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Introduction

Two curious facts

Consider the following spiral configuration of the natural numbers n ≥ 41:

Figure 1: The Ulam spiral, starting at n = 41

The numbers printed in red are the prime numbers occuring in this list.
Rather surprisingly, all numbers on the minor diagonal are prime numbers (at
least in the range which is visible in Figure 1). Is this simply an accident? Is
there an easy explanation for this phenomenon?

Visual patterns like the one above were discovered by Stanislav Ulam in 1963
(and are therefore called Ulam spirals), but the phenomenon itself was already
known to Euler. More specifically, Euler noticed that the polynomial

f(n) = n2 − n+ 41

takes surprisingly often prime values. In particular, f(n) is prime for all n =
1, . . . , 40. An easy computation shows that the numbers f(n) are precisely the
numbers on the minor diagonal of the spiral in Figure 1. This connects Euler’s
to Ulam’s observation.

Here is another curios fact. Compute a decimal approximation of eπ
√
n for

n = 1, 2, . . . and look at the digits after the decimal point. One notices that for
a few n’s, the real number eπ

√
n is very close to an integer. For instance, for

n = 163 we have

eπ
√

163 = 262537412640768743.999999999997726263 . . .

Again one can speculate whether this is a coincidence or not.
Amazingly, both phenomena are explained by the same fact: the subring

Z[α] ⊂ C, with α := (1 +
√
−163)/2, is a unique factorization domain!
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To see that the first phenomenon has something to to with the ring Z[α], it
suffices to look at the factorization of the polynomial f(n) over C:

f(n) = n2 − n+ 41 =
(
n− 1 +

√
−163

2

)(
n− 1−

√
−163

2

)
.

Using this identity we will be able to explain, later during this course, why f(n)
is prime for n = 1, . . . , 40 (see Example 2.6.27). But before we can do this we
have to learn a lot about the arithmetic of rings like Z[α].

The explanation for the second phenomenon is much deeper and requires the
full force of class field theory and complex multiplication. We will not be able
to cover these subjects in this course. However, at the end we will have learned
enough theory to be able to read and understand books that do (e.g. [3]). For
a small glimpse, see §1.3 and in particular Example 1.3.12.

Algebraic numbers and algebraic integers

The two examples we just discussed are meant to illustrate the following
point. Although number theory is traditionally understood as the study of the
ring of integers Z (or the field of rational numbers Q), there are many mysteries
which become more transparent if we pass to a bigger ring (such as Z[α], with
α = (1 +

√
−163)/2, for instance). However, we should not make the ring

extension too big, otherwise we will loose too many of the nice properties of the
ring Z. The following definition is fundamental.

Definition 0.0.1 A complex number α ∈ C is called an algebraic number if it
is the root of a nonconstant polynomial f = a0 + a1x+ . . .+ anx

n with rational
a0, . . . , an ∈ Q (and an 6= 0).

An algebraic number α is called an algebraic integer if it is the root of a monic
polynomal f = a0 + a1x+ . . .+ xn, with integral coefficients a0, . . . , an−1 ∈ Z.

We let Q̄ ⊂ C denote the set of all algebraic numbers, and Z̄ ⊂ Q̄ the subset
of algebraic integers. One easily proves that Q̄ is a field and that Z̄ is a ring.
Moreover, Q̄ is the fraction field of Z̄. See §???.

In some sense, algebraic number theory is the study of the field Q̄ and its
subring Z̄. However, Q̄ and Z̄ are not very nice objects from an algebraic point
of view because they are ‘too big’.

Definition 0.0.2 A number field is a a subfield K ⊂ Q̄ which is a finite field
extension of Q. In other words, we have

[K : Q] := dimQK <∞.

We call [K : Q] the degree of the number field K. The subring

OK := K ∩ Z̄

of all algebraic integers contained in K is called the ring of integers of K.

To be continued..
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1 Roots of algebraic number theory

Before we introduce and study the main concepts of algebraic number theory
in general, we discuss a few classical problems from elementary number theory.
These problems were historically important for the development of the modern
theory, and are still very valuable to illustrate a point we have already em-
phasized in the introduction: by studying the arithmetic of number fields, one
discovers patterns and laws between ‘ordinary’ numbers which would otherwise
remain mysterious. In writing this chapter, I was mainly inspired by the highly
recommended books [5] and [3].

1.1 Unique factorization

Here is the most fundamental result of elementary number theory (sometimes
called the Fundamental Theorem of Arithmetic):

Theorem 1.1.1 (Unique factorization in Z) Every nonzero integer m ∈ Z,
m 6= 0, can be written as

m = ±pe11 · . . . · perr , (1)

where p1, . . . , pr are pairwise distinct prime numbers and ei ≥ 1. Moreover, the
primes pi and their exponents ei are uniquely determined by m.

For a proof, see e.g. [5], §1.1. We call (1) the prime factorization of m and
we call

ordp(m) :=

{
ei, p = pi,

0, p 6= pi ∀i

the order of p in m (for any prime number p). This is well defined because of
the uniqueness statement in Theorem 1.1.1. The following three results follow
easily from Theorem 1.1.1. However, a typical proof of Theorem 1.1.1 proceeds
by proving at least one of these results first, and then deducing Theorem 1.1.1.
For instance, the first known proof of Theorem 1.1.1 in Euclid’s Elements (Book
VII, Proposition 30 and 32) proves the following statement first:

Corollary 1.1.2 (Euclid’s Lemma) Let p be a prime number and a, b ∈ Z.
Then

p | ab ⇒ p | a or p | b. (2)

Corollary 1.1.3 For a, b ∈ Z, a, b 6= 0, we denote by gcd(a, b) the greatest
common divisor of a, b, i.e. the largest d ∈ N with d | a and d | b.

(i) If d is a common divisor of a, b then d | gcd(a, b).

(ii) For a, b, c ∈ Z\{0} we have

gcd(ab, ac) = a · gcd(b, c).
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Corollary 1.1.4 For p ∈ P and a, b ∈ Z\{0} we have

ordp(ab) = ordp(a) + ordp(b)

and
ordp(a+ b) ≥ min

(
ordp(a), ordp(b)

)
(To include the case a+ b = 0 we set ordp(0) :=∞).

In the proof of every1 nontrivial theorem in elementary number theory, The-
orem 1.1.1 (or one of its corollaries) is used at least once. Here is a typical
example.

Theorem 1.1.5 Let (x, y, z) ∈ N3 be a Pythagorean tripel, i.e. a tripel of
natural numbers which are coprime and satisfy the equation

x2 + y2 = z2. (3)

Then the following holds.

(i) One of the two numbers x, y is odd and the other even. The number z is
odd.

(ii) Assume that x is odd. Then there exists coprime natural numbers a, b ∈
N2 such that a > b, a 6≡ b (mod 2) and

x = a2 − b2, y = 2ab, z = a2 + b2.

Proof: We first remark that our assumption shows that x, y, z are pairwise
coprime. To see this, suppose that p is a common prime factor of x and y.
Then p divides z2 by (3), and Corollary 1.1.2 shows that p divides z. But this
contradicts our assumption that the tripel x, y, z is coprime and shows that x, y
are coprime. The argument for x, z and y, z is the same.

Since x, y are coprime, they cannot be both even. Suppose x, y are both
odd. Then a short calculation shows that

x2, y2 ≡ 1 (mod 4).

Likewise, we either have z2 ≡ 1 (mod 4) (if z is odd) or z2 ≡ 0 (mod 4) (if z is
even). We get a contradiction with (3). This proves (i).

For the proof of (ii) we rewrite (3) as

y2 = z2 − x2 = (z − x)(z + x). (4)

Using
2x = (z + x)− (z − x), 2z = (z + x) + (z − x),

1with Theorem 1.1.1 as the only exception
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Corollary 1.1.3 and the fact that x, z are coprime we see that

gcd(z + x, z − x) = gcd(2x, 2z) = 2 · gcd(x, z) = 2.

We write z + x = 2u, z − x = 2v, y = 2w, with u, v, w ∈ N. Then u, v are
coprime and (4) can be written as

w2 = uv. (5)

If p is a prime factor of u, then it does not not divide v. Hence Corollary 1.1.4
shows that

ordp(u) = ordp(uv) = 2ordp(w).

We see that ordp(u) is even for all prime numbers p. Since, moreover, u > 0,
it follows that u is a square, i.e. u = a2 (here we use again Theorem 1.1.1!).
Similarly, v = b2 and hence w = ab. We conclude that

x =
z + x

2
− z − x

2
= a2 − b2, y = 2ab, z =

z + x

2
+
z − x

2
= a2 + b2,

finishing the proof. 2

Remark 1.1.6 There is an easy converse to Theorem 1.1.5: given two coprime
numbers a, b ∈ N, such that a > b and a 6≡ b (mod 2), then

x := a2 − b2, y := 2ab, z := x2 + y2

is a Pythagorean triple. By Theorem 1.1.5, we get all Pythagorean tripel (for
which y is even) in this way. Here is a table for the first 4 cases:

a b x y z

2 1 3 4 5

3 2 5 12 13

4 1 15 8 17

4 3 7 24 25

Euclidean domains

Theorem 1.1.1 is a fundamental but not a trivial result. It requires a careful
proof because it does not hold for arbitrary rings.

Example 1.1.7 Let R := Z[
√

5] ⊂ R denote the smallest subring of R contain-
ing
√

5. It is easy to see that every element α ∈ Z[
√

5] can be written uniquely
as

α = a+ b
√

5,
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with a, b ∈ Z. Consider the identities

22 = 4 = (1 +
√

5)(−1 +
√

5). (6)

We have written the ring element 4 as a product of two factors, in two essentially
different ways. By this we mean the following. It is easy to see that the element
2 ∈ R cannot be written as the product of two nonunits. We say that 2 ∈ R
is irreducible. If a naive generalization of Theorem 1.1.1 to the ring R would
hold, then 2 would behave like a prime element of R, i.e. satisfy the implication
(2) of Corollary 1.1.2. But it doesn’t: (6) shows that 2 divides the product of
the right hand side but none of its factors.

The example above shows that, in order to prove Theorem 1.1.1 we need to
use certain special properties of the ring Z. Looking carefully at any proof of
Theorem 1.1.1 one sees that the heart of the matter is division with remainder
or, what amounts to the same, the euclidean algorithm. So let us define a class
of rings in which the euclidean algorithm works.

Definition 1.1.8 Let R be an integral domain (i.e. a commutative ring without
zero divisors). We say that R is a euclidian domain if there exists a function
N : R\{0} → N0 with the following property. Given two ring elements a, b ∈ R
with b 6= 0, there exists q, r ∈ R such that

a = qb+ r, and either r = 0 or N(r) < N(b).

A function N : R\{0} → N0 with this property is called a euclidean norm on R.

Example 1.1.9 For R = Z the absolute value N(a) := |a| is a euclidean norm.
For the polynomial ring k[x] over a field k the degree function deg : k[x]\{0} →
N0 is a euclidean norm function as well.

Definition 1.1.10 Let R be an integral domain. Recall that an ideal of R is
a subgroup I ⊂ (R,+) of the additive group underlying R such that a · I ⊂ I
for all a ∈ R. The ring R is called a principle ideal domain if every ideal I is
principal, i.e. I = (a) for some a ∈ R.

Proposition 1.1.11 Any euclidean domain is a principal ideal domain.

Proof: Let N : R\{0} → N0 be a euclidean norm on R and let I � R be
an ideal. We have to show that I is principal. If I = (0) then there is nothing
to show so we may assume that I 6= (0). Clearly, the restriction of N to I\{0}
takes a minimum. Let d ∈ I, d 6= 0, be an element such that N(d) is minimal.
We claim that I = (d).

Since d ∈ I we have (d) ⊂ I. To prove the other inclusion, we let a ∈ I be an
arbitrary element. By Definition 1.1.8 there exist q, r ∈ R such that a = qd+ r
and either r = 0 or N(r) < N(d). However, r = a − qd ∈ I, so r 6= 0 and
N(r) < N(d) is impossible by the choice of d. We conclude that r = 0 and
hence a = qd ∈ (d). The proposition is proved. 2
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Corollary 1.1.12 (Existence of the gcd) Let R be a euclidean domain and
a, b ∈ R. Then there exists an element d ∈ R with the following properties.

(i) The element d is a common divisor of a, b, i.e. d | a and d | b.

(ii) If d′ ∈ R is a common divisor of a, b then d′ | d.

An element d satisfying (i) and (ii) is called a greatest common divisor of
a, b.

Proof: Since R is a principal ideal domain we have (a, b) = (d) for some
element d ∈ R. The inclusion (a, b) ⊂ (d) implies (i). Since d ∈ (a, d) there
exists x, y ∈ R such that d = xa+ yb. It follows that for any common divisor d′

of a, b we have d′ | d, proving (ii). 2

Remark 1.1.13 The proofs of Proposition 1.1.11 and Corollary 1.1.20 can be
easily made constructive, leading to the extended euclidean algorithm. More
precisely, given two elements a, b of a euclidean domain R, with b 6= 0, we can
compute a greatest common divisor of a, b by successive division with remainder:

a = q1b+ r1,

b = q2r1 + r2,

r1 = q3r2 + r3,

...
...

...

As long as rk 6= 0 we have N(r1) > N(r2) > . . . > N(rk). But this process
must terminate at some point, i.e. there exists k such that rk 6= 0 and rk+1 = 0
(if r1 = 0 then we set r0 := b). One easily shows that rk is a greatest common
divisor of a, b and can be written in the form

rk = xa+ yb, x, y ∈ R.

Definition 1.1.14 Let R be an integral domain. We write R× for the group
of units of R.

(i) Two elements a, b ∈ R are called associated (written a ∼ b) if a = bc for a
unit c ∈ R×. (Equivalently, we have a | b and b | a.)

(ii) An element a ∈ R is called irreducible if

(a) a 6= 0,

(b) a is not a unit, and

(c) for any factorization a = bc, we have either b ∈ R×, a ∼ c, or c ∈ R×,
a ∼ b.

(iii) Let a ∈ R satisfy (a) and (b) from (ii). We call a a prime element if the
following implication holds for all b, c ∈ R:

a | bc ⇒ a | b or a | c.
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It is easy to see that prime elements are irreducible. Example 1.1.7 shows
that the converse does not hold. Indeed, 2 and ±1+

√
5 are irreducible elements

of R = Z[
√

5], but none of them is a prime element (see Exercise 1.3.1).

Definition 1.1.15 Let R be an integral domain. The ring R is called factorial
(or a unique factorization domain) if every element a 6= 0 has a factorization of
the form

a = u · p1 · . . . · pr, (7)

where u ∈ R× is a unit and p1, . . . , pr are irreducible, and moreover, the factor-
ization (7) is essentially unique, in the following sense. If

a = v · q1 · . . . qs

is another factorization with a unit v and irreducible elements qi, then r = s,
and there exists a permutation σ ∈ Sr such that qi ∼ pσ(i) for all i.

By the following proposition, every principal ideal domain is factorial.

Proposition 1.1.16 Let R be a principal ideal domain. Then the following
holds.

(i) Every irreducible element of R is prime.

(ii) Let I1 ⊂ I2 ⊂ I3 ⊂ . . . be an ascending chain of ideals of R. Then there
exists n ∈ N such that In = Im for all m ≥ n.

(iii) R is factorial.

Proof: Let a ∈ R be irreducible, and let b, c ∈ R be elements such that
a | bc. We have to show that a | b or a | c. Let

I = (a, b) := {xa+ yb | x, y ∈ R}

be the ideal generated by a, b. By assumption I = (d) for some element d ∈ R.
In particular, we have d | a and d | b. Since a is irreducible, we can distinguish
two cases. In the first case, a ∼ d which implies a | d | b, so we are done. In the
second case, d is a unit and hence I = R. This means that there exist x, y ∈ R
such that

1 = xa+ yb.

Multiplying with c we obtain the identity

c = xca+ ybc.

Using the assumption a | bc we conclude that a | c. This completes the proof of
(i).

Let I1 ⊂ I2 ⊂ I3 ⊂ . . . be an ascending chain of ideals of R. Then I := ∪nIn
is also an ideal, and hence I = (a) for some a. Choose n ∈ N such that a ∈ In.
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Then I = (a) ⊂ In which immediately implies In = In+1 = . . . = I and proves
(ii).

For the proof of (iii) we first show, by contradiction, the existence of a
factorization (7). So we assume that there exists an element a ∈ R, a 6= 0, which
has no factorization into irreducibles elements. Then a is not irreducible and
not a unit. This means that a admits a factorization a = b1c1, where b1, c1 are
nonunits. Moreover, one of the elements b1, c1 cannot be factored into irreducible
elements (otherwise we could factor a as well). Say that b1 cannot be factored.
Repeating the same argument as before we obtain a factorization b1 = b2c2,
where b2, c2 are nonunits and b2 cannot be factored into irreducibles. Continuing
this way we obtain a sequence of elements b1, b2, . . . such that bn+1 | bn and
bn - bn+1. In other words, the chain of ideals

(b1) ( (b2) ( (b3) ( . . .

is strictly increasing. But this contradicts (ii). We conclude that every element
a 6= 0 has a factorization into irreducible elements, as in (7).

It remains to prove uniqueness. Suppose we have two factorizations of a,

u · p1 · . . . · pr = a = v · q1 · . . . · qs, (8)

with units u, v and irreducible elements pi, qj . We may assume that 1 ≤ r ≤ s.
In particular,

pr | q1 · . . . · qs.

By (i) pr is a prime element, and hence pr | qj for some j. After reordering we
may assume that pr | qs. Since pr and qs are irreducible, we even have pr ∼ qs.
Dividing both sides of (8) by pr we obtain

u · p1 · . . . · pr−1 = v′ · q1 · . . . · qs−1,

with a new unit v′. The proof is now finished by an obvious induction argument.
2

We remark that the converse to (iii) does not hold, i.e. there are factorial
domains which are not principal ideal domains. A typical example is the poly-
nomial ring k[x1, . . . , xn] over a field with n ≥ 2 generators.

Combining Proposition 1.1.11 and Proposition 1.1.16 we obtain:

Corollary 1.1.17 Every euclidean domain is factorial.

In particular, this proves Theorem 1.1.1. We can summarize our general dis-
cussion of unique factorization by saying that we have established the following
hierarchy of rings:

euclidian domains
∩

principal ideal domains
∩

11



unique factorization domains
∩

integral domains

The ring of integers OK of a number field K, which is the main object of
study in algebraic number theory, is an integral domain but typically not a
unique factorization domain. The two examples Z[i] and Z[ω] considered below
are rather special. However, OK does belong to a very important class of rings
in between integral and factorial, called Dedekind domains.

The rings Z[i] and Z[ω]

We discuss two examples of euclidean domains which are very useful in
number theory.

Definition 1.1.18 (i) Let Z[i] ⊂ C denote the smallest subring of C con-
taining the imaginary unit i. This ring is called the ring of Gaussian
integers.

(ii) Set ω := e2πi/3 = (−1+i·
√

3)/2 ∈ C. We denote by Z[ω] ⊂ C the smallest
subring of C containing Z and ω. It is called the ring of Eisenstein2

integers.

It is clear that every element α ∈ Z[i] can be uniquely written as

α = x+ y · i, with x, y ∈ Z.

Similarly, every element of Z[ω] is of the form z = x+ yω, with x, y ∈ Z. Here
we have used that ω satisfies the quadratic equation ω2 + ω + 1 = 0. Hence
addition and multiplication in Z[ω] is given by the rules

(x1 + y1ω) + (x2 + y2ω) = (x1 + x2) + (y1 + y2)ω,

(x1 + y1ω) · (x2 + y2ω) = (x1y1 − y1y2) + (x1y2 + x2y1 − x2y2)ω.

The nice properties of the rings Z[i] and Z[ω] can all be derived from the
geometry of the embeddings Z[i],Z[ω] ⊂ C. In the second case this embedding
is visualized by Figure 2.

An important feature of this embedding is that the square of the euclidean
norm takes integral values: for α = x+ iy ∈ Z[i] we have

|α|2 = x2 + y2 ∈ N0.

Similarly, for α = x+ yω ∈ Z[ω] we have

|α|2 = x2 − xy + y2 ∈ N0.

2Ferdinand Gotthold Max Eisenstein, 1823-1852, german mathematician
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Figure 2: The ring of Eisenstein integers as a lattice in the complex plane

Proposition 1.1.19 For both rings R = Z[i] and R = Z[ω] the function

N : R\{0} → N, N(α) := |α|2,

is a euclidean norm function.

Applying Corollary 1.1.17 we obtain:

Corollary 1.1.20 The rings Z[i] and Z[ω] are factorial.

Proof: (of Proposition 1.1.19) We prove this only for Z[ω]. The proof for
Z[i] is similar. Let α, β ∈ Z[ω] be given, with β 6= 0. Within the complex
numbers, we can form the quotient α/β. It is of the form

α

β
=

αβ̄

|β|2
= x+ yω,

with x, y ∈ Q. Choose a, b ∈ Z such that

|a− x|, |b− y| ≤ 1/2

and set
γ := a+ bω, ρ := α− γβ.

By definition we have
α = γβ + ρ.

It remains to show that N(ρ) < N(β). By the choice of γ we have

|α
β
− γ|2 = |(x− a) + (y − b)ω|2

= (x− a)2 + (x− a)(y − b) + (y − b)2 ≤ 1

4
+

1

4
+

1

4
=

3

4
< 1.
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We conclude that

N(ρ) = |β|2 · |α
β
− γ|2 < |β|2 = N(β).

