only have one candidate.
Namely, it suffices to check whether t(Λ) and µi = ρ(∆i) satisfy the criteria
(a–c) of Algorithm 6.5.

In step 3 we explain what to do if Λ is not an error-locator polynomial by
the criteria of Algorithm 6.5. The general case that cj 6= 0 for at least one j < i
is treated in step 4.

3. Treatment of decoding failures
If no error locator is found by the previous basis, increase µ and i to include
the next (∆i, Ri) which is a solution of the key equation, and repeat step 2. If
we can bound the number of errors (usually we want t ≤ b(dmin − 1)/2c), then
by Lemma 2.6 ρ(Λ) ≤ t + g, so we know that it suffices to run the algorithm
until ρ(∆i) reaches this bound, hence the number of additional steps is limited.
If no further pair (∆i, Ri) fulfilling the key equation is found, we know that
more than b(dmin − 1)/2c errors occurred. In our setting this means that the
error weight exceeds half the minimum distance and unique decoding cannot
be guaranteed any more, making a special treatment necessary. More details
about this situation can be found in Section 9.

4a. Choosing a single solution
As mentioned in step 2, we might find more than one solution of the key equation
which could be error-locator polynomials. In this case we apply Algorithm 6.5
to choose to most likely error-locator polynomial,

4b. Computing the error values What remains to do to complete the
decoding process is to find the error values. But once the error locator polyno-
mial has been determined this is a relatively simple task. Basically, two different
possibilities exist: the first is to use the error-locator polynomial to recursively
extend the syndrome polynomial until the error values can be found by eval-
uation. Such an approach is described e.g. in [20]. The other possibility is
to exploit Lemma 4.3 and calculate the residues as was done in Example 6.4
to obtain the error values. Note that the latter approach is similar to using
the well-known Forney formula for RS codes [19, p. 195], and had also been
presented in other works, e.g. [4], [18].
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7.1 Simulation results We describe several simulation results, based on
an implementation of our algorithm in MAGMA. The main goal of these simu-
lations is to illustrate the effectivity of step (d*) of Algorithm 6.5. Therefore, we
have consistently used (d*) rather than (d). In the case that (d*) does not yield
a unique solution, we have randomly chosen one of the candidates. Surprisingly
enough, this yields very often the correct results, especially for codes with small
rates. Recall that using (d) instead always yields the correct codeword, since
we assume that t ≤ b(dmin − 1)/2c.

Table 1 presents the results of a series of simulations that was performed for
Hermite codes with several design parameters m over F42 . The choice q = 4
yields s = 1, so it is only necessary to simulate the decoding of errors with
weight t = b(dmin − 1)/2c. In case we find multiple solutions (Λi, Ri) of the
modified key equation with equal value ρ(Λi), we use (d*) of Algorithm 6.5 in
stead of (d), and select those solutions Λi for which the number t(Λi) of poles
of Ri/Λi is maximal. If Λi is still not unique, we make a random choice.

The design parameters, code rates k/n and tested error weight are given in
the first three columns of Table 1. For each code, 107 random error patterns
were used. The number Ef in the fourth column gives the number of error
patterns for which the first solution returned by the algorithm was erroneously
accepted. The number Nb shows the number of error words for which a second
basis polynomial was calculated, and the number Eb denotes the number of
errors where the criterion led to a wrong decision among the candidates.

m k
n

⌊
dmin−1

2

⌋
Ef Nb Eb

27 0.344 18 0 2034 0

33 0.438 15 0 2050 0

37 0.5 13 1 2170 1

43 0.563 10 7 2018 1

47 0.656 8 572 3150 108

Table 1: Simulation Results for Several Codes H(m)

It can be seen that for small code rates correct decoding is already achieved,
but small error rates remain for codes with higher rates.

8 The complexity of the division algorithm

In this section, we first prove that the complexity of the algorithm presented
before is at most cubic. This is worse than the complexity of the fastest known
algorithms, yet analysis of simulations showed that the practical asymptotic
complexity is O(n7/3), which is the same as that of other common decoding
algorithms for AG-codes.
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8.1 The worst case complexity

Lemma 8.1 Assume that t ≤ b(dmin − 1)/2c − s(Xq) errors occurred. Finding
a minimal solution of the key equation with the algorithm presented in the
previous section has complexity O(n3).