This proves the proposition. 2

Remark 1.1.21 The main argument of the proof of Proposition 1.1.19 may be
phrased more geometrically as follows: if D ⊂ C is a disk with radius r > 1/2
inside the complex plane, then D contains at least one element of Z[ω]. This is
related to the fact that the lattice of points Z[ω] ⊂ C corresponds to a so-called
dense sphere packing of the plane.

As we will see in later chapters, the method of viewing algebraic integers as
lattice points in a euclidean vector space is fundamental for algebraic number
theory.

To understand the algebraic structure of Z[i] and Z[ω] it is also important
to know the unit groups.

Lemma 1.1.22 (i) An element α ∈ Z[i] (resp. an element α ∈ Z[ω]) is a unit
if and only if N(α) = 1.

(ii) The group of units Z[i]× is a cyclic group of order 4 and consists precisely
of the 4th roots of unity,

Z[i]× = {±1,±i}.

(iii) The group of units Z[ω]× is a cyclic group of order 6 and consists precisely
of the 6th roots of unity,

Z[ω]× = {±1,±ω,±ω2}.

Proof: Let R = Z[i] or R = Z[ω]. Suppose α ∈ R is a unit. Then
N(α)N(α−1) = N(αα−1) = 1. Since N(α), N(α−1) are positive integers,
it follows that N(α) = 1. Conversely, if N(α) = αᾱ = 1 then obviously
α−1 = ᾱ ∈ Z[ω], and hence α is a unit. This proves (i). For the proof of
(ii) one has to check that the Diophantine equation

N(α) = x2 + y2 = 1

has exactly 4 solutions, namely (x, y) = (±1, 0), (0,±1). This is clear. Similarly,
one proves (iii) by showing that

N(α) = x2 + y2 − xy = 1

has precisely six solutions, namely (x, y) = (±1, 0), (0,±1), (1, 1), (−1,−1). 2

Lemma 1.1.23 Let R = Z[i] or R = Z[ω].
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(i) If the norm of an element α ∈ R is a prime number, i.e. N(α) = p ∈ P,
then α is a prime element of R. Moreover,

p = α · ᾱ

is the prime factorization of p as an element of R.

(ii) Let p ∈ P be a prime number. Then either p is a prime element of R, or
there is a prime element α ∈ R such that p = N(α) = αᾱ.

Proof: If N(α) = p ∈ P then it is clear that α 6= 0 and that α is not a unit
(Lemma 1.1.22 (i)). Suppose that α = βγ with β, γ ∈ R. Then

p = N(α) = N(β) ·N(γ)

is a factorization of p in N. It follows that N(β) = 1 or N(γ) = 1. Using Lemma
1.1.22 (i) we conclude that either β or γ is a unit. We have shown that α is an
irreducible element of R. Now Proposition 1.1.16 (i) shows that α is a prime
element. Since

p = N(α) = N(ᾱ) = α · ᾱ,

ᾱ is a prime element, too, proving the second statement of (i).
For the proof of (ii) we assume that p is not a prime element of R, and we let

α ∈ R be a prime divisor of p. Then N(α) = αᾱ|p2. But N(α) > 1 (otherwise
α would be a unit) and N(α) 6= p2 (otherwise p ∼ α would be a prime element,
contrary to our assumption). It follows that N(α) = p. 2

Example 1.1.24 Set

λ := 1− ω =
3−
√

3i

2
∈ Z[ω].

We have N(λ) = 3. Hence Lemma 1.1.23 (i) implies that λ is a prime element
of Z[ω]. Moreover, the identity 3 = λλ̄ is the decomposition of 3 in Z[ω] into
prime facors. But note that

λ̄ = 1− ω2 = −ω2λ ∼ λ.

Another way to write the prime factorization of 3 is therefore

3 = −ω2λ2, (9)

with λ as the only prime factor.

For later use we note the following lemma.

Lemma 1.1.25 (i) The set {0, 1,−1} is a set of representatives for the residue
classes modulo λ:

Z[ω]/(λ) = {(λ), 1 + (λ),−1 + (λ)}.
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(ii) The groups of units Z[ω]× = {±1,±ω,±ω2} is a set of representatives for
the group of invertible residue classes modulo λ2.

(iii) Suppose α ≡ β (mod λk) for α, β ∈ Z[ω], k ≥ 1. Then

α3 ≡ β3 (mod λk+2).

1.2 Fermat’s Last Theorem

One of the highlights of modern number theory is without any doubt the proof
by Andrew Wiles of the following theorem.

Theorem 1.2.1 (Wiles, 1995, [9]) Let n ≥ 3. Then there does not exist a
tripel of positive integers x, y, z ∈ N with

xn + yn = zn. (10)

Before Wiles’ proof, the truth of this statement had been a famous open
question for more than 300 years. Around 1640, Fermat had claimed (in a note
written on the margin of a book) that he had found a remarkable proof of this
theorem, but unfortunately the margin he was writing on was too small to write
it down. For this reason Theorem 1.2.1 is often called Fermat’s Last Theorem.
For an account of the fascinating and amusing story of this problem and its final
solution, see e.g. [7]

In this section we will use the special cases n = 3, 4 of Theorem 1.2.1 as a first
motivating example. We will also briefly describe how the attempts to prove
Fermat’s Last Theorem have influenced the development of algebraic number
theory.

Infinite descent

The case n = 4 of Fermat’s Last Theorem is a corollary of the following
proposition.

Proposition 1.2.2 There is no tripel of positive integers x, y, z > 0 such that

x4 + y4 = z2. (11)

Proof: We argue by contradiction. Suppose that (x, y, z) ∈ N3 is a solution
for (11). It is then easy to see that we may assume the following:

(i) x, y, z are relatively prime,

(ii) x, z are odd and y is even,

(iii) z is minimal. More precisely, z is the smallest positive integer such that
a solution (x, y, z) ∈ N3 for (11) exists.
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The idea of the proof is to construct another solution (x1, y1, z1) ∈ N3 of (11)
with z1 < z. This would be a contradiction to (iii), proving the proposition.

By assumption we have

(x2)2 + (y2)2 = z2, (12)

i.e. (x2, y2, z) is a pythagorean tripel. So by Theorem 1.1.5 (ii) there exist
a, b ∈ N, relatively prime, such that

x2 = a2 − b2, y2 = 2ab, z = a2 + b2. (13)

Moreover, a 6≡ b (mod 2). If a was even and b odd, then we would have 1 ≡
x2 ≡ −b2 ≡ −1 (mod 4), contradiction. Hence a is odd and b even. Applying
Theorem 1.1.5 once more to the pythagorean tripel (x, b, a) we find c, d ∈ N,
relatively prime, such that

x = c2 − d2, b = 2cd, a = c2 + d2. (14)

Let us focus a while on the equation

y2 = 2ab, (15)

which is part of (13). We claim that a is a square and b is of the form b = 2w2.
To see this, let p be a prime factor of a and let e be the exponent of p in the
prime factorization of a (i.e. a = pea′, p - a′). To show that a is a square it
suffices to show that e is even. Since a is odd we have p > 2, and since a, b
are relatively prime, p does not divide b. It follows that pe is the p-part of the
prime factorization of 2ab. But 2ab is a square by (15), and hence e is even. It
follows that a = z2

1 is a square. The same argument shows that b is of the form
b = 2w2.

From (14) we obtain
w2 = cd. (16)

Since c, d are relatively prime, we can use the same argument as in the previous
paragraph again to show that c, d are squares, i.e.

c = x2
1, d = y2

1 .

Plugging this into (14) we get

x4
1 + y4

1 = c2 + d2 = a = z2
1 ,

i.e. (x1, y1, z1) is another solution for (11). However,

z1 ≤ z4
1 = a2 = z − b2 < z,

contradicting (iii). This completes the proof of the proposition. 2

The proof of Proposition 1.2.2 we have just given goes back to Fermat.
The method of proof – which consists in constructing a smaller solution to a
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Diophantine problem from a given solution and thus arriving at a contradiction
– is called infinite descent. Although the logical structure of the argument seems
clear to us today, it was not easily accepted by Fermat contemporaries.

Before going on we wish to point out that unique factorization in Z (Theorem
1.1.1) played a crucial role in the proof of Proposition 1.2.2. Our main tool to
prove the case n = 3 of Fermat’s Last Theorem will be Corollary 1.1.19 which
says that the ring of Eisenstein integers Z[ω] is factorial, too.

The case n = 3 of Fermat’s Last Theorem

We shall prove Theorem 1.2.1 in the case n = 3 (compare with [5], §17.8).
Suppose that (x, y, z) ∈ N3 is a solution to the equation x3 + y3 = z3. We may,
without loss of generality, assume that x, y, z are relatively prime. Note that
this implies, via the equation x3 + y3 = z3, that x, y, z are pairwise relatively
prime.

Claim 1: 3 | xyz.
To prove this claim, we assume the contrary. Then

x, y, z ≡ ±1 (mod 3).

By an easy calculation we deduce that

x3, y3, z3 ≡ ±1 (mod 9).

But then
z3 = x3 + y3 ≡ 0,±2 (mod 9),

which gives a contradiction. This proves the claim.
The claim implies that exactly one of the three numbers x, y, z is divisible

by 3 and the other two are not. Rewriting the equation as x3 + y3 + (−z)3 = 0
we see that all three numbers play symmetric roles. We may therefore assume
that 3 | z and 3 - xy. Write z = 3kw with 3 - w.

Recall from Example 1.1.24 that the element λ := 1− ω is a prime element
of Z[ω] such that 3 = −ω2λ2. We can therefore rewrite the Fermat equation as
an equation in Z[ω]:

x3 + y3 = 33kw3 = −ω6kλ6kw3. (17)

By construction, x, y, w are pairwise relatively prime, and λ - xyw. The follow-
ing lemma shows that such a tripel (x, y, w) cannot exists, thus proving Theorem
1.2.1 for n = 3.

Lemma 1.2.3 There do not exist nonzero, relatively prime elements α, β, γ ∈
Z[ω] such that

α3 + β3 = ελ3mγ3, λ - αβγ, (18)

for some unit ε ∈ Z[ω]× and with m ≥ 1.
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Proof: The proof is by infinite descent. We assume that a relatively prime
solution (α, β, γ) to (18) exists, and we choose one in which the exponent m
is minimal. Under this assumption, we are going to construct another solu-
tion (α1, β1, γ1) to (18) for which the exponent m1 is strictly smaller then m.
This gives a contradiction and proves the lemma. Throughout the proof, we
repeatedly use that Z[ω] is a euclidean domain and hence factorial (Corollary
1.1.20).

Claim 2: We have m ≥ 2.

By Lemma 1.1.25 (ii) we have

α, β ≡ ±1,±ω,±ω2 (mod λ2).

Using Lemma 1.1.25 (iii) we deduce that

α3, β3 ≡ ±1 (mod λ4)

and hence
α3 + β3 ≡ 0,±1,±2 (mod λ4).

But λ | α3 + β3 by (17), and we conclude that λ4 | α3 + β3. This means that
3m ≥ 4 in (17), proving the claim.

Equation (17) can be rewritten as

ελ3mγ3 = (α+ β)(α+ ωβ)(α+ ωβ). (19)

Claim 3: Given two out of the three factors on the right hand side of (19),
their gcd is λ.

Replacing β by ωiβ we see that the three factors are cyclicly permuted. It
therefore suffices to look at the two factors α+ β and α+ ωβ. Using

(α+ β)− (α+ ωβ) = (1− ω)β = λβ

ω(α+ β)− (α+ ωβ) = (ω − 1)α = −λα
(20)

we see that any common prime factor of α + β and α + ωβ not associated to
λ is also a common prime factor of α and β. But α, β are relatively prime by
assumption. It follows that λ is the only common prime factor of α + β and
α+ωβ. We also see from (20) that λ2 is not a common factor. This proves the
claim.

We can deduce from Claim 3 that all three factors on the right hand side
of (19) are divisible by λ, and exactly one of them is divisible by λ3m−2. By
symmetry, we may assume that this distinguished factor is α + β. Then (19)
shows that there exists a tripel γ1, γ2, γ3 ∈ Z[ω], relatively prime, such that
λ - γ1γ2γ3 and

α+ β = ε1λ
3m−2γ3

1 ,

α+ ωβ = ε2λγ
3
2 ,

α+ ω2β = ε3λγ
3
3 ,

(21)
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for certain units ε1, ε2, ε3 ∈ Z[ω]×. Note that we have used again unique factor-
ization in an essential way here.

A suitable liear combination of the three equations in (21) yields

0 = (α+ β) + ω(α+ ωβ) + ω2(α+ ω2β)

= ε1λ
3m−2γ3

1 + ωε2λγ
3
2 + ω2ε3λγ

3
3 .

(22)

After dividing by ωε2λ, we can rewrite (22) as

γ3
2 + ε4γ

3
3 = ε5λ

3(m−1)γ3
1 , (23)

for certain units ε4, ε5 ∈ Z[ω]×. By the proof of Claim 2, we have

γ3
1 , γ

3
2 ≡ ±1 (mod λ3).

Combining Claim 2 with (23) we obtain

±1± ε4 ≡ 0 (mod λ3).

By Lemma 1.1.25 (ii) this implies ε4 = ±1. Hence we may rewrite (23) further
as

γ3
2 + (±γ3)3 = ε5λ

3(m−1)γ3
1 .

We see that the tripel (γ2,±γ3, γ1) is a new solution to (19) with smaller expo-
nent of λ. This gives the desired contradiction und proves the lemma. 2

Historical remarks

The idea of the proof of Fermat’s Last Theorem for n = 3 we have given
is due to Euler. However, it is disputed whether Euler’s original proof was
complete (see [2]): To prove a crucial Lemma (see Exercise 1.3.4), Euler worked
with the subring Z[

√
−3] ⊂ Z[ω] and seems to have made implicite use of the

claim that this ring is factorial. But this is false (see Exercise 1.3.3). Later
Gauss gave a proof in which unique factorization in the ring Z[ω] plays the
central role and is rigorously proved.

During the first half of the 19th century, many leading mathematicians of
that time worked hard to prove more cases of Fermat’s Last Theorem: Dirichlet,
Legendre, Lamé, Cauchy ... . They succeded in settling the cases n = 5, 7 and
established the following strategy for the general case. It is clear that it suffices
to consider prime exponents n = p. So let p > 3 be a prime number and
x, y, z ∈ N be a hypothetical solution to the Fermat equation

xp + yp = zp. (24)

It is useful to consider two distinct cases, depending on whether p - xyz (the
first case) or p | xyz (the second case).
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Here we only consider the first case. Let ζp := e2πi/p ∈ C be a pth root of
unity. Then we can write (24) as

zp = (x+ y)(x+ ζpy) · . . . · (x+ ζp−1
p y). (25)

This is an identity in the ring Z[ζp] ⊂ C. Assume for the moment that the
ring Z[ζp] is factorial. Using the assumption p - xyz it is easy to see that the
factors x + ζipy on the right hand side of (25) are all relatively prime. Unique
factorization in Z[ζp] then shows that all these factors are pth powers up to a
unit. For instance,

x+ ζpy = ε · αp,

for a unit ε ∈ Z[ζp]
× and an element α ∈ Z[ζp]. A careful analysis of units and

congruences in the ring Z[ζp] then leads to a contradiction. See e.g. [8], Chapter
1. This proves the first case of Fermat’s Last Theorem for all primes p > 3,
under the assumption that the ring Z[ζp] is factorial. Actually, a similar but
more complicated argument (which also uses infinite descent) achieves the same
in the second case.

For some time people tried to show that Z[ζp] is factorial in order to prove
Fermat’s Last Theorem. Later Kummer discovered that this is false in general
(the first case is p = 23). He also discovered a way to fix the argument, under
some condition. His main tool was a variant of unique factorization for the
rings Z[ζp], formulated in terms of so-called ideal numbers. A bit later, Dedekind
reformulated and generalized this result. He replaced the somewhat elusive ideal
numbers of Kummer by ideals and proved the first main theorem of algebraic
number theory: in the ring of integers of a number field, every nonzero ideal has
a unique decomposition into prime ideals. Algebraic number theory was born!

Kummer’s result on Fermats Last Theorem can be stated in modern termi-
nology as follows.

Theorem 1.2.4 (Kummer) Let p be an odd prime. Assume that p is regular,
i.e. p does not divide the class number hp of the number field Q(ζp). Then the
Fermat equation

xp + yp = zp

has no solution x, y, z ∈ N.

We will define the term class number later on. At the moment it suffices to
know that hp ≥ 1 is a positive integer that measures the deviation of the ring
Z[ζp] from being factorial. In particular, Z[ζp] is factorial if and only if hp = 1.
Kummer also gave a criterion when a prime p is regular. Unfortunately, this
criterion shows that there are infinitely many irregular primes (the first are
p = 37, 59, 67, 101, . . .). It is conjectured that about 60% of all primes are
regular, but as of today it has not been proved that there are infinitely many.
So Kummer’s Theorem is still a rather weak result compared to Fermats Last
Theorem. Nevertheless, all serious results on Fermats Last Theorem before
Wiles’ proof in 1995 were essentially extensions of Kummer’s work.
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1.3 Quadratic reciprocity

Another important discovery of Fermat was the following theorem. Here we
write p = x2 + y2 as a shorthand for ‘There exist integers x, y such that p =
x2 + y2.’.

Theorem 1.3.1 Let p be a prime number.

(i) p = x2 + y2 if and only if p = 2 or p ≡ 1 (mod 4).

(ii) p = x2 + 2y2 if and only if p = 2 or p ≡ 1, 3 (mod 8).

(iii) p = x2 + 3y2 if and only if p = 3 or p ≡ 1 (mod 3).

Somewhat similar to Theorem 1.2.1 it is unclear whether Fermat had actually
proved these results (see [3], Chapter 1, §1). It was Euler who first gave complete
proofs, and that took him about 40 years!

Proof: We will only discuss Claim (i) in detail and defer (ii) and (iii) to the
exercises. The ‘only if’ direction of (i) is very easy. Suppose that p 6= 2 and
p = x2 + y2 for integers x, y ∈ Z. Then x 6= y (mod 2), hence we may assume
that x is odd and y is even. We conclude that

p = x2 + y2 ≡ 1 + 0 ≡ 1 (mod 4).

The ‘if’ direction is much less obvious. The proof we shall give goes back to
Gauss and is rather concise. The main tools are

• unique factorization in the ring Z[i], and

• the existence of primitive roots, i.e. the fact that the group (Z/Zp)× is
cyclic if p is a prime number.

To see what is going on we look more closely at primes p 6= 2 of the form
p = x2 + y2. It is clear that x, y are prime to p and hence invertible modulo p.
Therefore, the congruence

x2 + y2 ≡ 0 (mod p)

can be rewritten as (
x

y

)2

≡ −1 (mod p).

We have shown that if p is an odd prime of the form p = x2 + y2 then −1 is a
quadratic residue modulo p!

Recall the following definition.

Definition 1.3.2 (The Legendre symbol) Let p be an odd prime number
and a ∈ Z.

(i) Suppose that p - a. We say that a is a quadratic residue modulo p if there
exists x ∈ Z with a ≡ x2 (mod p). Otherwise we say that a is a quadratic
nonresidue modulo p.

22



(ii) We set

(
a

p

)
:=


1 if p - a and a is a quadratic residue,

−1 if p - a and a is a quadratic nonresidue,

0 if p | a.

Lemma 1.3.3 Let p be an odd prime number and a ∈ Z. Then(
a

p

)
≡ a(p−1)/2 (mod p).

Proof: We may assume that p - a. We shall use the well known fact that
the group (Z/Zp)× is a cyclic group of order p − 1, see e.g. [5], Chapter 4, §1.
In particular, we have ap−1 ≡ 1 (mod p). Set b := a(p−1)/2. Then

b2 ≡ ap−1 ≡ 1 (mod p).

Since Z/Zp is a field, this means that b ≡ ±1 (mod p). It remains to be seen
that b ≡ 1 (mod p) if and only if a is a quadratic residue.

Let c ∈ Z be a primitive root modulo p. Then every element of (Z/Zp)× can
be written as the residue class of ck, for some k ∈ Z (unique modulo p− 1). It
follows that ck ≡ 1 iff (p− 1) | k, and that ck is a quadratic residue iff k is even.
In particular, if we write a ≡ ck (mod p), then a is a quadratic residue iff k is
even iff (p− 1) | k(p− 1)/2 iff

b ≡ ak(p−1)/2 ≡ 1 (mod p).

The lemma is proved. 2

In the special case a = −1 we obtain:

Corollary 1.3.4 Let p be an odd prime. Then(
−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

We can now give a prove of Theorem 1.3.1 (i). Using Corollary 1.3.4 we see
that we have to prove the implication(

−1

p

)
= 1 ⇒ p = x2 + y2. (26)

Assume that −1 is a quadratic residue modulo p, and let a ∈ Z be such that
a2 ≡ −1 (mod p). Then (inside the ring Z[i]) we have

p | a2 + 1 = (a+ i)(a− i), but p - a± i. (27)

Since Z[i] is factorial (Corollary 1.1.20), (27) shows that p is not a prime element.
By Lemma 1.1.23 (ii) it follows that

p = N(α) = x2 + y2
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for a prime element α = x + yi ∈ Z[i]. This proves (26) and finishes the proof
of Theorem 1.3.1 (i). 2

Remark 1.3.5 The proof of Theorem 1.3.1 (i) consists of two rather distinct
steps and suggests a reformulation of Theorem 1.3.1 as follows. Assume p 6= 2, 3.
Then:

p = x2 + y2 ⇔
(
−1

p

)
= 1 ⇔ p ≡ 1 (mod 4)

p = x2 + 2y2 ⇔
(
−2

p

)
= 1 ⇔ p ≡ 1, 3 (mod 8)

p = x2 + 3y2 ⇔
(
−3

p

)
= 1 ⇔ p ≡ 1 (mod 3)

To prove the three equivalences on the left one can use unique factorization in
the rings Z[i], Z[

√
−2] and Z[ω] (see the argument above and Exercise 1.3.7).

The three equivalences on the right follow from quadratic reciprocity, arguably
one of the deepest and most beautiful theorems of elementary number theory.

Theorem 1.3.6 (Quadratic reciprocity) Let p, q ∈ P be two distinct, odd
prime numbers. Then

(i) (
−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

(ii) (
2

p

)
= (−1)(p2−1)/8 =

{
1 if p ≡ 1, 7 (mod 8),

−1 if p ≡ 3, 5 (mod 8).

(iii) (
p

p

)(
q

p

)
= (−1)(p−1)(q−1)/4 =

{
1 if p ≡ 1 or q ≡ 1 (mod 4),

−1 if p, q ≡ 3 (mod 4).

Claim (i) (resp. Claim (ii)) of the theorem is often called the first (resp.
the second) supplementary law . Note that (i) is identical to Corollary 1.3.4
which is, as we have seen, a rather straightforward consequence of the existence
of primitive roots. Claims (ii) and (iii) are much more difficult (see e.g. [5],
Chapter 5, §3). We will give a very conceptual proof of Theorem 1.3.6 later,
using the decomposition of prime ideals in cyclotomic fields.

Primes of the form x2 + ny2 and class field theory

Theorem 1.3.1 gives a nice answer to three special cases of the following
question.
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Question 1.3.7 Given a positive integer n ∈ N, which prime numbers p are of
the form p = x2 + ny2?

The main ingredients for the proof of Theorem 1.3.1 were quadratic reci-
procity and unique factorization in the rings Z[i], Z[

√
−2] and Z[ω]. For general

n ∈ N, quadratic reciprocity still yields the following partial answer to Question
1.3.7: there exist integers a1, . . . , ar such that for all primes p, except a finite
number of exceptions, we have

p = x2 + ny2 ⇒
(
−n
p

)
⇔ p ≡ a1, . . . , ar (mod N), (28)

where

N :=

{
n, n ≡ 0, 3 (mod 4),

4n, n ≡ 1, 2 (mod 4).

However, the converse of the first implication in (28) fails for general n. We
give two examples.

Example 1.3.8 Consider the case n = 5. Quadratic reciprocity shows that for
all primes p 6= 2, 5 we have(
−5

p

)
= 1 ⇔

(
p

5

)
= (−1)(p−1)/2 ⇔ p ≡ 1, 3, 7, 9 (mod 20). (29)

However, p = 3 cannot be written as p = x2 + 5y2. The complete answer to
Question 1.3.7 for n = 5 is given by

p = x2 + 5y2 ⇔ p ≡ 1, 9 (mod 20),

2p = x2 + 5y2 ⇔ p ≡ 3, 7 (mod 20).
(30)

This was conjectured by Euler and proved by Lagrange and Gauss, using the so-
called genus theory of binary quadratic forms. From a modern point of view, the
case distinction comes from the fact that Z[

√
−5] is not a unique factorization

domain. For instance, we have

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5),

compare with Example 1.1.7. The number of cases to consider is equal to the
class number of Z[

√
−5].

Example 1.3.9 Consider the case n = 27. Quadratic reciprocity gives(
−27

p

)
=

(
−3

p

)
= 1 ⇔ p ≡ 1 (mod 3),

for all primes p ≥ 5. The prime p = 7 satifies these conditions, but it is clearly
not of the form x2 + 27y2. The complete answer to Question 1.3.7 for n = 27 is:

p = x2 + 27y2 ⇔

 p ≡ 1 (mod 3) and 2 is

a cubic residue modulo p
(31)
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This had been conjectured by Euler and proved by Gauss. See [3], Chapter 1,
Theorem 4.15. For instance, the cubic residues of p = 7 are 1, 6 and 2 is not
among them. But for p = 31, we have 43 = 64 ≡ 2 (mod 31), so 2 is a cubic
residue. And indeed we can write 31 = 22 + 27 · 12.

We have seen that for n = 27 the answer to Question 1.3.7 is not simply
given by a finite list of congruence classes modulo some fixed integer N . In
general, the answer looks as follows (see [3], Theorem 9.2).

Theorem 1.3.10 For every n ∈ N there exists a monic irreducible polyno-
mial fn(x) ∈ Z[x] such that for every prime p not dividing neither n nor the
discriminant of fn(x) we have

p = x2 + ny2 ⇔


(−n
p

)
= 1 and fn(x) ≡ 0 (mod p)

has in integer solution.

For instance, we have f27(x) = x3 − 2 by (31). Theorem 1.3.10 is a very
deep result, and is in fact a consequence of class field theory. Class field theory
is one of the highlights of algebraic number theory. In some sense, it is an
extremely far reaching generalization of quadratic reciprocity. We refer to [3]
for a first introduction to this subject which starts from the classical observations
of Fermat explained above. A systematic account of class field theory is given
e.g. in [6], Chapters IV-VI. The present course should enable you to read and
understand these sources.

Complex multiplication

The statement of Theorem 1.3.10 above is still somewhat unsatisfactory
because the polynomial fn(x) is not given explicitly. In order to compute fn(x)
for a given integer n we need some interesting complex analysis. The theory
behind this is called complex multiplication. A readable account is given in [3],
Chapter 3. Here we only give a glimpse.

For a complex number τ ∈ C with =(τ) > 0 we define

g2(τ) := 60

′∑
m,n

1

(m+ nτ)4
, g3(τ) := 140

′∑
m,n

1

(m+ nτ)6
.

Here
∑′
n,m means that we sum over all pairs of integers (m,n) ∈ Z2 with

(m,n) 6= (0, 0). The series g2(τ) and g3(τ) are called the Eisenstein series of
weight 4 and 6. We also define

j(τ) := 1728
g2(τ)3

g2(τ)3 − 27g3(τ)2
.

It is easy to see that g2, g3, j are complex analytic functions on the upper half
plane H.
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The function j : H→ C has some remarkable properties. In particular, it is
a modular function, which means that

j(
aτ + b

cτ + d
) = j(τ), for

a b

c d

 ∈ SL2(Z).

In particular, we have

j(τ + 1) = j(τ), j(−1/τ) = j(τ). (32)

The first equation in (32) implies that j has a Fourier expansion, i.e. it can be
written as a Laurent series in q := e2πiτ . And indeed, one can show that

j(τ) =

∞∑
n=−1

anq
n = q−1 + 744 + 196884q + 21493760q2 + . . . , (33)

for certain positive integers an ∈ N. Note that this series converges very quickly
if =(τ) > 0 is large, because

|q| = e−2π=(τ).

As a complex analytic function, the j-function is already pretty remarkable.
But even more astounding are its arithmetic properties.

Theorem 1.3.11 (i) Let τ ∈ H be a quadratic integer, i.e. τ ∈ OK for an
imaginary quadratic number field K = Q(

√
−m). Then α := j(τ) ∈ Q̄

is an algebraic integer. Moreover, the field extension L := K(α)/K is an
abelian Galois extension, and the Galois group Gal(L/K) is isomorphic
to the class group of the ring Z[τ ] ⊂ K. In particular, if Z[τ ] is a unique
factorization domain, then j(τ) ∈ Z is an integer.

(ii) More specifically, let τ :=
√
−n for a positive integer n ∈ N. Then the

minimal polynomial fn = a0 + a1 + . . .+ xk of α = j(τ) has the property
stated in Theorem 1.3.10.

Example 1.3.12 Let τ := (1 +
√
−163)/2. We will show show later that Z[τ ]

is a unique factorization domain (see Example 2.6.27). Therefore, j(τ) ∈ Z is
an integer by Theorem 1.3.11 (i). By (33) we have

j(τ) = −eπ
√

163 + 744 +R, with R := 196884q + 21493760q2 + . . .

Since |q| = e−2π
√

163 ≈ 1.45 ·10−35 is very small, R ≈ 2.27 ·10−12 is rather small
as well. It follows that

eπ
√

163 = −j(τ) + 744 +R
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is very close to an integer. This explains the second ‘miracle’ mentioned in the
introduction. Note that we can use this to compute the exact value of j(τ) from

a numerical approximation of eπ
√

163. The result is

j(τ) = j
(1 +

√
−163

2

)
= −6403203 = −(26 · 3 · 5 · 23 · 29)3.

It is not an accident that this integer is smooth i.e. composed of many relatively
small primes with high exponent. However, the beautiful explanation for this
fact goes even beyond complex multiplication.

Exercises

Exercise 1.3.1 Prove that 2,±1 +
√

5 are irreducible elements of Z[
√

5], but
not prime elements.

Exercise 1.3.2 Let a, n ∈ N be given and assume that a is not an nth power,
i.e. a 6= bn for all b ∈ N. Show that n

√
a ∈ R is irrational. (Use Theorem 1.1.1.)

Exercise 1.3.3 (Euler was wrong) Show that the subring Z[
√
−3] ⊂ Z[ω] is

not factorial. Explain what goes wrong with the proof of Proposition 1.1.19.

Exercise 1.3.4 (Euler was right) Suppose that a, b, s ∈ Z are integers such
that s is odd, gcd(a, b) = 1 and

s3 = a2 + 3b2.

Show that s is of the form s = u2 + 3v2, with u, v ∈ Z.

Exercise 1.3.5 Let S := {α = x+ yω | 0 ≤ y < x} ⊂ Z[ω]\{0}. Show that for
every element α ∈ Z[ω], α 6= 0, there exists a unique associate element α′ ∈ S,
α ∼ α′. Deduce that α has a factorization

α = ε · π1 · . . . · πr,

with prime elements πi ∈ S and a unit ε, and that this factorization is unique
up to a permutation of the πi.

Exercise 1.3.6 (a) Compute the prime factorization of 14, 3+4ω und 122+
61ω in Z[ω].

(b) Compute the prime factorization of 14, 3 + 4i und 122 + 61i in Z[i].

Exercise 1.3.7 (a) Show that Z[
√
−2] is a unique factorization domain.
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(b) Let p ≥ 5 be a prime number. Prove the equivalences

p = x2 + 2y2 ⇔
(
−2

p

)
= 1

and

p = x2 + 3y2 ⇔
(
−3

p

)
= 1

from Remark 1.3.5.

Exercise 1.3.8 (a) Use quadratic reciprocity to show that(
−2

p

)
= 1 ⇔ p ≡ 1, 3 (mod 8)

and (
−3

p

)
= 1 ⇔ p ≡ 1 (mod 3).

(Note that, together with Exercise 1.3.7, this proves (ii) and (iii) of The-
orem 1.3.1.)

(b) For which prime numbers p is 35 a quadratic residue modulo p?

(c) For how many of all primes p ≤ 100 is 35 a quadratic residue? Speculate
about the asymptotic rule for all p ≤ N , N →∞.
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2 Arithmetic in an algebraic number field

2.1 Finitely generated abelian groups

We start by recalling some easy but fundamental algebraic facts. We consider
abelian groups (M,+). Note that M has the structure of a Z-module via

Z×M →M, a ·m := ±(m+ . . .+m).

In fact, any Z-module is completely determined by its underlying abelian group.
Thus, the two notions abelian group and Z-module are equivalent. We have a
slight preference for the second.

The Z-module M is called finitely generated if there are elements m1, . . . ,mn

such that

M = 〈m1, . . . ,mn〉Z := {
n∑
i=1

aimi | ai ∈ Z}.

If this is the case then m1, . . . ,mn is called a system of generators of M . A
system of generators (m1, . . . ,mn) of M is called a Z-basis of M if every element
m ∈M has a unique representation of the form m = a1m1+. . .+anmr. Another
way to state this is to say that (m1, . . . ,mr) induces an isomorphism

Zr ∼→M, (a1, . . . , ar) 7→
r∑
i=1

aimi.

A Z-module M is called free of rank r if it has a basis of length r. It is not hard
to see that the rank of a free Z-module M is well defined.

Here is the first fundamental result about finitely generated Z-modules.

Theorem 2.1.1 Let M be a free group of rank r and M ′ ⊂ M a subgroup.
Then there exists a basis (m1, . . . ,mr) of M and a sequence of positive integers
d1, . . . , ds ∈ N, s ≤ r, such that

d1 | d2 | . . . | ds

and such that (d1m1, . . . , dsms) is a basis of M ′. In particular, M ′ is free of
rank s ≤ r.

Proof: See e.g. [1], Chapter 12, Theorem 4.11. 2

Let M ′ ⊂ M be as in the theorem, and assume that r = s. Let m =
(m1, . . . ,mr) be a basis of M and m′ = (m′1, . . . ,m

′
r) a basis of M ′. Then for

j = 1, . . . , r we can write

m′j = aj,1m1 + . . .+ aj,rmr, (34)

with uniquely determined integers ai,j ∈ Z. The system of equations (34) can
be written more compactly as

m′ = m ·A, A := (ai,j) ∈Mr,r(Z), (35)

where m and m′ are considered as row vectors.
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Proposition 2.1.2 We have

[M : M ′] := |M/M ′| = |det(A)|.

Proof: We use the main ideas from the proof of Theorem 2.1.1, see [1],
§14.4. Replacing A by S · A, for S ∈ GLn(Z), has the effect of replacing the
basis m of M by the new basis n := m · S−1. Similarly, replacing A by A · T ,
for T ∈ GLn(Z), has the effect of replacing the basis m′ of M ′ by the new basis
n′ := m′ · T . Now assume that n = (n1, . . . , nr) and n′ = (n′1, . . . , n

′
r) are bases

of M and M ′ which satisfy the conclusion of Theorem 2.1.1, i.e.

n′1 = d1n1, . . . , n
′
r = drnr, (36)

with positive integers d1, . . . , dr. Then

S ·A · T =


d1

. . .

dr

 . (37)

Using (36) we can construct an isomorphism

Z/Zd1 × . . .× Z/Zdr
∼→M/M ′, (ci + Zdi) 7→ c1n1 + . . .+ crnr.

Counting the elements, we obtain

|M/M ′| = d1 · . . . · dr. (38)

On the other hand, (37) shows that

det(A) = ±d1 · . . . · dr. (39)

The proposition follows by combining (38) and (39). 2

2.2 The splitting field and the discriminant

Let n ∈ N, K be a field and

f = a0 + a1x+ . . .+ anx
n ∈ K[x]

be a polynomial of degree n (i.e. an 6= 0). Then there exists a field extension
L/K such that f splits over L into linear factors,

f = an

n∏
i=1

(x− αi), αi ∈ L.

We may assume that L/K is generated by the roots αi, i.e. L = K(α1, . . . , αn).
With this assumption, the field extension L/K is unique up to isomorphism
and called the splitting field of f (relative to K). The polynomial f is called
separable if αi 6= αj for all i 6= j.
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Definition 2.2.1 The discriminant of f is defined as

∆(f) := a2n−2
n

∏
i<j

(αi − αj)2.

Note that the definition of ∆(f) is independent of the chosen order of the
roots αi. By definition we have ∆(f) 6= 0 if and only if f is separable.

Example 2.2.2 For n = 2 we can write f = ax2 + bx+ c, with a, b, c ∈ K and
a 6= 0. By the famous Mitternachtsformel we have

f = a(x− α1)(x− α2), α1,2 =
−b±

√
b2 − 4ac

2a
.

It follows that
∆(f) = a2(α1 − α2)2 = b2 − 4ac.

We see that ∆(f) is a polynomial in the coefficients of f and therefore ∆(f) ∈ K.
This is a completely general phenomenon:

Theorem 2.2.3 For every n ∈ N there exists a polynomial ∆n ∈ Z[x0, . . . , xn]
in n + 1 variables and integral coefficients, such that for all fields K and all
polynomials f = a0 + a1x+ . . .+ anx

n ∈ K[x] of degree n we have

∆(f) = ∆n(a0, . . . , an).

In particular, ∆(f) ∈ K.

Proof: See e.g. [1], Chapter 14, §3. 2

Corollary 2.2.4 Let f ∈ Z[x] be a monic polynomial of degree n, with integral
coefficients. Let p ∈ P be a prime number and let f̄ ∈ Fp[x] denote the reduction
of f modulo p. Then

∆(f̄) = ∆(f) ∈ Fp.

Therefore, f̄ is separable if and only if ∆(f) is prime to p.

2.3 Number fields

Definition 2.3.1 A number field3 is a finite field extension K of the field of
rational numbers Q. The degree of K is the dimension

[K : Q] := dimQK.

3The terminology is unfortunately not standardized. E.g. Artin ([1], Chapter 13, §1) defines
a number field as any subfield of C.
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Let us fix a number field K of degree n. Then for any α ∈ K there must be
a Q-linear relation between the first n+ 1 powers of α, i.e. there exists rational
numbers a0, a1, . . . , an ∈ Q, not all of them zero, such that

a0 + a1α+ . . . , anα
n = 0.

In other words, α is a root in K of the nonzero polynomial a0+a1x+. . .+anx
n ∈

Q[x]. We say that α is algebraic over Q.
Consider the ring homomorphism

φα : Q[x]→ K, g 7→ g(α),

given by substituting x := α. The kernel of φα,

I := {f ∈ Q[x] | f(α) = 0}�Q[x]

is an ideal. Since Q[x] is a euclidian domain, it is also a principal ideal domain,
see Proposition 1.1.11. It follows that I = (mα) for a nonzero polynomial mα.
We may assume that mα is monic,

mα = c0 + c1x+ . . .+ xd,

and this condition determines mα uniquely.

Definition 2.3.2 The monic polynomial mα ∈ Q[x] defined above is called the
minimal polynomial of α. Its degree d = deg(mα) is called the degree of α over
Q.

By definition of mα we have

f(α) = 0 ⇔ mα | f, (40)

for all f ∈ Q[x]. In particular, mα is the monic polynomial with the smallest
possible degree which has α as a root.

Proposition 2.3.3 Let K be a number field of degree n = [K : Q], and α ∈ K
an element. Let Q[α] denote the smallest subring of K containing α. Then Q[α]
is a subfield of K with [Q[α] : Q] = degQ(α). Moreover, degQ(α) | n.

Theorem 2.3.4 (Primitive Element) Let K be a number field. Then there
exists an element α ∈ K such that K = Q[α].

An element α ∈ K as in the theorem is called a primitive element or a
generator of the number field K. By Proposition 2.3.3, α is a primitive element
if and only if [K : Q] = degQ(α). For a proof of Theorem 2.3.4 see e.g. [1],
Chapter 14, §4.
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Definition 2.3.5 Let f = a0 +a1x+ . . .+xn ∈ Q[x] be a monic and irreducible
polynomial over Q. Then the quotient ring

Kf := Q[x]/(f)

is a number field, called the Stammkörper4 of f .

It follows from Theorem 2.3.4 that every number field is isomorphic to a
suitable Stammkörper. Indeed, if α is a generator of a number field K and
f := mα is its minimal polynomial, then

Kf = Q[x]/(f)
∼−→ K, g + (f) 7→ g(α),

is an isomorphism. This isomorphism tells us how to do explicit computations
in the number field K = Q[α]. The point is that every element β ∈ K can be
written as β = g(α), for a unique polynomial g ∈ Q[x] with deg(g) < n := [K :
Q]. If we want to express, say, β2, in the same way, we compute the remainder
of the polynomial g2 after division by f ,

g2 = qf + r, with q, r ∈ Q[x] and deg(r) < n = deg(f).

Then β2 = r(α) is the standard way to write β2 ∈ K = Q[α].

Embeddings into the complex numbers

Another way to think about number fields is to consider them as subfields
of the complex numbers.

Corollary 2.3.6 Let K be a number field of degree n. Then there are exactly
n distinct field homomorphisms

σ1, . . . , σn : K ↪→ C

embedding K into the field of complex numbers.

Proof: Let α ∈ K be a primitive element for K (Theorem 2.3.4). By the
Fundamental Theorem of Algebra, the minimal polynomial mα decomposes over
C into a product of n linear factors,

mα =

n∏
i=1

(x− αi),

with αi ∈ C. Since mα is irreducible over Q, the roots αi are pairwise distinct.
For i = 1, . . . , n we define pairwise distinct homomorphisms as follows:

σi : K → C, f(α) 7→ f(αi).

4If you know of a good english translation, please tell me!
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This is well defined by (40) and the fact that mα(αi) = 0. Conversely, let
σ : K → C be a field homomorphism. Then

mα(σ(α)) = σ(mα(α)) = 0.

It follows that σ(αi) = αi for some i and hence σ = σi. 2

Remark 2.3.7 Let K be a number field of degree n, and let σ : K ↪→ C be an
embedding into C. Composing σ with complex conjugation, z 7→ z̄, we obtain
another embedding σ̄ : K ↪→ C. It is clear that σ̄ = σ if and only if σ(K) ⊂ R.
If this is the case we call σ a real embedding. Otherwise, we call {σ, σ̄} a pair
of complex conjugate embeddings.

After reordering the n embeddings σi from Corollary 2.3.6, we may assume
that

σ1, . . . , σr : K ↪→ R

are precisely the real embeddings and that

{σr+2i−1, σr+2i}, i = 1, . . . , s,

are exactly all pairs of complex conjugate embeddings. Clearly, we have r, s ≥ 0
and n = r + 2s.