Proof: The main part of the decoding algorithm is the determination of an
error-locator polynomial. To estimate its complexity, we count the number of
necessary multiplications in Fq2 . Throughout this section, we use the notations
introduced in Section 5, and let τ = b(dmin − 1)/2c − s(Xq) be the maximum
number of correctable errors. Any error of weight t ≤ τ can then be decoded
with at most the same complexity. Because the check matrix can be precalcu-
lated, the computation of the syndrome polynomial has complexity O(nm⊥).
The selection of i1 has linear complexity, and the calculation of θ has O(m⊥).
Next, we need to divide θ by several other polynomials. This division requires
up to ρ(θ)τ checks followed by ρ(θ) subtractions of another polynomial, where
a single subtraction has complexity O(m⊥). Up to τ such divisions have to be
performed, hence the overall complexity of this step is O(ρ(θ)m⊥τ) = O(n3).
The calculation of the polynomials ∆i can be performed in line with the di-
vision, hence does not increase the asymptotic complexity. As stated in [4],
the complexity of the evaluation step is O(n2), so it does not affect the overall
complexity. 2

Shen’s subresultant algorithm [21] also has cubic complexity. More pre-
cisely, the complexity is O((n+ bm+ 1)3), so our algorithm has a slightly better
performance.

Unfortunately, if there is no unique minimal solution of the key equation,
the complexity is dominated by selecting one of the candidates, and depends on
the number of summands in (15): with every additional element, the number of
polynomials to be checked according to Algorithm 6.5 increases by a factor of q2

and theoretically the pairs from all t+ 1 operations might need to be included.

8.2 Reduced complexity in actual implementations In simulations, we
found that it is always suffices to limit the number of summands in (15) to two.
We implemented a version of the algorithm with the following modifications. If
there are more than two summands once ρ(Ri) − ρ(∆i) ≤ ` is fulfilled for the
first time, then the two pairs with the largest ρ(∆i) are chosen. If it is necessary
to compute additional iterations (as in step 3), we pick those two pairs which
fulfill the stopping criterion. With this setup, only q2 = n2/3 linear combinations
have to be considered. If the error values need to be computed (as in Algorithm
6.5.(d)) for all these candidates, the complexity of the selection step is O(n8/3).
But in a combination with the simpler criterion (d*) from Algorithm 6.5, the
necessary number of evaluations is mostly O(q), further reducing the overall
complexity to O(n7/3).

On the other hand, the complexity of the bivariate division was also smaller
than derived before: careful analysis showed that on average only 2(q + 1)
instead of ρ(θ) subtractions were necessary. Because n = q3, this observation
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reduces the complexity of finding the minimal solution, and hence also the
overall complexity, to O(n7/3). Algorithms of the same complexity were denoted
“fast” in [11] and [20]. Note that the latter algorithm involves majority voting,
so our algorithm can compete with majority voting algorithms also in terms of
complexity.

9 A basis for decoding beyond half the mini-
mum distance

In this section we discuss the abilities of our decoder to correct more than
b(dmin − 1)/2c errors. The difference to the previous chapters is that if the
minimal error locator has LT (Λ) = ϕt with t > b(dmin− 1)/2c there will always
be more than one solution of the key equation of this degree. In this section,
we first describe how to modify our algorithm in order to obtain a basis for all
these solutions, and then calculate the number nb of elements in this basis. In
the end, we shortly discuss why it is usually not feasible to use this basis in
decoding without further information about the error.

9.1 The modification to the algorithm The original description of our
algorithm uses a stopping criterion based on an upper bound on the number
of errors in the received word. Unfortunately, we cannot use this stopping
criterion if t > b(dmin − 1)/2c. Instead, we use a modification of the algorithm
that provides us with a basis for all solutions of the key equation up to a certain
degree.

The first step is to choose a number t of errors that we want to correct, so
the error-locator polynomial Λ satisfies ρ(Λ) ≤ ρ(ϕt). Note that ρ(ϕt) ≤ m⊥

is required as otherwise the degree condition on R is trivially fulfilled for any
polynomial of the given order. But this restriction is actually less severe than
the general bound on the decoding capabilities for linear codes which require
t < dmin.