Definition 2.3.8 The pair (r, s) is called the type of the number field. If r = n
and s = 0 then K is called totally real.

Remark 2.3.9 By Corollary 2.3.6, every number field K may be embedded
into the complex numbers. Choosing one embedding, we may always consider
K as a subfield of the complex numbers. This is often very useful, but one has
to keep in mind that this choice may cause some loss of information.

The norm and the trace

Let K be a number field of degree n and α ∈ K. The multiplication map

φα : K → K, β 7→ αβ,

is a Q-linear endomorphisms.

Definition 2.3.10 We call

NK/Q(α) := det(φα) ∈ Q

the norm and
TK/Q(α) := tr(φα) ∈ Q

the trace of α ∈ K.
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It follows from the definition that the map

NK/Q : K× → Q×, α 7→ NK/Q(α),

is a group homomorphism (w.r.t. multiplication) and that

TK/Q : K → Q, α 7→ TK/Q(α),

is a linear form on the Q-vector space K. There are two useful ways to compute
the norm and the trace of an element.

Proposition 2.3.11 (i) Let f = a0 + a1x + . . . + xm be the minimal poly-
nomial of α ∈ K. Then

NK/Q(α) = (−1)na
n/m
0 , TK/Q(α) = − n

m
· am−1.

(ii) Let σ1, . . . , σn : K ↪→ C denote the n distinct embeddings of K into C.
Then

NK/Q(α) =

n∏
i=1

σi(α), TK/Q(α) =

n∑
i=1

σi(α).

Proof: We first assume that α is a primitive element ofK. Then 1, α, . . . , αn−1

is a Q-basis of K. Since f(α) = 0 we have

α · αi =

{
αi+1, i < n− 1,

αn = −a0 +−a1α− . . .− an−1α
n−1, i = n− 1,

.

In other words, the matrix representing the endomorphism φα with respect to
the basis 1, α, . . . , αn−1 is

A :=



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1
...

...

...
. . . 0 −an−2

0 0 1 −an−1


.

Let
f = a0 + a1x+ . . .+ xn =

∏
i=1

(x− αi)

be the factorization of f into linear factors over C. Note that αi 6= αj for i 6= j
and that αi = σi(α) are the images of α under the embeddings σ1, . . . , σn (see
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the proof of Corollary 2.3.6). The identity f(αi) = 0 shows that

At · v = αi · v, v :=



1

αi
...

αn−1
i


∈ Cn.

We see that α1, . . . , αn are the pairwise distinct eingenvalues of At. It follows
that A is diagonalizable over C,

A ∼


α1

. . .

αn

 , (41)

and that f is, up to sign, the characteristic polynomial of A,

det(A− x · En) =

n∏
i=1

(αi − x) = (−1)nf. (42)

In particular,

NK/Q(α) = det(A) =

n∏
i=1

αi = (−1)na0,

TK/Q(α) = tr(A) =

n∑
i=1

αi = −an−1.

Both (i) and (ii) follow immediately.
If α is not a primitive element, we consider the intermediate field M := Q[α].

We set m := [M : Q] = deg(α). Then

n = [K : Q] = [K : M ] · [M : Q],

see e.g. [1], Chapter 13, Theorem 3.4. It follows that k := [K : M ] = n/m. Let
β1, . . . , βk be an M -basis of K. The proof of Theorem 3.4 in [1], Chapter 13,
shows that we have the following direct sum decomposition of Q-vektor spaces:

K = β1 ·M ⊕ . . .⊕ βk ·M.

It is clear that this direct sum is invariant under the endomorphism φα. It
follows that

det(φα) =

k∏
i=1

det(φα|βi·M ). (43)
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For a fixed i, βi, αβi, . . . , α
m−1βi is a Q-basis of βi ·M , and the representing

matrix for φα|βi·M with respect to this basis is again the matrix A from above.
We conclude that

det(φα|βi·M ) = det(φα|M ) = NM/Q(α).

and so by (43) we get

NK/Q = det(φα) = NM/Q(α)k.

Similarly, one proves

TK/Q(α) = tr(φα) = k · TM/Q(α).

Now (i) and (ii) follow from the case we have already proved. 2

Quadratic number fields

A number field of degree 2 is called a quadratic number field. Let α be a
generator for K. Then α satifies a quadratic equation,

α2 + aα+ b = 0, (44)

such that the polynomial x2 +ax+b ∈ Q[x] is irreducible. If we set β := α+a/2
then

β2 = α2 + aα+
a2

4
=
a2

4
− b =: ∆.

We see that β is a generator for K which satisfies a relation β2 = ∆, where
∆ ∈ Q is not a square. An arbitrary element γ ∈ K is of the form

γ = c+ dβ, with c, d ∈ Q.

Sometimes we write symbolically β =
√

∆ and K = Q[
√

∆], but this notation
can be misleading. It should be understood as the statement that the minimal
polynomial of β is mβ = x2 −∆.

Now suppose that ∆ > 0. Then
√

∆ ∈ R>0 is a well defined positive real
number, and the minimal polynomial of β factors over R as

mβ = x2 −∆ = (x−
√

∆)(x+
√

∆).

It follows that K has two real embeddings σ1, σ2 : K ↪→ R, given by

σ1(c+ dβ) := c+ d
√

∆, σ2(c+ dβ) := c− d
√

∆.

We say that K is a real quadratic number field.
Note that σ1(K) = σ2(K) as subfields of R. The notation K = Q[

√
∆] ⊂ R

is therefore totally unambiguous. Still, from an algebraic point of view there is
no good reason to prefer one of the two embeddings σ1, σ2 over the other.
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Now suppose that ∆ < 0. Then mβ factors over C as

mβ = x2 −∆ = (x− i
√
|∆|)(x+ i

√
|∆|).

Hence we have two complex conjugate embeddings,

σ1(c+ dβ) := c+ di
√
|∆|, σ2(c+ dβ) := c− di

√
|∆|.

We say that K is an imaginary quadratic number field. As in the real case, the
two subfield σ1(K) = σ2(K) ⊂ C are identical.

Lemma 2.3.12 Let K be a quadratic number field. Then there exists a unique
nontrivial field automorphism

τ : K
∼→ K.

Moreover, for every element α ∈ K\Q, the minimal polynomial of α factors over
K as follows:

mα = (x− α)(x− τ(α)).

Proof: This lemma is a very special case of a more general statement from
Galois theory (see e.g. [1], Chapter 14, §1). For readers who are still unfamiliar
with Galois theory, it is a useful exercise to give a direct proof. 2

If K is an imaginary quadratic field, then the automorphism τ from Lemma
2.3.12 is simply the restriction of complex conjugation to K, i.e. τ(α) = ᾱ for
α ∈ K ⊂ C (it does not matter which embedding of K into C we choose). If K
is a real quadratic number field, then it is customary to write

τ(α) = α′,

and to call α′ the conjugate of α.

Exercises

Exercise 2.3.1 Let α be a primitive element for the number field K and let
f ∈ Q[x] be the minimal polynomial of α. Then

NK/Q(f ′(α)) = ∆(f).

2.4 The ring of integers

Let us fix a number field K of degree n = [K : Q].

Definition 2.4.1 An element α ∈ K is called integral (or an algebraic integer)
if the minimal polynomial of α has integral coefficients,

mα ∈ Z[x].

We let OK ⊂ K denote the subset of all integral elements of K. (Theorem 2.4.4
below shows that OK is a subring, but this is not obvious.)
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A Z-submodule M ⊂ K is a subgroup of the additive group (K,+). It is
called finitely generated if there exists field elements β1, . . . , βk ∈ K such that

M = 〈β1, . . . , βk〉Z := {
k∑
i=1

aiβi | ai ∈ Z }.

Lemma 2.4.2 For α ∈ K the following three statements are equivalent.

(a) α ∈ OK .

(b) There exists a monic, integral polynomial f = a0 + a1x+ . . .+ xk ∈ Z[x]
such that f(α) = 0.

(c) There exists a finitely generated Z-submodule M ⊂ K such that α ·M ⊂
M .

Proof: The implication (a)⇒(b) is trivial. Conversely, let f = a0 + a1x +
. . .+ xk ∈ Z[x] be monic and integral such that f(α) = 0. Then mα is a divisor
of f inside the ring Q[x] by (40). The Lemma of Gauss (see [1], Chapter 11,
§3) shows that mα ∈ Z[x] has integral coefficients as well. This proves the
implication (b)⇒(a).

Assume that (b) holds and set

M := 〈1, α, . . . , αk−1〉Z ⊂ K.

Then

α · αi =

{
αi+1 ∈M, i < k − 1,

αk = −a0 +−a1α− . . .− ak−1α
k−1 ∈M, i = k − 1,

for i = 0, . . . , k−1. Therefore, α ·M ⊂M . Conversely, let M = 〈β1, . . . , βk〉Z ⊂
K be a finitely generated submodule with α ·M ⊂ M . For i = 1, . . . , k we can
write

α · βi =

k∑
j=1

ai,jβj ,

with integers ai,j ∈ Z. Then the vector β := (β1, . . . , βk)t ∈ Kn is an eigenvector
of the matrix A := (ai,j). It follows that f(α) = 0, where f = det(A−x ·En) ∈
Z[x] is the characteristic polynomial. Since f is monic and integral, (b) holds
and the proof of the lemma is complete. 2

Remark 2.4.3 Let α ∈ K we let Z[α] denote the smallest subring of K con-
taining α. Then as a Z-submodule of K, Z[α] is generated by the powers of
α,

Z[α] = 〈1, α, α2, . . .〉Z.

It follows immediately from the proof of Lemma 2.4.2 that α ∈ OK if and only
if Z[α] ⊂ K is a finitely generated submodule.
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Theorem 2.4.4 The subset OK ⊂ K is a subring.

Proof: Let α, β ∈ OK . We have to show that α ± β ∈ OK and αβ ∈ OK .
Let Z[α, β] ⊂ K be the smallest subring of K containing α and β. As a Z-
submodule of K, Z[α, β] is generated by the monomials αiβj , i, j ≥ 0. As in
the proof of Lemma 2.4.2 one shows that

Z[α, β] = Z[α] + β · Z[α] + . . .+ βk−1Z[α], (45)

with k := degQ(β). But Z[α] is a finitely generated Z-module, and so (45) shows
that Z[α, β] is a finitely generated Z-module as well. Clearly,

(α± β) · Z[α, β] ⊂ Z[α, β], αβ · Z[α, β] ⊂ Z[α, β].

Therefore, Lemma 2.4.2 shows that α± β ∈ OK and αβ ∈ OK . 2

Remark 2.4.5 For any α ∈ K there exists a nonzero integer m ∈ Z such that
mα ∈ OK (see Exercise 2.4.1). Since Z ⊂ OK , it follows that K is the field of
fraction of OK .

Example 2.4.6 Let K := Q[
√

2,
√

3] ⊂ R denote the smallest subfield of R
containing

√
2 and

√
3. The elements

√
2 and

√
3 are clearly integral. So

according to Theorem 2.4.4, the element

α :=
√

2 +
√

3 ∈ K

should be integral, too. This means that the minimal poylnomial mα of α has
integral coefficients. To find an explicit monic integral polynomial with root α
we use ideas from the proofs of Lemma 2.4.2 and Theorem 2.4.4.

It is clear that the ring Z[
√

2,
√

3] is a finitely generated Z-submodule of K,
generated by the 4 elements 1,

√
2,
√

3,
√

6,

Z[
√

2,
√

3] = 〈1,
√

2,
√

3,
√

6〉Z.

It is also easy to see that (1,
√

2,
√

3,
√

6) is a Z-basis of Z[
√

2,
√

3], but we don’t
need this. The crucial fact is that α · Z[

√
2,
√

3] ⊂ Z[
√

2,
√

3]. Explicitly, we
have

α · 1 =
√

2 +
√

3,

α ·
√

2 = 2 +
√

6,

α ·
√

3 = 3 +
√

6,

α ·
√

6 = 3
√

3 + 2
√

3.

(46)

We can rewrite (46) as

α ·


1
√

2
√

3
√

6

 = A ·


1
√

2
√

3
√

6

 , A :=


0 1 1 0

2 0 0 1

3 0 0 1

0 3 2 0

 . (47)
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A short computation shows that the characteristic polynomial of A is

f := det(A− x · E4) = x4 − 10x2 + 1 ∈ Z[x].

Since f(α) = 0, α ∈ OK is integral. In fact, f = mα is the minimal polynomial
of α (Exercise 2.4.3).

We have shown that Z[α] ⊂ OK . However, this is not an equality. Consider,
for instance, the element

β :=

√
2 +
√

6

2
∈ K.

A similar computation as for α shows that β is a root of the monic integral
polynomial

g = x4 − 4x2 + 1 ∈ Z[x].

We see that β ∈ OK\Z[α]. We will show later that

OK = 〈1,
√

2,
√

3, β〉Z.

In particular, OK is a finitely generated Z-submodule of K.

Theorem 2.4.7 Let K be a number field of degree n. Then the ring of in-
tegers OK is a free Z-module of rank n. In other words, there exist elements
α1, . . . , αn ∈ OK such that every element α ∈ OK can be uniquely written as

α =

n∑
i=1

aiαi, with ai ∈ Z.

Definition 2.4.8 A tupel (α1, . . . , αn) as in Theorem 2.4.7 is called an integral
basis of K.

We postpone the proof a bit, and give another example.

Example 2.4.9 LetD ∈ Z be a nonzero, squarefree integer. ThenK := Q[
√
D]

is a quadratic number field. We shall determine its ring of integers OK . An
arbitrary element α ∈ K is of the form α = a + b

√
D. We have α ∈ Q if and

only if b = 0. Since OK ∩Q = Z, we may assume that b 6= 0.
Let τ : K

∼→ K denote the unique nontrivial automorphisms of K. The
minimal polynomial of α is

mα = (x− α)(x− τ(α)) = x2 − TK/Q(α) +NK/Q(α) = x2 − 2ax+ (a2 −Db2).

Therefore,
α ∈ OK ⇔ 2a ∈ Z, a2 −Db2 ∈ Z. (48)

Elementary arguments (see Exercise 2.4.2) now show the following.

(i) Assume that D ≡ 2, 3 (mod 4). Then α = a + b
√
D ∈ OK if and only if

a, b ∈ Z. It follows that OK = Z[
√
D], with integral basis (1,

√
D).
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(ii) Assume that D ≡ 1 (mod 4). Then α = a + b
√
D ∈ OK if and only if

a, b ∈ 1
2Z and a+ b ∈ Z. It follows that OK = Z[θ], with θ := (1 +

√
D)/2.

Again (1, θ) is an integral basis.

The discriminant

As before we fix a number field K of degree n. Our main goal is to define
the discriminant of K. This is a nonzero integer dK ∈ Z which measures, in
some sense, the complexity of the number field K. If the ring of integers of
K is of the form OK = Z[α] for a primitive element α, then dK = ∆(mα) is
equal to the discriminant of the minimal polynomial of α (Remark 2.4.14). As
a byproduct of the definition of dK , we prove the existence of an integral basis
for K (Theorem 2.4.7).

Definition 2.4.10 An (additive) subgroup M ⊂ K is called a lattice if there
exists a Q-basis (β1, . . . , βn) of K such that

M = 〈β1, . . . , βn〉Z.

The tupel β = (β1, . . . , βn) is then called an integral basis of M .

Remark 2.4.11 A subgroup M ⊂ K is a lattice if and only it is a free Z-
module of rank n. Therefore, Theorem 2.4.7 is equivalent to the assertion that
the ring of integers OK ⊂ K is a lattice.

Definition 2.4.12 Let M ⊂ K be a lattice with integral basis β = (β1, . . . , βn).
We define a rational number

d(β) := det
(
TK/Q(βiβj)

)
i,j
∈ Q.

By Proposition 2.4.13 (ii) below, this number depends only on the lattice M
but not on the chosen basis. We therefore write d(M) := d(β) and call it the
discriminant of M .

Proposition 2.4.13 (i) Let M ′ ⊂ K be another lattice with integral basis
β′ = (β′1, . . . , β

′
n), and let T ∈ GLn(Q) be the base change matrix from β

to β′ (this means that β · T = β′). Then

d(β′) = det(T )2 · d(β).

(ii) If M = M ′ in (ii) then d(β) = d(β′).

(iii) We have d(β) 6= 0. If M ⊂ OK then d(β) ∈ Z is an integer.
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Proof: Let σ1, . . . , σn : K ↪→ C denote the distinct embeddings of K into
C, and set

S :=


σ1(β1) · · · σ1(βn)

...
...

σn(β1) · · · σn(βn)

 ∈Mn,n(C).

Then by Proposition 2.3.11 (ii) we have

St · S =
( n∑
k=1

σk(βi)σk(βj)
)
i,j

=
(
TK/Q(βiβj)

)
i,j
. (49)

It follows that
d(β) = det(S)2. (50)

Now if β′ = (β′1, . . . , β
′
n) is another Q-basis of K and T = (ai,j) is the base

change matrix, then
S′ :=

(
σi(β

′
j)
)
i,j

= S · T. (51)

Combining (50) and (51) we obtain a proof of (i). Now assume thatM = 〈βi〉Z =
〈β′〉Z. Then the coefficients ai,j of T are integers. Moreover, the coefficients of
T−1 are integers as well. Therefore, det(T ) = 1, so (ii) follows from (i).

It remains to show that d(β) 6= 0. But by (i) it suffices to show this for
one particular Q-basis of K. Let α be a primitive element of K. Then β :=
(1, α, . . . , αn−1) is a Q-basis of K. Moreover, αi := σi(α), for i = 1, . . . , n, are
precisely the n complex roots of the minimal polynomial of α (see the proof of
Corollary 2.3.6). In particular, αi 6= αj for i 6= j. Using (50) we get

d(β) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 α1 α2
1 · · · αn−1

1

1 α2 α2
2 · αn−1

2

...
...

...

1 αn α2
n · · · αn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∏
i<j

(αi − αj)2 6= 0. (52)

This completes the proof of Proposition 2.4.13. 2

Remark 2.4.14 If α ∈ OK is a primitive element for K, then the subring Z[α]
is a lattice, with Z-basis (1, α, . . . , αn−1). Let f ∈ Q[x] denote the minimal
polynomial of α and αi ∈ C the complex roots of f . Then (52) and Definition
2.2.1 show that

d(Z[α]) =
∏
i<j

(αi − αj)2 = ∆(f)

is equal to the discriminant of f . In practise, this is the easiest and most useful
way to compute the discriminant of a number field.
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Proof of Theorem 2.4.7: Let β = (β1, . . . , βn) be a Q-basis of K. After
replacing βi by mβi, for a suitable integer m, we may assume that βi ∈ OK (see
Exercise 2.4.1). Therefore,

M := 〈β1, . . . , βn〉Z ⊂ OK .

Lemma 2.4.15 We have

OK ⊂ d(M)−1 ·M.

Proof: Let α ∈ OK be given and write it as a linear combination of β:

α = a1β1 + . . .+ anβn, ai ∈ Q.

We have to show that d(M)ai ∈ Z, for i = 1, . . . , n. Set

ci := TK/Q(αβi) =

n∑
j=1

ajTK/Q(βiβj), (53)

for i = 1, . . . , n. In matrix form, this definition becomes
c1
...

cn

 = S ·


a1

...

an

 , with S :=
(
TK/Q(βiβj)

)
i,j
. (54)

By definition we have d(M) = det(S), so Cramer’s rule yields

S−1 = d(M)−1 · S∗,

where S∗ is the adjunct of S. Applied to (54) we obtain
a1

...

an

 = d(M)−1 · S∗ ·


c1
...

cn

 . (55)

Since the trace of an integral element is integral, the coefficents ci as well as all
entries of the matrix S∗ are integers. We conclude from (55) that ai ∈ d(M)−1Z,
and this proves the lemma. 2

The lemma shows that OK is contained in the lattice d(M)−1M . In particu-
lar, OK is a Z-submodule of a free Z-module of rank n. By Theorem 2.1.1 this
implies that OK is a free Z-module of rank m ≤ n. But we also have M ⊂ OK ,
so applying Theorem 2.1.1 again shows that m = n. Now Theorem 2.4.7 is
proved. 2

Since OK ⊂ K is a lattice, it is natural to define:
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Definition 2.4.16 Let K be a number field. The discriminant of K is the
nonzero integer

dK := d(OK).

Example 2.4.17 Let D ∈ Z be a squarefree integer and K := Q[
√
D]. Then

the subring Z[
√
D] = 〈1,

√
D〉Z ⊂ OK is a lattice contained in OK . Its discrim-

inant is

d(Z[
√
D]) =

∣∣∣∣∣∣ TK/Q(1) TK/Q(
√
D)

TK/Q(
√
D) TK/Q(D)

∣∣∣∣∣∣ =

∣∣∣∣∣∣2 0

0 2D

∣∣∣∣∣∣ = 4D.

If D ≡ 2, 3 (mod 4) then OK = Z[
√
D], and hence dK = 4D, see Example 2.4.9.

However, if D ≡ 1 (mod 4) then OK = Z[θ] = 〈1, θ〉Z, where θ := (1 +
√
D)/2.

One computes

d(Z[θ]) =

∣∣∣∣∣∣TK/Q(1) TK/Q(θ)

TK/Q(θ) TK/Q(θ2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣2 1

1 1+D
2

∣∣∣∣∣∣ = D.

To summarize: the discriminant of the quadratic number field K = Q[
√
D] is

equal to

dK =

{
4D, D ≡ 2, 3 (mod 4),

D, D ≡ 1 (mod 4).
(56)

Proposition 2.4.18 Let K be a number field and M ′ ⊂M ⊂ K lattices. Then

|M/M ′| =

√
d(M ′)

d(M)
.

Proof: Let β = (β1, . . . , βn) be a Z-basis of M and β′ = (β′1, . . . , β
′
n) be

a Z-basis of M ′. Since M ′ ⊂ M , the base change matrix T ∈ GLn(Q) with
β′ = β · T has integral coefficients. By Proposition 2.1.2 we have

|M/M ′| = det(T ).

We can conclude that proof by applying Proposition 2.4.13 (i). 2

Corollary 2.4.19 Let α ∈ OK be a primitive elements for K, with minimal
polynomial f ∈ Z[x]. Then

∆(f) = m2dK ,

with m := (OK : Z[α]) ∈ N. In particular, if ∆(f) is square free, then dK =
∆(f) and OK = Z[α].
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Proof: By assumption the subring Z[α] ⊂ OK is a lattice in K. Therefore,
the claim follows from Remark 2.4.14 and Proposition 2.4.18. 2

Corollary 2.4.19 gives a useful criterion to determine the ring of integers OK
and the discriminant dK of a number field K.

Example 2.4.20 Let K = Q[θ] be the number field with generator θ and
defining polynomial

f = x3 + x2 − 2x+ 8.

A computer calculation shows that the discriminant of f is

∆(f) = −2012 = −22 · 503.

Corollary 2.4.19 leaves us two possibilities. Either OK = Z[θ] and dK = −2012
or (OK : Z[θ]) = 2 and dK = −503.

It is easier to prove the second possibility by disproving the first, than it is
to prove the first. Consider the element

α :=
θ + θ2

2
∈ K\Z[θ].

A computer calculation shows that the minimal polynomial of α is

g := mα = x3 − 2x2 + 3x− 10.

It follows that α ∈ OK is integral and hence Z[θ] 6= OK . We conclude that
OK = Z[θ, α] and that dK = −503.

Minkowski space

The Minkowski space of a number field K is a euclidean vector space KR
which contains K as a Q-vector space, and is spanned by K. Moreover, the
absolute value of the discriminant of a lattice M ⊂ K ⊂ KR is related to the
covolume of M as a lattice in KR. This gives a nice geometric interpretation of
the discriminant and clarifies the proof of Proposition 2.4.13 above.

The method of viewing algebraic integers as lattice points in Minkowski
space is called Minkowski theory or the geometry of numbers. In later chapters,
it will be a fundamental tool to study the arithmetic of K.

Definition 2.4.21 Let V be a real vector space of dimension n. A lattice in V
is a subgroup Γ ⊂ V of the form

Γ = 〈v1, . . . , vm〉Z,

with m linearly independent vectors v1, . . . , vm. The tupel (v1, . . . , vm) is called
a basis of the lattice Γ, and the set

P := {x1v1 + . . .+ xmvm | xi ∈ R, 0 ≤ xi < 1} ⊂ V
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is called the fundamental domain of the lattice (with respect to the basis (vi)).
If n = m then the lattice Γ is called complete.5

Proposition 2.4.22 Let Γ ⊂ V be a subgroup of a real vector space of dimen-
sion n.

(i) Γ is a lattice if and only if it is a discrete subset of V .

(ii) Assume Γ is a lattice, with basis (v1, . . . , vm). Let P denote the funda-
mental domain of Γ with respect to the basis (vi). Then Γ is a complete
lattice if and only if V is the disjoint union of the translates P + γ, i.e.

V =
∐
γ∈Γ

P + γ.

Proof: See e.g. [6], Satz I.4.2 und Lemma I.4.3. 2

Now let (V, 〈·, ·〉) be a euclidean vector space of dimension n. Let v1, . . . , vn ∈
V be n vectors and Γ := 〈v1, . . . , vn〉Z ⊂ V . Let

A :=
(
〈vi, vj〉

)
i,j
∈Mn,n(R)

denote the Gram matrix of v1, . . . , vn. Now Γ is a full lattice if and only if
v1, . . . , vn are linearly independent. By [4], §5.4.10, this is the case if and only
if det(A) > 0. Moreover, if det(A) > 0 then

vol(P ) =
√

det(A)

is the volume of the fundamental domain given by the vi. Note that vol(P )
depends only on the lattice Γ but not on the basis v1, . . . , vn. Indeed, if (v′i) is
another basis of Γ, then the base change matrix T lies in GLn(Z). It follows
that

A′ :=
(
〈v′i, v′j〉

)
i,j

= T t ·A · T

and hence √
det(A′) = det(T ) ·

√
detA =

√
detA.

Definition 2.4.23 Let (V, 〈·, ·〉) be a euclidean vector space and Γ ⊂ V a full
lattice. Choose a Z-basis v1, . . . , vn for Γ and let P be the corresponding fun-
damental domain. Then

vol(Γ) := vol(P ) > 0

is called the covolume of the lattice Γ ⊂ V .

The name covolume can be explained as follows. By Proposition 2.4.22 (ii),
the fundamental domain P is a set of representatives for the quotient group
V/Γ. Therefore, vol(P ) may be regarded as the volume of the space V/Γ.

5It is also common to include this assumption into the definition of a lattice.
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Let K be a number field of degree n. Let σ1, . . . , σn : K ↪→ C denote the n
distinct embeddings of K into C. Let (r, s) be the type of K (Definition 2.3.8).
As in Remark 2.3.7 we may assume that the first r embeddings σ1, . . . , σr :
K ↪→ R are real and the remaining 2s embeddings are pairs if complex conjugate
embeddings, i.e. σ̄r+2i−1 = σr+2i, for i = 1, . . . , s.

Definition 2.4.24 The real vector space

KR := {(zk) ∈ Cn | z1, . . . , zr ∈ R, ; z̄r+2i−1 = zr+2i, i = 1, . . . , s }

is called the Minkowski space of K.

Note that KR is a real vector space of dimension r+ 2s = n; it is not a complex
vector space. We have a natural Q-linear embedding

j : K ↪→ KR, α 7→ (σ1(α), . . . , σn(α)).

The skalar product 〈·, ·〉 on KR is defined as the restriction of the usual hermitian
product on Cn, i.e.

〈z, w〉 :=

n∑
i=1

z̄iwi =

r∑
i=1

ziwi +

s∑
i=1

2<(zr+2iw̄r+2i).

The second sum shows that 〈·, ·〉 : KR × KR → R is indeed a symmetric and
positive definit R-bilinear form. Thus (KR, 〈·, ·〉) is a euclidean vector space.

Proposition 2.4.25 Let β = (β1, . . . , βn) be a Q-basis of K and

M := 〈β1, . . . , βn〉

the lattice spanned by β. Then (j(β1), . . . , j(βn)) is an R-basis ofKR. Therefore,
j(M) ⊂ KR is a complete lattice in the sense of Definition 2.4.21. Moreover, we
have

vol(j(M)) =
√
|d(M)|.

Proof: Let
A :=

(
〈j(βi), j(βj)〉

)
i,j

denote the Gram matrix of the vectors j(β1), . . . , j(βn) ∈ KR, with respect to
the scalar product 〈·, ·〉. By the discussion preceeding Definition 2.4.24 we have
to show that det(A) > 0 and that

det(A) = |d(M)|. (57)

In fact, we have d(M) 6= 0 by Proposition 2.4.13 (iii), so it suffices to prove (57).
By definition we have

〈j(βi), j(βj)〉 =

n∑
k=1

σk(βi)σk(βj),
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for all i, j. In matrix form this means that

A = S̄t · S, with S :=
(
σi(βj)

)
i,j
.

Using (50) we conclude that

det(A) = |det(S)|2 = |d(M)|.

This completes the proof. 2

Corollary 2.4.26 The subgroup j(OK) ⊂ KR is a complete lattice with co-
volume

vol(j(OK)) =
√
|dK |.

Example 2.4.27 Let D > 0 be a squarefree positive integer, and let K :=
Q[
√
−D] denote the corresponding imaginary quadratic number field. We have

two complex conjugate embeddings σ1, σ2 : K ↪→ K given by

σ1(
√
−D) = i

√
D, σ2(

√
−D) = −i

√
D.

So the Minkowski space of K is the real vector space

KR = {(z1, z2) ∈ C2 | z̄1 = z2},

equipped with the skalar product

〈z, w〉 = z̄1w1 + z̄2w2 = z̄1w2 + z1w̄1 = 2<(z̄1w1).

In particular, the Minkowski norm is given by

||(z1, z2)|| =
√

2 · |z1|.

We may identify KR with C (considered as a real vector space!) via the projec-
tion to the first coordinate:

KR ∼= C, (z1, z2) 7→ z1.

With this identification, the Minkowski norm is equal to the usual euclidean
norm on C = R2, multiplied with

√
2. Also, the embedding j : K ↪→ KR is

identified with the embedding σ1 : K ↪→ C.
Consider, for instance, the case D = 3. The ring of integers is OK = Z[ω],

with ω = (1 +
√
−3)/2. If we consider OK as a lattice in Minkowski space

KR = C, we obtain the lattice depicted in Figure 2. Note that the volume
(meaning area) of the fundamental domain, with respect to the Minkowski norm,
is equal to

√
|dK | =

√
3, which is twice the area computed with the usual

euclidean norm.
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Figure 3: The ring of integers of Q[
√

2] as a lattice in Minkowski space

Example 2.4.28 Let D > 0 be a positive square free integer and K := Q[
√
D]

the corresponding real quadratic number field. We may consider K as a subfield
of R and

√
D ∈ R in the usual way as the unique positive square root of D.

Let K
∼→ K,α 7→ α′ denote the unique nontrivial automorphism of K, given

by
√
D
′

= −
√
D. The Minkowski space of K is simply KR = R2, and the

embedding of K into KR is the map

j : K ↪→ KR = R2, α 7→ (α, α′).

The Minkowski norm on KR = R2 is simply the euclidean norm.
Consider the example D = 2, K = Q[

√
2]. The ring of integers is OK =

Z[
√

2] = 〈1,
√

2〉Z. The lattice j(OK) ⊂ R2 is spanned by the two vectors

j(1) =

1

1

 , j(
√

2) =

 √2

−
√

2

 .

See Figure 3.
Note that the projection of j(OK) to the first (resp. the second) coordinate

gives rise to the canonical embedding OK ⊂ K ⊂ R (resp. the embedding
OK ⊂ K ↪→ R, α 7→ α′). In contrast to Example 2.4.27, the image of this
embedding, i.e. the subgroup OK ⊂ R, is not a lattice. In fact, it is a dense
subset of R. Here we see that, to see the ‘full picture’, it is essential to consider
both embeddings of K into R at the same time.

Exercises
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Exercise 2.4.1 Let K be a number field and α ∈ K an arbitrary element.
Show that there exists a positive integer m ∈ N such that mα ∈ OK .

Exercise 2.4.2 Prove the Claims (i) and (ii) from Example 2.4.9.

Exercise 2.4.3 Show that the polynomial f = x4 − 10x2 + 1 ∈ Q[x] is irre-
ducible. Deduce that α :=

√
2 +
√

3 is a primitive element for K := Q[
√

2,
√

3].

2.5 Ideals

We start with discussing the general concept of an ideal. LetR be a commutative
ring with unit. Recall that an ideal of R is a subgroup I ⊂ R of the additive
group of R such that a · I ⊂ I holds for all a ∈ R. An ideal I � R is called
finitely generated if there are elements a1, . . . , an ∈ I such that

I = (a1, . . . , an) := {
n∑
i=1

biai | bi ∈ R}.

We call I a principal ideal if it is generated by one element, i.e. I = (a) for some
a ∈ I.

Ideals are an abstraction of the set of all multiples of a ring element. Indeed,
for principal ideals we have

(a) = { b ∈ R | a | b }.

For a general ideal I � R and a ring element a ∈ I this suggests the following
notation:

I | b :⇔ b ∈ I.
The axioms imposed on ideals are then equivalent to the rule

I | a, I | b ⇒ I | a± b, I | ac,

for all a, b, c ∈ R. In this sense, ideals behave just like ordinary ring elements.
More generally, we may define a divisibility relation between ideals of a given
ring R by

I | J :⇔ J ⊂ I.
This is compatibel with the previous notation because

I | a ⇔ I | (a).

Let I, J �R be ideals. Then it is easy to check that I ∩ J ⊂ R,

I + J := {a+ b | a ∈ I, b ∈ J} ⊂ R

and

I · J := {
r∑
i=1

aibi | ai ∈ I, bi ∈ J } ⊂ R

are again ideals of R. We also have many rather obvious rules for addition and
multiplication of ideals:
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• Addition and multiplication of ideals is associative and commutative.

• We have a distributive law

I · (J +K) = I · J + I ·K.

• The zero ideal (0)�R is neutral with respect to addition; moreover I ·(0) =
(0) for all I�R. The ideal (1) = R is neutral with respect to multiplication.

However, neither addition nor multiplication have an inverse. Thus, the set of
all ideals of R, together with the operations + and ·, has a similar structure as
the set of nonnegative integers (N0,+, ·). But this analogy is at least partially
misleading, as the following example shows.

Example 2.5.1 Let R = Z. Since Z is a euclidean ring, every ideal I � Z is
principal and has a unique nonnegative generator,

I = (a), a ∈ N0.

In other words, we have a canonical bijection between N0 and the set of all
ideals of Z. This bijection is multiplicative,

(a) · (b) = (ab),

but not additive. Actually, by Corollary 1.1.20 we have

(a) + (b) = (a, b) = (gcd(a, b)).

It is also easy to check that

(a) ∩ (b) = (lcm(a, b)),

where lcm(a, b) stand for the least common multiple of a, b ∈ Z.

As this example indicates, we should consider addition of ideals as a gen-
eralization of the greatest common divisor and intersection as a generalization
of the least common multiple. This analogy goes quite far. For instance, we
have the following generalization of the classical Chinese Remainder Theorem
to general rings.

Proposition 2.5.2 (Chinese Remainder Theorem) Let I1, . . . , In � R be
ideals in a ring R which are pairwise relatively prime, i.e.

Ii + Ij = R for i 6= j.

Set I := ∩iIi. Then the natural ring homomorphism

R/I → ⊕iR/Ii, a mod I 7→
(
a mod Ii

)
i

is an isomorphism.
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Ideals in OK

Let us fix a number field K of degree n. From now on and for the rest of
this chapter all ideals will be ideals of the ring of integers OK . We will denote
them by a, b, c, . . ..

Proposition 2.5.3 Let a � OK be a nonzero ideal. Then a is a lattice, i.e. a
free Z-submodule of OK of rank n.

Proof: Let us first assume that a = (α) is principal. Since α 6= 0, the map

OK
∼→ a = (α), β 7→ αβ

is an isomorphism of Z-modules. Let β1, . . . , βn be an integral basis of OK .
It follows that αβ1, . . . , αβn is a Z-basis of a. So the proposition is true for
principal ideals.

For the general case we choose an element α ∈ a\{0}. Then

(α) ⊂ a ⊂ OK .

These are inclusions of Z-modules, and both (α) and OK are free of rank n. In
this situation, Theorem 2.1.1 implies that a is a free Z-module of rank n as well.

2

As a trivial consequence of the proposition we obtain:

Corollary 2.5.4 Every ideal a � OK is finitely generated, i.e. there exists
α1, . . . , αn ∈ a such that

a = (α1, . . . , αn).

Remark 2.5.5 In the language of commutative algebra Corollary 2.5.4 says
that OK is a noetherian ring.

Corollary 2.5.6 For any ideal a�OK , the quotient ring OK/a is finite.

Proof: Since a is a lattice by Proposition 2.5.3, Proposition 2.4.18 shows
that

|OK/a| =
√
d(a)/dK <∞. (58)

2

Definition 2.5.7 The norm of an ideal a�OK is defined as the cardinality of
its quotient ring,

N(a) := |OK/a| ∈ N0.

Proposition 2.5.8 Let α ∈ OK , α 6= 0. Then

N((α)) = |NK/Q(α)|.
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Proof: Let β1, . . . , βn be an integral basis of OK . Then αβ1, . . . , αβn is an
integral basis of (α) (see the proof of Proposition 2.5.3). Since αβi ∈ OK , we
can write

αβi =

n∑
j=1

ai,jβj ,

with ai,j ∈ Z. This means that A := (ai,j) is the matrix of the base change
from (βi) to (αβi). By Proposition 2.4.13 (i) and Corollary 2.5.12 we have

N((α)) =
√
d((α))/dK = |det(A)|.

But we may also consider A as the matrix representing the endomorphism φα :
K → K, φα(β) := αβ, see Definition 2.3.10. Therefore,

N((α)) = |det(A)| = |NK/Q(α)|.

2

Definition 2.5.9 A nonzero ideal p � OK is called a prime ideal6 if p 6= OK
and if for all α, β ∈ OK the following implication holds:

αβ ∈ p ⇒ α ∈ p or β ∈ p. (59)

If we use the suggestive notation p | α for the relation α ∈ p, then (59)
becomes

p | αβ ⇒ p | α or p | β. (60)

This looks very similar to the definition of a prime element of a ring (Definition
1.1.14 (iii)). We immediately obtain:

Remark 2.5.10 (i) A principal ideal (α) �OK is a prime ideal if and only
if α is a prime element of OK .

(ii) Let a, b�OK be ideals and p�OK a prime ideal. Then

p | a · b ⇒ p | a or p | b

(recall that p | a :⇔ a ⊂ p).
See Exercise 2.5.2.

Theorem 2.5.11 (i) Let p�OK be a prime ideal. Then p∩Z = Z · p, for a
unique prime number p.

(ii) An ideal a�OK is a prime ideal if and only if the residue ring OK/a is a
field.

6In abstract algebra, the zero ideal of an integral domain is also considered as a prime
ideal, since it satisfies (59). In number theory this is a bit unnatural, since 0 ∈ Z is not a
prime number. We will therefore use the term prime ideal only for nonzero ideals.
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Proof: Let p � OK be a prime ideal. To prove (i) we have to show that
p̄ := p∩Z is a prime ideal of Z. It is clear that p̄ is an ideal and that it satisfies
the Condition 59 of Definition 2.5.9. It remains to show that p̄ 6= {0}. Choose
α ∈ p\{0} and let

mα(α) = αm + am−1α
m−1 + . . .+ a0 = 0

be its minimal equation. We have ai ∈ Z ⊂ OK and a0 6= 0. Therefore, the
equation shows that a0 ∈ p̄ = p ∩ Z, proving (i).

Let a � OK be an ideal such that the ring Ō := OK/a is a field. It is
immediately clear that a 6= (0),OK . Now let α, β ∈ OK with αβ ∈ a. Write 0̄
for the zero element of Ō and ᾱ, β̄ for the residue classes of α, β. Then

0̄ = αβ = ᾱ · β̄

in Ō. Since Ō is a field it follows that ᾱ = 0̄ or β̄ = 0̄, which is equivalent to
α ∈ a or β ∈ a. We have shown that a satisfies Condition (59) of Definition
2.5.9 and hence is a prime ideal.

To prove the converse we let p�OK be a prime ideal and denote the residue
ring by Fp := OK/p. Reversing the previous argument one shows that Fp is an
integral domain. Let p be the prime number with p ∩ Z = Z · p. The inclusion
Z ↪→ OK induces an embedding

Fp := Z/Z · p ↪→ Fp

of the field Fp with p elements into Fp. Moreover, Fp is an algebraic ring
extension of the field Fp. But Fp is also an integral domain. By Exercise 2.5.3
this implies that Fp is a field. 2

Corollary 2.5.12 If p�OK is a prime ideal, then N(p) is a prime power, i.e.

N(p) = pf , f ∈ N.

Here p is the prime number such that p ∩ Z = Z · p.

Recall that an ideal I �R of a ring R is called maximal if I 6= R, and if the
strict inclusion I ( J implies J = R, for every ideal J � R. It is an easy but
fundamental fact that an ideal I�R is maximal if and only if R/I is a field (see
[1], Chapter 10, Corollary 7.3 (a)). Moreover, a maximal ideal is a prime ideal
([1], Chapter 11, Proposition 6.8). The converse is false, in general. However,
Theorem 2.5.11 shows:

Corollary 2.5.13 In the ring OK an ideal is prime if and only if it is maximal.

Prime factorization
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The ring of integers OK of a number field is typically not a unique factor-
ization domain. As a compensation, we have the following fundamental result.

Theorem 2.5.14 Every nonzero ideal a � OK has a factorization into prime
ideals,

a = p1 · . . . · pr,

and this factorization is unique up to permutation of the factors.

We need three lemmas before we can give a proof.

Lemma 2.5.15 Let M be a nonempty set of ideals of OK . Then M has a
maximal element.

Proof: Assume the contrary. Then there exists an infinite ascending chain
a1 ( a2 ( . . . of ideals ai ∈M. It follows that the norms of ai form an infinite
descending sequence of nonnegative integers,

N(a1) > N(a2 > . . . , N(ai) ≥ 0.

But this is impossible, and the lemma follows. 2

Lemma 2.5.16 Let a be a nonzero ideal.

(i) There exist a prime ideal p with a ⊂ p.

(ii) There exist prime ideals p1, . . . , pr such that

p1 · . . . · pr ⊂ a.

Proof: Let M1 be the set of all ideals b such that a ⊂ b ( OK . Let p be
a maximal element of M1 (Lemma 2.5.15). Clearly, p is a maximal ideal and
hence a prime ideal by Corollary 2.5.13. We have a ⊂ p by construction, so (i)
is proved.