We calculate all pairs (∆i, Ri) with ρ(∆i) ≤ ρ(ϕt). For ρ(ϕt) < dmin,
Proposition 3.3 shows that only those pairs with ρ(Ri) ≤ ρ(ϕt) + ` may be
used in a basis for all solutions of the key equation. Lemma 5.3 implies that all
solutions (Λ, R) to the modified key equation with ρ(Λ) ≤ ρ(ϕt) can be written
as linear combination of the (∆i, Ri). If t was chosen large enough, the correct
error-locator polynomial must be constructable from that basis.

9.2 The number of basis pairs Now we want to count the number of
basis pairs we get from this construction. In the derivation, we use the value

ρS := q2 + (q + 1)bm

to estimate the degrees of the remainder polynomials throughout the iterations.
Actually, ρS denotes the maximum possible order of the syndrome polynomial
S̃ and ρS = ρ(S̃) if and only if s0,0 6= 0.
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Let us first assume that ρ(Ri) = ρS − ρ(ϕi) for all i because this is the most
common case. Then the pairs which have not been selected for the basis have

ρ(Ri) = ρS − ρ(∆i) > ρ(ϕt) + `

or ρ(∆i) < m⊥ + 1− ρ(ϕt). The number of basis pairs therefore equals

(16) nb = |Φρ(ϕt)| − |Φm⊥−ρ(ϕt)| = t+ 1− |Φm⊥−ρ(ϕt)|.

Assume there exists a pair (̄ı, i) of indices with ρ(Ri) = ρS−ρ(ϕı̄). Without
loss of generality, we may assume that ı̄ < i. Careful inspection of the poly-
nomials obtained from the modified algorithm (Section 9.1) shows that then
ρ(Rı̄) = ρS − ρ(ϕi) is also always true. We can have one of the following
situations:

1. Both ρ(Ri) ≤ ρ(ϕt)+` and ρ(Rı̄) ≤ ρ(ϕt)+`, then both pairs are selected
for the basis and nb does not change. The situation is similar if both
ρ(Ri) > ρ(ϕt) + ` and ρ(Rı̄) > ρ(ϕt) + `, as then neither of the pairs is
selected.

2. If i < t and ρ(Ri) > ρ(ϕt)+` but ρ(Rı̄) ≤ ρ(ϕt)+` we can again calculate
nb by (16), but now the pair (∆ı̄, Rı̄) is picked instead of (∆i, Ri).

3. If i > t, we obtain ρ(Rı̄) ≤ ρ(ϕt) + ` for sure, so the ı̄th pair is included
in the basis. However, the pair (∆i, Ri) is not even calculated because of
ρ(∆i), so in this situation nb is larger than indicated by (16), which turns
out to be only a lower bound on the number of basis elements.

The last case occurs only rarely, in 107 simulations we found this case only once.
In the following special case, the general result can be simplified: let m⊥ −

ρ(ϕt) > 2g − 2 and t ≥ g. This means that the number of errors is not too
small, but also not too close to the minimum distance. Then we know that

|Φm⊥−ρ(ϕt)| = m⊥ − ρ(ϕt)− g + 1 = m⊥ − (t+ g)− g + 1 = m⊥ − t− 2g + 1.

In this case, we can rewrite (16) to

nb = t+ 1− (m⊥ − t− 2g + 1) = 2t− (m⊥ − 2g + 2) + 2 = 2t− d∗ + 2.

If we further write the number of errors as t = (d∗ − 1)/2 + t0, then

nb = 2t0 + 1.

This coincides with known results for RS-codes, see e.g. [12].
An open problem remains what to do now that the basis has been found. Of

course we may form all possible linear combinations and then use Algorithm 6.5
to select one, but this approach has a very high complexity: even if checking the
criteria had linear complexity O(n), the correction of two additional errors, i.e.,
t0 = 2, leads to an overall complexity of n11/3. This value usually increases by a
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factor n4/3 for every additional error that shall be corrected. Decoding beyond
half the minimum distance without such a significant increase in complexity is
therefore only possible with special methods such as the use of reliability infor-
mation, collaborative decoding of interleaved Hermite codes or virtual extension
to an interleaved code. In [14], the latter two approaches are described in more
detail and a bound on the number of errors which can be decoded with high
probability using an algorithm with cubic complexity is given.
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