Let M2 be the set of all ideals a ∈ OK which violate the conclusion of Claim
(ii) of the lemma. We have to show that M2 is empty. We argue by contradiction
and assume that M2 is nonempty. By Lemma 2.5.16 we may choose a maximal
element a ∈ M2. Since prime ideals trivially satisfy the conclusion of Claim
(ii), a is not a prime ideal. Hence there exist ring elements α1, α2 such that
α1α2 ∈ a and α1, α2 6∈ a. Let a1 := a + (α1) and a2 := a + (α2). Then

a ( a1, a ( a2, a1 · a2 ⊂ a.

It follows that a1, a2 6∈M2, and hence a1, a2 contain a product of prime ideals.
But since a1 · a2 ⊂ a, the same is true for a, contradicting the choice of the a.
Now the lemma is proved. 2
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Lemma 2.5.17 Let p be a prime ideal and

p−1 := {β ∈ K | β · p ⊂ OK}.

Then for every nonzero ideal a we have

a · p−1 := {
r∑
i=1

αiβi | αi ∈ a, βi ∈ p−1 } 6= a.

Moreover,
p · p−1 = OK .

Proof: It is clear that OK ⊂ p−1. We first prove p−1 6= OK . Choose
α ∈ p\{0}. By Lemma 2.5.16 (ii) there exist prime ideals p1, . . . , pr such that

p1 · . . . · pr ⊂ (α) ⊂ p. (61)

We may assume that r is minimal with this property. It follows from (61) and
Remark 2.5.10 (ii) that pi ⊂ p for at least one index i. But pi is a maximal
ideal (Corollary 2.5.13) and hence pi = p. After reordering, we may assume that
p = p1. By the minimality of r we have p2 · . . . · pr ( (α). Choose an element
β ∈ p2 · . . . · pr\(α). Then on the one hand we have

α−1β 6∈ OK , (62)

but on the other hand (61) shows that

β · p ⊂ (α). (63)

Combining (62) and (63) we get

α−1β ∈ p−1\OK .

Hence p−1 6= OK .
Now let a be a nonzero ideal and assume that a · p−1 = a. Let β ∈ p−1 be

an arbitrary element. Then
β · a ⊂ a.

But a ⊂ K is a lattice by Proposition 2.5.3 and hence β ∈ OK by Lemma 2.4.2.
It follows that p−1 = OK , but this contradicts what we have shown above. We
conclude that a · p−1 6= a.

Finally, the strict inclusion p ( p ·p−1 and the fact that p is a maximal ideal
(Corollary 2.5.13) shows that p · p−1 = OK . Now the lemma is proved. 2

Proof of Theorem 2.5.14: We first show that every nonzero ideal has a
factorization into prime ideals. Let M be the set of all ideals which are different
from (0) and OK and which do not have such a factorization. Assume that M
is nonempty. Then M has a maximal element a by Lemma 2.5.15. Let p be a
prime ideal containing a (Lemma 2.5.16 (i)). Then

a ⊂ a · p−1 ⊂ p · p−1 ⊂ OK . (64)
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It follows from Lemma 2.5.17 that the first inclusion in (64) is strict, whereas
the third inclusion is an equality. Thus, (64) becomes

a ( a · p−1 ⊂ OK . (65)

By the maximality of a ∈M there exists a prime factorization

a · p−1 = p1 · . . . · pr.

It follows that
a = a · p−1 · p = p1 · . . . · pr · p,

which contradicts the choice of a. The existence statement of Theorem 2.5.14
is proved.

To prove uniqueness, we assume that an ideal a has two factorizations,

a = p1 · . . . · pr = q1 · . . . · qs. (66)

If a prime ideal p divides the product of two ideals, then it must divide one of
them (Remark 2.5.10 (ii)). It follows that p1 divides one of the factors qi, say
q1, and then p1 = q1 because q1 is maximal. We multiply (66) with p−1

1 = q−1
1

and, using the equality p1 · p−1
1 = OK (Lemma 2.5.16), get

p2 · . . . · pr = q2 · . . . · qs.

Iterating this argument we obtain r = s and, after some reordering, pi = qi for
all i. 2

It is instructive to compare the proof of Theorem 2.5.14 with the proof of
unique factorization in Z (see Theorem 1.1.1 and Proposition 1.1.11). The struc-
ture of both proofs is essentially identical, but the substance is rather different.
To prove Theorem 1.1.11 the main step was to show that irreducible elements of
Z (i.e. prime numbers) are prime elements: this is Euclid’s Lemma, see Corol-
lary 1.1.2. But in the context of prime ideals the corresponding statement is
true almost by definition (Remark 2.5.10). In contrast, two statements that
were obvious when dealing with prime numbers and the ring Z are in fact the
crucial ingredients for the proof of Theorem 2.5.14. On the one hand, this is
the fact that prime ideals of OK are maximal (Corollary 2.5.13), on the other
hand it is the method of ‘dividing by p’, which is possible by Lemma 2.5.17.

Analyzing the proof of Theorem 2.5.14 in more detail one can see that only
the following three properties of the ring OK are needed:

(a) The ring OK is noetherian, i.e. every ideal is finitely generated (see Corol-
lary 2.5.4).

(b) The ring OK is integrally closed, i.e. every element of K satisfying a monic
polynomial equation with coefficients in OK lies in OK . This property was
used implicitly in the proof of Lemma 2.5.17, when we applied Lemma
2.4.2.
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(c) Every prime ideal of OK is maximal.

An integral domain R satisfying properties (a)-(c) is called a Dedekind domain.
Theorem 2.5.14 holds more generally for Dedekind rings, and the proof we
gave essentially carries over. This is important in other branches of algebra, in
particular algebraic geometry.

We can now draw several useful conclusions from Theorem 2.5.14. The first
corollary shows that addition (resp. intersection) of ideals corresponds to taking
the greatest common divisor (resp. the least common multiple).

Corollary 2.5.18 Let a, b be nonzero ideals of OK with prime factorization

a =

r∏
i=1

paii , b =

r∏
i=1

pbii .

Here p1, . . . , pr are distinct prime ideals and ai, bi ≥ 0. Then

a + b =

r∏
i=1

p
min(ai,bi)
i (67)

and

a ∩ b =

r∏
i=1

p
max(ai,bi)
i . (68)

Proof: Fix an indix i and set

a′ := p
ai−min(ai,bi)
i ·

∏
j 6=i

p
aj
j , b′ := p

bi−min(ai,bi)
i ·

∏
j 6=i

p
bj
j .

Then either pi - a′ or pi - b′. It follows that pi - a′ + b′, and hence the prime
factorization of a′ + b′ is of the form

a′ + b′ =
∏
j 6=i

p
cj
j ,

with cj ≥ 0. We conclude that

a + b = p
min(ai,bi)
i · (a′ + b′) = p

min(ai,bi)
i ·

∏
j 6=i

p
cj
j .

The uniqueness part of Theorem 2.5.14 shows that min(ai, bi) is the exponent
of i in the unique prime factorization of a + b. This proves (67). The proof of
(68) is similar and left as an exercise. 2

Corollary 2.5.19 (i) Let a = pai1 · . . . · parr be the prime factorization of a
nonzero ideal a. Then

N(a) = N(p1)ai · . . . ·N(pr)
ar .
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(ii) The ideal norm is multiplicative, i.e. we have

N(a · b) = N(a) ·N(b),

for two ideals a, b.

Proof: For i 6= j the ideals paii and p
aj
j are relatively prime, i.e. we have

paii + p
bj
j = OK .

Therefore, the Chinese Remainder Theorem (Proposition 2.5.2) gives us a ring
isomorphism

OK/a ∼= OK/pa11 ⊕ . . .⊕OK/parr .
We conclude that

N(a) = N(pai1 ) · . . . ·N(parr ).

Thus, for the proof of (i) we may assume that a = pa for a prime ideal p. We
consider the chain of ideals

OK ⊃ p ⊃ p2 ⊃ . . . ⊃ pa = a. (69)

We claim that for i = 0, . . . , a−1, the quotient group pi/p+1 may be considered
as a one dimensional vector space over the field Fp := O/P. Once we have
proved this claim, it follows immediately from the multiplicativity of the index
of a subgroup that

N(a) = (OK : a) = (OK : p) · (p : p2) · . . . · (pa−1 : pa) = N(p)a,

finishing the proof of (i).
To prove the claim we first have to endow the abelian group pi/pi+1 with a

scalar multiplication by the field Fp. But this is the obvious map

Fp × pi/pi+1 → pi/pi+1, (α+ p, β + pi+1) 7→ αβ + pi+1.

It is a routine exercise to check that this map is well defined and makes pi/pi+1

an Fp-vector space. By the uniqueness of prime factorization we have pi 6= pi+1.
Choose any element α ∈ pi\pi+1 and set b := pi+1 + (α). Then pi ⊃ b ) pi+1.
Using again the uniqueness of prime factorization, we see that b = pi. It follows
immediately that the residue class α+pi+1 spans pi/pi+1 as an Fp-vector space.
Thus we have dimFp

pi/pi+1 = 1, and (i) is proved.
Finally, the multiplicativity of the norm follows directly from (i). 2

Decomposition of prime numbers

Let us now fix a prime number p. We are interested in the prime decompo-
sition of the ideal (p) �OK ,

(p) = pei1 · . . . · peir . (70)

Here pi are pairwise distinct prime ideals, and ei ≥ 1. We call (70) the decom-
position or prime factorization of p in K.

We will first fix some terminology related to (70).
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Definition 2.5.20 Let p be a prime ideal of K and p the unique prime number
such that p | p. Then p = pi for a unique index i in (70).

(i) The exponent
e(p) := ei

in (70) is called the ramification index of p. The prime ideal p is called
ramified if e(p) > 1. If e(p) = 1 then p is called unramified.

(ii) By Corollary 2.5.12 we have N(p) = pf , for some f ≥ 1. In fact,

f = [Fp : Fp].

The number f = f(p) is called the inertia degree of the prime ideal p.

Sometimes we also write fi = f(pi) and ei = e(pi) for i = 1, . . . , r.

By Proposition 2.5.8 and Corollary 2.5.12 we have

pn = N((p)) =

r∏
i=1

N(p)ei =

r∏
i=1

peifi .

The resulting identity

n =
∑
i=1

eifi (71)

is called the fundamental equality. If we do not want to order the factors of p
we can write it in the form

n =
∑
p|p

e(p)f(p). (72)

Definition 2.5.21 (i) The prime number p is called ramified in K if there
exists a prime ideal p � OK with p | p and e(p) > 1. Otherwise p it is
called unramified in K.

(ii) The prime number p is called totally split in K if e(p) = f(p) = 1 for all
p | p. It is called totally ramified if e(p) = n and f(p) = 1 for the (unique)
prime divisor p of p. It is called totally inert if e(p) = 1 and f(p) = n, for
the (unique) prime divisor p of p.

The next theorem gives a concrete way to compute the decomposition of a
prime number p in K; unfortunately it only works under an extra assumption
which is not always satisfied (but see Remark 2.5.25).

Theorem 2.5.22 Assume that OK = Z[α] for a primitive element α. Let
f ∈ Z[x] denote the minimal polynomial of α. Let p be a prime number and let
f̄ ∈ Fp[x] denote the reduction of f modulo p. Let

f̄ = f̄e11 · . . . · f̄err
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be the decomposition of f̄ into pairwise distinct, monic and irreducible factors
in Fp[x]. Finally, let fi ∈ Z[x] be a monic integral polynomial which reduces to
f̄i. Then

(p) =

r∏
i=1

peii ,

where
pi := (p, fi(α)) �OK

are pairwise distinct prime ideals, with inertia degree f(pi) = deg(f̄i).

Proof: Let ḡ ∈ Fp[x] be one of the irreducible factors of f̄ and g ∈ Z[x]
a monic integral polynomial lifting ḡ. Let e ∈ N be the exponent of ḡ in the
decomposition of f̄ in irreducible factors (recall that Fp[x] is a euclidean domain
and hence factorial). In view of Theorem 2.5.14 and the fundamental equality
(71), the following claim is all we need to show.

Claim: The ideal
p := (p, g(α))

is prime with N(p) = pdeg(ḡ). Furthermore, e is the exponent of p in the prime
factorization of (p), i.e.

e = max{ k ∈ N | pk | p }.

We are now going to prove the claim. It is immediately clear that p does
not depend on the choice of the lift g but only on ḡ. Using the isomorphism

OK = Z[α] ∼= Z[x]/(f)

and the third isomorphism theorem (see Exercise 2.5.4) we obtain isomorphisms

OK/p ∼= Z[x]/(p, f, g) ∼= Fp[x]/(f̄ , ḡ) = Fp[x]/(ḡ).

Since ḡ is irreducible, the quotient ring Fp[x]/(ḡ) is a finite field with q = pdeg(ḡ)

elements (see [1], Chapter 13, Lemma 5.2). It follows that p is a prime ideal
with norm N(p) = pdeg(ḡ), proving the first half of the claim.

Now we use the quotient ring Ō := OK/(p). Reasoning as above we get
isomorphisms

Ō ∼= Z[x]/(p, f) ∼= Fp[x]/(f̄).

For convenience, we will consider this isomorphism as an equality. Then the
canonical homomorphism

π : OK = Z[α]→ Ō = Fp[x]/(f̄)

sends an element β = h(α), with h ∈ Z[x], to the residue class of the polynomial
h̄ ∈ Fp[x]. Let p̄ := (ḡ)/(f̄) � Ō be the ideal generated by the residue class of
ḡ. For any k ∈ N we have

p̄k = (ḡk, f̄)/(f̄). (73)
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It follows that
pk + (p) = (p, g(α)k) = π−1(p̄k). (74)

By the definition of ḡ and e we can write f̄ = ḡeh̄, for a polynomial h̄ which is
relatively prime to ḡ. It follows that

(ḡk, f̄) = (ḡk, ḡeh̄) =

{
(ḡk), k ≤ e,
(ḡe), k ≥ e.

(75)

Together with (73) this shows that

p̄ ) p̄2 ) . . . ) p̄e = p̄e+1 = . . .

and, using (74) we obtain

p + (p) ) p2 + (p) ) . . . ) pe + (p) = pe+1 + (p) = . . . (76)

Let

(p) =

r∏
i=1

peii

be the factorization of (p) into distinct prime factors. Since p | p we have p = pi
for a unique index i. By Corollary 2.5.18 we have

pk + (p) = p
min(ei,k)
i ·

∏
j 6=i

p
ej
j .

Together with (76) this shows that e = ei. This finishes the proof of the claim
and hence of Theorem 2.5.22. 2

Corollary 2.5.23 Assume OK = Z[θ]. Then a prime number p is ramified in
K if and only if p | dK . In particular, all except finitely many prime numbers p
are unramified in K.

Proof: Let f denote the minimal polynomial of θ and f̄ ∈ Fp[x] the re-
duction of f modulo p. By Theorem 2.5.22, p is ramified in K if and only if
f̄ is inseparable (i.e. one of its prime factors occurs with mutiplicity > 1). By
Corollary 2.2.4, this happens if and only if d | ∆(f). But ∆(f) = dK by Remark
2.4.14. 2

Example 2.5.24 Let K := Q[i] be the field of Gaussian numbers. The ring of
integers of K is the ring of Gaussian integers Z[i]. According to Theorem 2.5.22,
the decomposition of a prime number p in K depends on the factorization of
the polynomial x2 + 1 ∈ Fp[x]. There are three distinct cases.

• For p = 2 we have x2 + 1 = (x+ 1)2 in F2[x]. This shows that

(2) = p2, with p := (2, i+ 1) = (i+ 1).
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• Assume p ≡ 1 (mod 4). Then −1 is a quadratic residue modulo p. This
means that

x2 + 1 = (x+ ā)(x− ā) ∈ Fp[x],

for some integer a prime to p. It follows that

(p) = p1p2, where p1 := (p, a+ i), p2 := (p, a− i).

• Assume p ≡ 3 (mod 4). Then −1 is a quadratic nonresidue modulo p and
the polynomial x2 + 1 ∈ Fp[x] is irreducible. It follows that (p) is a prime
ideal of OK = Z[i].

Remark 2.5.25 In order to apply Theorem 2.5.22 the ring of integers of K has
to be of the form OK = Z[α] for a primitive element α. Unfortunately, this is
not always the case, see Example 2.5.26 and Remark 2.5.27.

There always exists an element α ∈ OK which is a primitive element for the
number field K. Then Z[α] is a subring of OK with fraction field K. Such a
subring is called an order of K. The conductor of Z[α] is the ideal

F := {β ∈ OK | βOK ⊂ Z[α] }.

One can prove that the statement of Theorem 2.5.22 remains true for all prime
number p such that (p) is relatively prime to F. Note that this condition holds
for almost all p. See [6], Satz I.8.3 and Exercise 2.5.5.

Furthermore, one can show that the statement of Corollary 2.5.23 is true
without any assumption. See [6], Korollar III.2.12.

Example 2.5.26 Let K = Q[θ] be the number field considered in Example
2.4.20, with generator θ and defining polynomial

f = x3 + x2 − 2x+ 8.

We have seen that dK = −503 and that OK = Z[θ, α], where

α :=
θ2 + θ

2
.

It follows that Z[θ] ( OK and that the conductor F of the order Z[θ] is a divisor
of 2,

F | 2.

Therefore, by Remark 2.5.25 the conclusion of Theorem 2.5.22 holds for all prime
numbers p 6= 2. Consider, for instance, the prime p = 503. A computation in
the finite field F503 shows that

f = x3 + x3 − 2x+ 8 ≡ (x+ 299)(x+ 354)2 (mod 503).

We conclude that
(503) = q1q

2
2,
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where
q1 := (503, θ + 299), (503, θ + 354)

are the two distinct prime divisors of 503 in K. In particular, p = 503 is ramified
in the number field K.

What about p = 2? Since 2 - dK = −503, p = 2 should be unramified by
Remark 2.5.25. In order to verify this directly, we are going to show that

(2) = p1 · p2 · p3,

where

p1 := (2, θ, α), p2 := (2, θ, α− 1), p3 := (2, θ − 1, α− 1)

are pairwise distinct prime ideals. Note that we cannot use Theorem 2.5.22
directly, and that

f ≡ x2(x+ 1) (mod 2).

Let p1, p2, p3 � OK be the ideals defined above. Clearly, pi | 2. It is also
easy to see that the ideals pi are relatively prime and hence pairwise distinct.
For instance,

p1 + p2 = (2, θ, α, α− 1) = (1) = OK .

Next we show that pi 6= OK . Clearly, it suffices to find elements βi ∈ K\OK
such that βi · pi ⊂ OK , for i = 1, 2, 3. We leave it for the reader to check that

β1 :=
α+ 1

2
, β2 :=

α

2
, β3 :=

θ

2

do the job.
Since the ideals pi are relatively prime and pi | 2, Theorem 2.5.14 implies

that
p1p2p3 | 2.

Using the multiplicativity of the norm we obtain

N(p1)N(p2)N(p3) | N((2)) = 8.

But N(pi) > 1 because pi 6= OK . We conclude that N(pi) = 2 for i = 1, 2, 3. It
follows that pi is a prime ideal with N(pi) = 2 and that (2) = p1p2p3.

Remark 2.5.27 The previous calculation shows that the ring of integers OK
of the number field K = Q[θ] is not of the form Z[γ], for any γ ∈ OK . To
see this, assume that OK = Z[γ] and let g ∈ Z[x] be the minimal polynomial
of γ and ḡ ∈ F2[x] its reduction modulo 2. As the prime number 2 splits into
three distinct prime ideals, Theorem 2.5.22 shows that ḡ would split into three
distinct linear factors, i.e.

ḡ = (x− a1)(x− a2)(x− a3),

with ai ∈ F2 and ai 6= aj . But F2 has only two elements, so this is impossible.
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Exercises

Exercise 2.5.1 Let R be a commutative ring and I, J � R relatively prime
ideals. Show that

I ∩ J = I · J.

Exercise 2.5.2 Prove the claims made in Remark 2.5.10.

Exercise 2.5.3 Let K be a field and L an integral domain which contains K
as a subfield. Assume that L/K is algebraic, i.e. that every element α ∈ L is
algebraic over K. Prove that L is a field.

Exercise 2.5.4 Prove the third isomorphism theorem: let A be an abelian
group, with subgroups B,C ⊂ A such that C ⊂ B. Then there is a canonical
isomorphism

(A/C)/(B/C)
∼→ A/C.

Exercise 2.5.5 Let K be a number field of degree n, α ∈ OK an integral
primitive element, f ∈ Z[x] the minimal polynomial of α, p a prime number and
f̄ ∈ Fp[x] the reduction of f modulo p.

(i) Show that F := {β | βOK ⊂ Z[α]} is a nonzero ideal of OK .

(ii) Assume that (p) + F = OK . Construct a ring isomorph

Ō := OK/(p)
∼→ Fp[x]/(f̄)

and extend the proof of Theorem 2.5.22 to the situation considered in this
exercise.

Exercise 2.5.6 Let K = Q[
√
−7] and θ := (1 +

√
−7)/2.

(i) Show that p := (11, θ − 5) �OK is a prime ideal.

(ii) Determine a Z-basis of p−1.

(iii) Is p a principal ideal?

(iv) Determine the decomposition of (22) �OK into prime ideals.

Exercise 2.5.7 Let K be a number field and C > 0 a constant. Show that
there are only finitely many ideals a�OK with N(a) ≤ C.
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2.6 The class group

As before, we fix a number field K/Q. Our next goal is to define the class group
ClK of K. Together with the type (r, s) and the discrimant dK , this is another
fundamental invariant of a number field.

The fastes way to define ClK goes as follows. Two nonzero ideals a, b�OK
are called equivalent if there is an element α ∈ K× such that b = α · a. Then
ClK is defined as the set of equivalence classes of nonzero ideals a � OK . In
particular, an ideal a is equivalent to the ideal (1) = OK if and only if a is a
principal ideal. This means that the class group ClK is trivial (i.e. consists of
just one element) if and only if OK is a principal ideal domain.

It is easy to see that multiplication of ideals is compatible with the equiva-
lence relation and hence gives rise to a multiplication operation · on ClK . The
main problem is then to show that (ClK , ·) forms a group. The proof of this
crucial fact becomes easier and more transparent if we generalize the notion of
an ideal and include this notion in the definition of ClK .

Definition 2.6.1 A fractional ideal of K is a finitely generated OK-submodule
a ⊂ K, with a 6= {0}. In other words,

a = (α1, . . . , αr) := {
r∑
i=1

αiβi | βi ∈ OK },

with elements α1, . . . , αr ∈ K×. We write a�K to indicate that a is a fractional
ideal of K. A fractional ideal is said to be principal if it is generated by one
element, i.e. a = (α).

Example 2.6.2 Assume K = Q. Then every fractional ideal is principal. In-
deed, let

a = (α1, . . . , αr) �Q, αi ∈ Q×,

be a fractional ideal. We can write αi = ai/b, with ai, b ∈ Z\{0}, where b
is the common denominator. Since Z is a principal ideal domain, we have
(a1, . . . , ar) = (a) � Z, where a is the gcd of the ai. It follows that

a =
1

b
· (a1, . . . , ar) = (

a

b
)

is principal.

Remark 2.6.3 The following facts are either immediate consequences of Defi-
nition 2.6.1, or are easy to show. Note, however, that the condition of being
finitely generated is crucial for the proof of (ii) and (iii).

(i) A nonzero ideal ofOK is the same thing as a fractional ideal ofK contained
in OK . To stress this, we will sometimes call a fractional ideal contained
in OK an integral ideal.
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(ii) Given a fractional ideal a � K there exists an integer m 6= 0 such that
m · a�OK is an integral ideal. This follows from (i) and Remark 2.4.5.

(iii) Every fractional ideal a �K is a lattice, i.e. a free Z-submodule of K of
rank n = [K : Q]. This follows from (ii) and Proposition 2.5.3.

(iv) If a, b�K are fractional ideals then so are a + b, a ∩ b and

a · b := {
∑
i

αiβi | αi ∈ a, βi ∈ b }.

The next lemma shows that fractional ideals are ‘invertible’.

Lemma 2.6.4 Let a�K be a fractional ideal. Then

a−1 := {β ∈ K | β · a ⊂ OK }

is a fractional ideal as well, and we have a · a−1 = OK .

Proof: It follows from its definition that a−1 is an OK-submodule of K. To
see that it is finitely generated, choose an element α ∈ a\{0}. Then α · a−1 is
again an OK-submodule of K and moreover, α · a−1 ⊂ OK . This means that
α · a−1 is an integral ideal and hence finitely generated (Corollary 2.5.4). We
conclude that a−1 is finitely generated and hence a fractional ideal.

To show that a · a−1 = OK we first assume that a�OK is integral. Let

a = p1 · . . . · pr

be the prime decomposition of a (Theorem 2.5.14). We set

b := p−1
1 · . . . · p−1

r .

That’s a fractional ideal by what we have already shown. Using Lemma 2.5.17
we see that

a · b = (p1 · p−1
1 ) · . . . · (pr · p−1

r ) = OK . (77)

This shows that b ⊂ a−1. On the other hand, for every β ∈ a−1 we have
β · a ⊂ OK . Using (78) we get

β ∈ (β) = β · a · b ⊂ b.

We conclude that b = a−1 and now (78) shows that a · a−1 = OK .
If a �K is a general fractional ideal, we choose m ∈ Z\{0} such that b :=

m · a�OK (Remark 2.6.3 (ii)). Using what we have already shown we see that

a · a−1 = (m · a) · (m−1 · a−1) = b · b−1 = OK .

This completes the proof of the lemma. 2
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Definition 2.6.5 We let JK denote the set of all fractional ideals of K. Lemma
2.6.4 shows that JK is an abelian group with respect to multiplication. We call
(JK , ·) the ideal group of K.

The subset PK ⊂ JK consisting of all principal fractional ideals is obviously
a subgroup. The ideal class group of K is the quotient group

ClK := JK/PK .

Elements of ClK are called ideal classes and written as [a], where a ∈ JK is a
representing element.

Remark 2.6.6 It follows from Remark 2.6.3 (ii) that every ideal class in ClK
is represented by an integral ideal. Moreover, two integral ideals a, b � OK
represent the same class if and only if there exists an element α ∈ K× such that
b = α · a. We see a posteriori that Definition 2.6.5 gives the same result as the
informal and preliminary definition of the class group given at the beginning of
this section.

Remark 2.6.7 For a number field K, the following three conditions are equi-
valent:

(a) The class group ClK is trivial.

(b) The ring OK is a principal ideal domain.

(c) The ring OK is factorial.

Indeed, the equivalence (a)⇔(b) follows from the previous remark. The impli-
cation (b)⇒(c) is Proposition 1.1.16. For the implication (c)⇒(b), see Exercise
2.6.1.

Example 2.6.8 We consider the number field K = Q[
√
−5]. Let a � OK =

Z[
√
−5] be an integral ideal.

Proposition 2.6.9 The ideal a is either principal, i.e. a = (α), or of the form

a = (α, α · 1 +
√
−5

2
),

for some α ∈ a, α 6= 0. In the second case, a is not a principal ideal.

Proof: We consider OK = Z[
√
−5] as a subring of C (by setting

√
−5 :=

i
√

5). Then a ⊂ C is a lattice, in the sense of Definition 2.4.21. Let α ∈ a\{0}
be an element with r := |α| minimal. If (α) = a then we are done. So we assume
that (α) 6= a.

Lemma 2.6.10 Let n ∈ N, γ ∈ a and

D := {z ∈ C | |z − γ/n| < r/n}.

Then D ∩ a = {γ/n}.
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Proof: Let β ∈ D∩a. Then nβ−γ ∈ a and |nβ−γ| < r. Now the definition
of r implies nβ = γ, proving the lemma. 2

The principal ideal (α) ⊂ C is a lattice with Z-basis (α, α
√
−5). Let

P := {tα+ sα
√
−5 | 0 ≤ t, s < 1} ⊂ C

be the corresponding fundamental domain for the lattice (α) (Definition 2.4.21).
The assumption (α) 6= a means that there exist β ∈ a ∩ P , β 6= 0. Let
D1, . . . , D4 ⊂ C be the circles with radius r and centers 0, α, α

√
−5, α+ α

√
−5

(the vertices of P !). Also, let D5, D6, D7 be the circles with radius r/2 and
centers α/2, α(1 +

√
−5)/2, α +

√
−5/2. The following picture shows that the

disks D1, . . . , D7 cover the fundamental domain P (where α = 2):

Therefore, by Lemma 2.6.10, the element β ∈ a∩ P must be a center of one
of the disks. Since β 6= 0 and since α, α

√
−5, α(1 +

√
−5) and α +

√
−5/2 do

not lie on P , this leaves us with only two possibilities, namely

β = α
√
−5/2, α(1 +

√
−5)/2.

Suppose β = α
√
−5/2. Then β

√
−5 + 2α = −α/4 ∈ a. But this contradicts the

choice of α. We conclude that β = α(1 +
√
−5)/2 is the only element in a\(α)

which lies in P . It is now easy to see that a = (α, β).
It remains to be seen that a = (α, β) is not a principal ideal. So assume

that a = (γ). Then γ | α which implies |γ| ≤ |α| = r and then also |γ| = |α|,
by the choice of α. It follows that γ = ±α and hence a = (γ) = (α). However,
β ∈ a\(α), contradiction! This completes the proof of Proposition 2.6.9. 2
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Corollary 2.6.11 The class group of K = Q[
√
−5] is a cyclic group of order

2. Its unique nontrivial element is represented by the fractional ideal

a0 := (1,
1 +
√
−5

2
).

Finiteness of the class group

Theorem 2.6.12 Let K be a number field of type (r, s). Set

CK :=

(
2

π

)s√
|dK |.

Then every ideal class in ClK is represented by an integral ideal a � OK with
N(a) ≤ CK .

Together with Exercise 2.5.7, this implies the finiteness of ClK .

Corollary 2.6.13 The class group ClK is finite.

Definition 2.6.14 The order hK := |ClK | is called the class number of K.

Remark 2.6.15 With a bit more work one can show that the constant CK in
Theorem 2.6.12 can be replaced by

MK :=
n!

nn

(
4

π

)s√
|dK |.

This stronger version of Theorem 2.6.12 is called Minkowski’s bound. See e.g.
[6], I, §5, Aufgabe 3.

The proof of Theorem 2.6.12 uses the following general result on lattices in
euclidean vector spaces.

Theorem 2.6.16 (Minkowski) Let (V, 〈·, ·〉) be a euclidean vector space of
dimension n, Γ ⊂ V a complete lattice and X ⊂ V a nonempty subset. Assume
the following:

(a) X is symmetric around the origin, i.e. −X = X.

(b) X is convex.

(c) vol(X) > 2n · covol(Γ).

Then X ∩ Γ contains a nonzero vector.
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Proof: Let (γ1, . . . , γn) be a Z-basis of Γ and

P := {x = x1γ1 + . . .+ xnγn | 0 ≤ xi < 1 }

the corresponding fundamental domain. Recall that V is the disjoint union of
the sets P + γ, γ ∈ Γ (Proposition 2.4.22 (ii)).

Claim: There exist γ1, γ2 ∈ Γ with γ1 6= γ2 such that

(
1

2
X + γ1) ∩ (

1

2
X + γ2) 6= ∅.

To prove the claim we assume the contrary, i.e. that the sets 1
2X + γ are

pairwise disjoint. Then the sets P ∩ ( 1
2X + γ) are also pairwise disjoint. It

follows that

vol(P ) ≥
∑
γ∈Γ

vol
(
P ∩ (

1

2
X + γ)

)
=
∑
γ∈Γ

vol
(
(P − γ) ∩ 1

2
X
)

= vol
(1

2
X
)

= 2−nvol(X).

(78)

But this contradicts Assumption (c) and proves the claim.
We have shown that there exist γ1, γ2 ∈ Γ and x1, x2 ∈ X such that γ1 6= γ2

and
x1

2
+ γ1 =

x2

2
+ γ2. (79)

Then −x2 ∈ X by Assumption (a) and hence (x1 − x2)/2 ∈ X by Assumption
(b). Using (79) we conclude that

γ := γ2 − γ1 =
x1 − x2

2
∈ (X ∩ Γ)\{0}.

This proves Minkowski’s theorem. 2

We return to the situation of Theorem 2.6.12.

Lemma 2.6.17 Let a�OK be a nonzero ideal. Then there exists an element
α ∈ a\{0} with

|N(α)| ≤ N(a) · CK .

Proof: Let σ1, . . . , σn : K ↪→ C be the n distinct embedding of K into C.
We may assume that σi is real for i = 1, . . . , r and that σ̄r+2i = σr+2i−1 for
i = 1, . . . , s. Recall that the Minkoski space for K is the real vector space

KR := {(zi) ∈ Cn | z1, . . . , zr ∈ R, zr+2i = z̄r+2i−1 }.

The map
j : K ↪→ KR, α 7→ (σ1(α, . . . , σn(α)),
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is a Q-linear embedding which maps any Q-basis of K to an R-basis of KR. This
implies that the subgroup j(a) ⊂ V is a complete lattice. Furthermore, we have

covol(j(a)) =
√
|d(a)| = N(a) ·

√
|dK |. (80)

Let us choose positive constants c1, . . . , cn > 0 such that cr+2i = cr+2i−1 for
i = 1, . . . , s and ∏

i

ci = N(a)CK + ε. (81)

We set
X := {(zi) ∈ KR | |zi| < ci, i = 1, . . . , n} ⊂ KR.

Clearly, X is symmetrical around the origin and convex (Conditions (a) and
(b)) from Theorem 2.6.16). An easy calculation also shows that

vol(X) = 2r+sπs
∏
i

ci. (82)

Together with (80) and (81) and the definition of CK we obtain

vol(X) > 2nN(a)
√
|dK | = 2nvol(j(a)).

We see that Condition (c) of Theorem 2.6.16 is also verified. Applying the
theorem we conclude that there exists α ∈ a\{0} such that j(α) ∈ X. The
latter condition, combined with (81), means that

|N(α)| =
n∏
i=1

|σi(α)| <
∏
i

ci = N(a)CK + ε.

Since N(α) ∈ Z, this shows that |N(α)| ≤ N(a)CK , provided that ε was choosen
sufficiently small. The lemma is proved. 2

Proof: (of Theorem 2.6.12) Let a�OK be a nonzero ideal. By Lemma 2.6.4
we can choose m ∈ N such that b := m · a−1 is an integral ideal. Applying
Lemma 2.6.17 to b we obtain an element β ∈ b\{0} with

|N(β)| ≤ N(b)CK .

Set a′ := βb−1 = m−1βa. This is an integral ideal in the same ideal class as a
such that

N(a) = |N(β)| ·N(b)−1 ≤ CK .

(Here we have used Exercise 2.6.2.) Now Theorem 2.6.12 is proved. 2

The class group of imaginary quadratic fields
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We fix a squarefree integer d < 0 and set K := Q[
√
d]. Then OK = Z[θ],

where

θ :=

{√
d, d ≡ 2, 3 (mod 4),

1+
√
d

2 , d ≡ 1 (mod 4).

The discriminant of K is dK = 4d in the first and dK = d in the second case.
We let f := mθ ∈ Z[x] denote the minimal polynomial of θ, so f = x2 − d in
the first and f = x2 − x + c, with c := (−d + 1)/4, in the second case. Given
α = x+ yθ ∈ OK , with x, y ∈ Z, we have

NK/Q(α) = Q(x, y) :=

{
x2 − dy2, d ≡ 2, 3 (mod 4),

x2 + xy + cy2, d ≡ 1 (mod 4).
(83)

Note that Q(x, y) is a positive definite quadratic form in x, y. This is in fact
the only way in which we use the assumption d < 0.

Our goal is to determine the class group CK explicitly. This is possible
by a finite amount of calculation for two reasons. Firstly, every ideal class is
represented by an ideal a with N(a) ≤ CK = 2

√
|dK |/π (Theorem 2.6.12), and

it is relatively easy to list the finitely many ideals with this property. Secondly,
in order to identify or distinguish the ideals in this list up to equivalence, it is
necessary to solve, for certain m ∈ N, the norm equation

NK/Q(α) = m, α ∈ OK . (84)

Writing α = x+ yθ, (84) becomes

Q(x, y) = m, x, y ∈ Z. (85)

Since the left hand side is a positive definite quadratic form, we can decide in
finite time whether or not (84) has a solution.

For a systematic approach the following notion is very useful.

Definition 2.6.18 A nonzero ideal a�OK is called primitive if there exists an
integer a ∈ Z such that

θ ≡ a (mod a).

Proposition 2.6.19 (i) A nonzero ideal a � OK is primitive if and only if
there is a ring isomorphism OK/a ∼= Z/mZ, where m := N(a).

(ii) Let m ∈ N and a ∈ Z be given, with

f(a) ≡ 0 (mod m).

Then
a := (m, θ − a) �OK

is primitive, and N(a) = m.
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(iii) Every primitive ideal a is of the form a = (m, θ − a), with m, a as in (ii).
Moreover, m and the image of a in Z/mZ are uniquely determined by a.

Proof: For any nonzero ideal a�OK we can write a∩Z = mZ for a unique
positive integer m ∈ N. We obtain an injective ring homomorphism

Z/mZ ↪→ OK/a, a+mZ 7→ a+ a. (86)

If a is primitive, and a ∈ Z is such that θ ≡ a (mod a), then (86) is surjective.
Indeed, for any element α = x + yθ ∈ OK we have α ≡ x + ya (mod a).
Conversely, if (86) is surjective, then there exists a ∈ Z with θ ≡ a (mod a) and
hence a is primitive. This proves (i).

In (ii) the only nontrivial thing to prove is the equality N(a) = m. The
Taylor expansion of f ∈ Z[x] at x = a and the assumption f(a) ≡ a (mod m)
show that

f(x) = f(a) + (x− a)g(x) ≡ f(a) ≡ 0 (mod (x− a,m)).

Therefore, we have natural ring isomorphisms

OK/a ∼= Z[x]/(f,m, x− a) = Z[x]/(m,x− a) ∼= Z/mZ.

Now (ii) follows. The proof of (iii) is similar and left to the reader. 2

The representation a = (m, θ − a) from Proposition 2.6.19 (ii) is called the
standard form of a. Note that, if we assume 0 ≤ a < m then the pair (m, a) is
uniquely determined by a.

Corollary 2.6.20 Let a = (m, θ − a) be a primitive ideal in standard form.
Then a is principal if and only if there exists x, y ∈ Z, such that

Q(x, y) = m and x+ ay ≡ 0 (mod m). (87)

Here Q(x, y) is defined as in (83).

Proof: Assume first that a = (α) is principal, with α = x + yθ. Then
N(a) = NK/Q(α) = Q(x, y) by Proposition 2.5.8. So Proposition 2.6.19 shows
that Q(x, y) = N(a) = m. Morever, the congruences θ ≡ a (mod a) and α ≡ 0
(mod a) imply

x+ ya ≡ α ≡ 0 (mod a).

This means that x+ ya ∈ a ∩ Z = mZ, i.e. x+ ay ≡ 0 (mod m).
Conversely, assume that (87) holds. Then α := x + yθ ≡ x + ya ≡ 0

(mod a), which means that (α) ⊂ a. Therefore, the equality of norms N((α)) =
NK/Q(α) = N(a) implies the equality of ideals (α) = a. 2

Remark 2.6.21 Let p � OK be a prime ideal. Then p is either primitive or
principal. Indeed, let p be the unique prime number such that p | p, and let
f̄ ∈ Fp denote the reduction of f modulo p. If f̄ is irreducible, then (p) is a
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prime ideal by Theorem 2.5.22, and hence p = (p). We say that the prime p is
inert.

Otherwise, f = (x− a)(x− b) (mod p), with a, b ∈ Z, and then

(p) = (p, θ − a) · (p, θ − b)

is the prime decomposition of the ideal (p) (Theorem 2.5.22). We say that p
splits. It follows that p is one of the two factors, say p = (p, θ − a). But then
f(a) ≡ 0 (mod p), and hence p is primitive, by Proposition 2.6.19 (ii). Note
that p (resp. p) is ramified if and only if the two factors are equal. By Theorem
2.5.22, this is the case if and only if a ≡ b (mod p).

Lemma 2.6.22 Let a = (m, θ−a)�OK be a primitive ideal in standard form.
Let m =

∏
i p
ei
i be the prime factorization of m. Then the prime factorization

of a is

a =

r∏
i=1

peii ,

where pi := (pi, θ − a).

Proof: Since pi | m we have f(a) ≡ 0 (mod pi), for all i. Hence it follows
from Proposition 2.6.19 (ii) that pi := (p, θ− a)�OK is a primitive prime ideal
with N(pi) = pi.

Let p | a be an arbitrary prime divisor of a. Then θ ≡ a (mod p), so p
is primitive. By Remark 2.6.21, p = (p, θ − b) for some prime number p, and
N(p) = p. Since p = N(p) | N(a) = m it follows that p = pi for some i.
Moreover, b ≡ θ ≡ a (mod p). We may therefore assume that b = a and hence
p = pi.

We have shown that the prime decomposition of a has the form a =
∏
i p
ci
i ,

with ci ≥ 0. But then the multiplicativity of the norm implies∏
i

peii = m = N(a) =
∏
i

pcii .

We conclude that ci = ei for all i, and the lemma is proved. 2

Lemma 2.6.23 (i) Let p � OK be a primitive and unramified prime ideal.
Then pe is primitive, for all e ≥ 1.

(ii) Let a1, . . . , ar�OK be primitive ideals, and assume that the norms mi :=
N(ai) are pairwise relatively prime. Then a := a1 · . . . · ar is primitive.

Proof: By Remark 2.6.21 we can write p = (p, θ − a), where p is a prime
number and a ∈ Z is such that f(a) ≡ 0 (mod p). Furthermore, f ≡ (x−a)(x−
b) (mod p), with a 6≡ b (mod p). We claim that there exists ai ∈ Z such that
ai ≡ a (mod p) and f(ai) ≡ 0 (mod pi+1), for all i ≥ 0.

We prove the claim by induction on i. For i = 0 we set a0 := a. For i > 0 we
set ai := ai−1 + pid, for some d ∈ Z. Then ai ≡ ai−1 ≡ a (mod p), no matter
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how we choose d. We will show that f(ai) ≡ 0 (mod pi+1) for some d. Our
induction hypothesis says that f(ai−1) ≡ 0 (mod pi). This shows that

f = (x− ai−1)(x− b′) + pig, (88)

for certain b′ ∈ Z and g ∈ Z[x]. Using f(b) ≡ 0 (mod p) and a 6≡ b (mod p) one
easily shows that b′ ≡ b (mod p). Furthermore,

f(ai) = pid(ai−1 − b′ + pid) + pig(ai)

≡ pi
(
d(ai−1 − b′) + g(ai)

)
(mod pi+1)

≡ pi
(
d(a− b) + g(ai)

)
(mod pi+1).

(89)

Using a 6≡ b (mod p) and the fact that Fp is a field one shows that there exist
d ∈ Z such that

d(a− b) + g(ai) ≡ 0 (mod p). (90)

Combining (89) and (90) yields the desired congruence f(ai) ≡ 0 (mod pi+1)
and proves the claim.

Set qi := (p+1, θ − ai). Then qi is a primitive ideal with N(qi) = pi+1, by
Proposition 2.6.19 (ii) and the claim. In particular, every prime deal dividing qi
also divides p and is therefore equal to p = (p, θ− a) or p̄ = (p, θ− b). However,

With ai ∈ Z as in the claim we have

pi+1 = (pi+1, θ − ai).

Indeed, the right hand side is a primitive ideal

Theorem 2.6.24 Every nonzero ideal a�OK has a unique presentation of the
form

a = k · a0,

with a0 �OK primitive.

Proof: Let a�OK be an arbitrary ideal, with prime factorization a =
∏
i p
ei
i .

We will show the existence of a presentation a = k · a0, with k ∈ N and a0

primitive, and leave the proof of its uniqueness as an exercise.
Assume that there exists an index i such that the prime ideal pi is not

primitive. Then pi = (pi) for a prime number pi, by Remark 2.6.21. This
means that

a = peii · a
′, with a′ :=

∏
j 6=i

p
ej
j .

Now it suffices to prove the theorem for the ideal a′. Therefore, we may assume
that all prime factors pi of a are primitive. Similarly, if pi is ramified and ei > 1,
then p2

i = (pi) for a prime number pi, and we can write

a = pi · a′, with a′ := pei−2
i ·

∏
j 6=i

p
ej
j .
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Hence we may also assume that ei = 1 if pi is ramified. But now Lemma 2.6.23
shows that a is primitive. 2

Combining Theorem 2.6.12 with Theorem 2.6.24 we obtain:

Corollary 2.6.25 Every class in ClK is represented by a primitive ideal a�OK
with N(a) ≤ CK .

This means that, in order to compute the class group we may restrict our
attention to primitive ideals. Using Lemma 2.6.22 and Lemma 2.6.23 it is actual-
ly rather easy to list all primitive ideals a with N(a) ≤ CK , by writing them as
products of primitive prime ideals p � OK with N(p) ≤ CK . The structure of
the class group can then be determined by solving a finite list of norm equations
Q(x, y) = m, using Corollary 2.6.20.

Example 2.6.26 We set d := −47. Then OK = Z[θ], with θ := (1 +
√
−47)/2.

The minimal polynomial of θ is f = x2 − x + 12, and the norm of an element
α = x+ yθ is

NK/Q(α) = Q(x, y) := x2 − xy + 12y2.

The constant CK is equal to

CK =
2
√

47

π
∼= 4, 364 < 5.

The first step is to find all primitive ideals with norm less than 5. For p = 2 we
have

f ≡ x(x− 1) (mod 2).

It follows that

(2) = p2 · p̄2, with p2 := (2, θ), p̄2 := (2, θ − 1).

Similarly, f ≡ x(x− 1) (mod 3) and hence

(3) = p3 · p̄3, with p3 := (3, θ), p̄3 := (3, θ − 1).

By Lemma 2.6.22, every primitive ideal a with N(a) < 5 is a product of the
four primitive prime ideals p2, p̄2, p3, p̄3. For norm reasons, there are exactly
eight possibilities. Only one of them, (2) = p2 · p̄2, is not primitive, by Lemma
2.6.23. We see that there are exactly 7 distinct primitive ideals a with N(a) < 5,
namely

(1), p2, p̄2, p3, p̄3, p
2
2, p̄

2
2. (91)

The second step consists in finding all relations between the ideal classes
of the 7 ideals listed in (91). Using Corollary 2.6.20 this can be done very
systematically, but the procedure would be rather tedious. It is easier to first
simplify the situation a bit. Note that the equality N(θ) = 12 together with
Lemma 2.6.22 shows that

(θ) = p2
2p3.
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This implies the relation p2
2 ∼ p−1

3 ∼ p̄3. Applying this relation to the ideals in
(91) we see that every ideal is equivalent to one of the following 5 ideals

(1), p2, p̄2, p3, p̄3. (92)

We claim that these 5 ideals are pairwise not equivalent. To prove this claim we
assume that a1 ∼ a2, where a1, a2 are distinct ideals listed in (92). Using the
relations p−1

2 ∼ p̄2 and p−1
3 ∼ p̄3 one easily shows that there exists an integral

ideal b ∼ a1 · a−1
2 ∼ (1) such that

b ∈ {p2p3, p
2
2, p

2
3}. (93)

The ideals in this list have norm 4, 6, 9. However, for α = x+ yθ we have

N(α) =
(2x+ y

2

)2
+

47

4
y2,

which is either > 9 or equal to x2. It follows easily that none of the three ideals
listed in (93) is principal, contradiction. This proves the claim.

We have shown that the class group ClK has exactly 5 elements. Since 5
is a prime number, this implies that ClK is cyclic of order 5, and generated by
any of its 4 nontrivial elements. For instance,

ClK = 〈[p2]〉 ∼= Z/5Z.

One consequence of this result is that the ideals p5
2 and p5

3 should be principal.
Indeed, using Lemma 2.6.22 and Corollary 2.6.20 one shows that

p5
2 = (32, θ − 5) = (θ − 5), p5

3 = (243, θ − 115) = (2θ + 13).

Example 2.6.27 We set d := −163. Then OK = Z[θ], with θ := (1 +√
−163)/2. The minimal polynomial of θ is f = x2 − x + 41, and the norm

of an element α = x+ yθ is

NK/Q(α) = Q(x, y) := x2 − xy + 41y2.

The constant CK is equal to

CK =
2
√

163

π
∼= 8, 128 < 9.

One checks that for all primes p < 9 (i.e. for p = 2, 3, 5, 7) the reduction of f
modulo p is an irreducible element of Fp[x]. It follows that there are no primitive
prime ideals with norm < 9. We conclude that the class group of K is trivial,
and hence OK = Z[θ] is a principal ideal domain.

With this result available, we can now solve the mystery observed at the
beginning of the introduction and give a conceptual explanation of the following
observation made by Euler in 1772.
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Claim 2.6.28 For a = 0, . . . , 40, the integer f(a) = a2 − a + 41 is a prime
number.

Proof: Set m := f(a) = a2 − a + 41, for 0 ≤ a < 41. Then 0 < m < 412.
Assume that m was not a prime number, and let p | m be the smallest prime
factor. Then p < 40. Moreover, the congruence f(a) ≡ 0 (mod p) shows that

p := (p, θ − a)

is a primitive prime ideal of OK with N(p) = p. On the other hand, OK is a
principal ideal domain, so there exists α = x+ yθ ∈ OK such that

p = (α).

It follows that

p = N(p) = N(α) = x2 + xy + 12y2 =
(2x+ y

2

)2
+

163

4
y2.

If y = 0 then p = x2 which is impossible because p is prime. On the other hand,
if y 6= 0 then we see that p > 163/4 > 40, which is also impossible. We conclude
that m is prime. 2

The number field K from Example 2.6.27 is the imaginary quadratic number
field with the largest discriminant and class number one. More general, we
have the following famous theorem, which was already conjectured by Gauss
(although his formulation was quite different).

Theorem 2.6.29 (Heegner, Stark) Let d < 0 be a negative, square free in-
teger and K = Q[

√
d] the corresponding imaginary quadratic number field.

(i) We have hK → ∞ as d → ∞. In other words, for every constant C > 0,
there are only finitely many imaginary quadratic number field with class
number hK ≤ C.

(ii) There are precisely 9 imaginary quadratic number fields with class number
one. They occur for

d = −1,−2,−3,−7,−11,−19,−43,−67,−163.

The class number problem is the problem to determine, for a given number
m ∈ N, all number fields of a certain type (e.g. imaginary quadratic) with class
number hK = m.

Exercises

Exercise 2.6.1 Let K be a number field, and assume that OK is factorial.
Show that the class group ClK is trivial. (Hint: use factorization into prime
ideals and the fact that all nonzero prime ideals in OK are maximal.)
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Exercise 2.6.2 Let K be a number field of degree n.

(i) We define the norm of a fractional ideal a�K by the formula

N(a) := m−n ·N(m · a),

where m ∈ N is chosen such that m · a�OK . Show that the norm defines
a group homomorphism

N : JK → Q×.

(ii) Show that for any nonzero ideal a � OK there exists a unique nonzero
ideal a∗ �OK such that

a · a∗ = (N(a)).

In particular, [a] · [a∗] = [(1)] in ClK .

Exercise 2.6.3 Let K = Q[
√
−30]. Determine the class number hK and the

structure of the class group ClK .

2.7 The unit group

We end this chapter with a study of the unit group of a number field K. Recall
that the unit group O×K is the multiplicative group of elements α ∈ OK such
that α 6= 0 and α−1 ∈ OK .

Proposition 2.7.1 We have

O×K = {α ∈ OK | NK/Q(α) = ±1}.

Proof: Let σ1, . . . , σn : K ↪→ C be the distinct embeddings of K into C.
Without loss of generality we may assume that K ⊂ C and that σ1 is the identity
on K. By Proposition 2.3.11 (ii) we have

NK/Q(α) =

n∏
i=1

σi(α) ∈ Z, (94)

for all α ∈ OK . Now suppose that α ∈ O×K is a unit. Then the multiplicativity
of the norm shows that

1 = NK/Q(1) = NK/Q(α) ·NK/Q(α−1),

and both factors on the right hand side are integers. It follows that NK/Q(α) =
±1. Conversely, assume that NK/Q(α) = ±1. Then (94) shows that

α−1 = σ1(α−1) = ±σ2(α) · . . . · σn(α)

is a product of algebraic integers. More precisely, the σi(α) ∈ OL are integers
of the number field L := Q[σ1(α), . . . , σn(α)] and therefore α−1 ∈ OL as well.
We conclude that

α−1 ∈ OL ∩K = OK ,
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and hence that α ∈ O×K is a unit. 2

We let
µ(K) := {ζ ∈ K | ∃k ∈ N : ζk = 1}

be the set of roots of unity contained in K. It is clear that µ(K) is a subgroup
of K×. Moreover, µ(K) ⊂ OK because every root of unity ζ ∈ µ(K) satisfies an
integral relation of the form ζk−1 = 0. It follows immediately that µ(K) ⊂ O×K
is a subgroup of the unit group. In fact,

µ(K) = (O×K)tor

is the torsion subgroup of O×K , i.e. the subgroup consisting of all elements of
O×K which have finite order. Therefore, the quotient group

EK := O×K/µ(K)

is torsion free, i.e. it has no element of finite order except the unit.

Example 2.7.2 Let K be an imaginary quadratic number field. We have seen
in ?? that the norm equation NK/Q(α) = ±1 for α ∈ OK is equivalent to a
quadratic Diophantine equation of the form

Q(x, y) = 1, x, y ∈ Z,

where Q(x, y) is a positive definite quadratic form. Such an equation has at
most finitely many solutions. It follows that the unit group O×K is finite. This
means that µ(K) = OK and hence EK = {1} is trivial.

We have also seen that µ(K) = {±1} is as small as possible except in two
cases, namely for K = Q[i] (where µ(K) is a cyclic group of order 4) and for
K = Q[

√
−3] (where µ(K) is a cyclic group of order 6).

Theorem 2.7.3 (Dirichlet’s Unit Theorem) Let K be a number field of
type (r, s).

(i) The group µ(K) is finite and cyclic.

(ii) EK = O×K/µ(K) is a free abelian group of rank r + s− 1.

The statement of the theorem may be rephrased as follows. Let t := r+s−1.
Then there exist units ε1, . . . , εt ∈ O×K such that every unit α ∈ O×K has a unique
representation of the form

α = ζ · εk11 · . . . · ε
kt
t ,

with ζ ∈ µ(K) and ki ∈ Z. The tupel (εi) is called a fundamental system of
units.
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Remark 2.7.4 Note that the fundamental system of units (εi) is not unique.
On the one hand, we may replace εi with ζiεi, where ζi ∈ µ(K) is an arbitrary
root of unity. On the other hand, if A = (ai,j) ∈ GLt(Z) is a unimodular matrix
of dimension t then the system (ε′i), where

ε′i :=

t∏
j=1

ε
ai,j
j ,

is again a fundamental system of units.

Before we give the proof of Theorem 2.7.3 we have a closer look at the special
case of real quadratic fields.

The unit group of real quadratic fields and the Pell equation

Let d > 0 be a positive and square free integer and let K := Q[
√
d]. For

simplicity we assume that d ≡ 2, 3 (mod 4). Then OK = Z[
√
d], and for α =

x+ y
√
d ∈ OK we have

NK/Q(α) = x2 − dy2.

Therefore, the units of the ring OK = Z[
√
d] correspond bijectively to the

solitions of the Diophantine equation

x2 − dy2 ± 1, x, y ∈ Z. (95)

This equation is traditionally called Pell’s equation7

Equation (95) has two trivial solutions, (±1, 0), corresponding to the roots
of unity ±1 ∈ OK . In fact, µ(K) = {±1} is a cyclic group of order 2 simply
because the field K can be embedded into the real numbers.

By Theorem 2.7.3 there exists a fundamental unit ε1 ∈ O×K such that every
other unit ε ∈ O×K can be written uniquely in the form

ε = ±εk1 ,

for a uniquely determined integer k ∈ Z. It follows in particular that Pell’s
equation has infintely many solutions.

By Remark 2.7.4 the fundamental unit ε1 is not unique: there are exactly
four distinct choices, namely ±ε1,±ε−1

1 . Replacing ε1 by one of these, we may
assume that ε1 > 1, and then ε1 is uniquely determined. In fact, we will see in
a moment that

ε1 = min{ε ∈ O×K | ε > 1}. (96)

The unit determined by (96) is called the fundamental unit of K = Q[
√
d]. If

we write ε1 = x1 + y1

√
d, then (x1, y1) is a solution to Pell’s equation called the

fundamental solution.
7Named after the english mathematician John Pell (1611-1685). However, the attribution

of Pell’s name with Equation (95) is due to a confusion of Pell with Lord Brouncker (1620-
1684). Historically more accurate would be the name Brahmagupta’s equation (after the
indian mathematician and astronomer Brahmagupta (597-668). See the Wikipedia entry for
Pell’s equation
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Example 2.7.5 Let d = 2. It is easy to find several small nontrivial solutions
to the Pell equation x2− 2y2 = ±1. For instance (x, y) = (1, 1) is the nontrivial
solution with smallest positive entries. Let ε1 := 1 +

√
2 ∈ Z[

√
2]× be the

corresponding unit. It is easy to see that (96) holds, so ε1 is the fundamental
solution. It follows that we can enumerate all solutions by computing powers
of ε1. In particular, if we take positive powers of ε1 then we obtain exactly all
solutions (x, y) with x, y > 0. For instance,

ε1 = 1 +
√

2, ε21 = 3 + 2
√

2, ε31 = 7 + 5
√

2, ε41 = 17 + 12
√

2

gives the first 4 solutions

(x, y) = (1, 1), (3, 2), (7, 5), (17, 12).

Example 2.7.6 Even for relatively small values of d the fundamental solution
ε1 = x1 + y1

√
d can be surprisingly large. Here is a small (and rather randomly

chosen) list of such cases:

d x1 y1

19 170 39

31 1520 273

46 24335 3588

103 227528 22419

It can be shown that there is an increasing sequence of values for d such that
the absolute values of x1 and y1 grow exponentially with d.

Remark 2.7.7 Before trying to work through the proof of Theorem 2.7.3 in
the general case given below, it is instructive to study a proof in the special case
of real quadratic number fields. This can be done for instance by reading [5],
Chapter 17, §5 and solving Exercise 2.7.2.

The proof of Dirichlet’s Unit Theorem

Advice: The following proof is rather long and heavy with notation. At first
reading it may be helpful to mentally translate everything into the special case
of a real quadratic number field which we already looked at in the previous
section (i.e. to set n := 2, r := 2 and s := 0). Examples 97 and 98 and the
pictures therein are meant to support this point of view. See also [1], Chapter
11, §11.

Let K/Q be a number field of degree n and type (r, s). Let σ1, . . . , σn :
K ↪→ C be the distinct embeddings of K into C. As usual, we assume that
σ1, . . . , σr : K ↪→ R are real and that σ̄r+2i−1 = σr+2i for i = 1, . . . , s. Let

KR := {(zi) ∈ Cn | z1, . . . , zr ∈ R, z̄r+2i−1 = zr+2i for i = 1, . . . , s}
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be the Minkowski space of K and j : K ↪→ KR, j(α) = (σi(α)), the canonical
embedding (Definition 2.4.24). Recall that j(OK) ⊂ KR is a complete lattice
with covolume

vol(j(OK)) =
√
|dK |

(Corollary 2.4.26). In particular, j(OK) is a discrete subset of KR. This fact
will be used several times in the proof of Theorem 2.7.3.

We define

K×R := {(zi) ∈ KR | zi 6= 0 ∀i}, S := {(zi) ∈ K×R |
∏
i

|zi| = 1}.

Clearly, K×R is an abelian group with respect to componentwise multiplication
and S ⊂ K×R is a subgroup. Furthermore, the restriction of j to K× is an
injective group homomorphism j : K× ↪→ K×R . It follows from Proposition
2.7.1 (i) that

j(O×K) = j(OK) ∩ S (97)

In fact, for α ∈ K we have j(α) ∈ S if and only if |NK/Q(α)| = 1, by (94).

Example 2.7.8 Let us try to visualize the subgroup S ⊂ K×R and the lattice
j(OK) in the special case r = 2, s = 0, i.e. in the case of a real quadratic number
field (compare with Example 2.4.28). We can write K = Q[

√
d] ⊂ R, where

d > 0 is a positive, square free integer. Then KR = R2 and for α = x+ y
√
d we

have
j(α) = (α, α′) = (x+ y

√
d, x− y

√
d).

The group K×R is the complement of the two coordinate axis, and the subgroup
S ⊂ K×R is the union of two hyperbolas,

S = {(z1, z2) ∈ R2 | z1z2 = ±1}.

By (97), the unit group, considered as subgroup of K×R , is the intersection of

the lattice OK with S. See Figure 4 for the case K = Q[
√

2]. In this picture we
can see 6 units of OK = Z[

√
2], namely

ε = ±1,±(1 +
√

2),±(1−
√

2).

These are the points of intersection of the lattice 〈j(1), j(
√

2)〉Z ⊂ R2 with
the double hyperbola S, which occur in the range of the coordinates visible
in the picture. Theorem 2.7.3 says that there are in fact infinitely many such
intersection points, corresponding to the units

ε = ±(1 +
√

2)k, k ∈ Z.

See Example 2.7.5.
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Figure 4: Looking for units in Z[
√

2]

The main new ingredient needed for the proof of Theorem 2.7.3 is the loga-
rithmic space

L := {(xi) ∈ Rn | xr+2i−1 = xr+2i for i = 1, . . . , s}

and the logarithmic map

l : K×R → L, (zi) 7→ (log(|zi|)).

Note that L is a real vector space of dimension r + s, and that l is a group
homomorphism (turning multiplication into addition). Note also that the image
of S ⊂ K×R under the logarithmic map l lies in the linear subspace

H := {(xi) ∈ L |
∑
i

xi = 0 }.

We can summarize the notation introduced so far by the following commutative
diagram of abelian groups:

O×K −−−−→ S −−−−→ Hy y y
K×

j−−−−→ K×R
l−−−−→ L

(98)

(the vertical maps are simply the natural inclusions). The most important map
here is the composition of the two top horizontal maps,

λ := l ◦ j|O×K : O×K → H.
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This is a homomorphism of abelian groups. Note also that the second horizontal
map l|S : S → H is surjective because the logarithm log : R>0 → R is surjective.

The following lemma proves Part (i) of Theorem 2.7.3.

Lemma 2.7.9 We have ker(λ) = µ(K), and this group is finite and cyclic.

Proof: Let ζ ∈ µ(K) be a root of unity. Then ζi := σi(ζ) ∈ C is also a
root of unity, and therefore |ζi| = 1, for i = 1, . . . , n. It follows that λ(ζ) =
(log(|ζi|)) = 0, i.e. ζ ∈ ker(λ). Conversely, let α ∈ ker(λ). This means that
|σi(α)| = 1 for all i. We see that j(ker(λ)) is a subset of the compact subgroup

(S1)n := {(zi) ∈ K×R | |zi| = 1 ∀i}.

But j(ker(λ)) is also a subset of the discrete subset j(OK) ⊂ KR. It follows that
ker(λ) is a finite group. But every element of a finite group has finite order,
and therefore ker(λ) ⊂ µ(K). We have shown that ker(λ) = µ(K) and that this
group is finite. By [1], Chapter 13, Proposition 6.18, every finite subgroup of
K× is cyclic. This completes the proof of the lemma. 2

Set
Λ := λ(O×K) ⊂ H.

this is a subgroup of H which, by Lemma 2.7.9 and the first isomorphism the-
orem, is isomorphic to the group EK = O×K/µ(K). So in order to prove Part
(ii) of Theorem 2.7.3 we have to show that Λ is a free abelian group of rank
r + s − 1. In fact we will show more, namely that Λ is a full lattice inside the
real vector space H (Definition 2.4.21). Since dimRH = r + s− 1, this implies
that Λ (and hence EK as well) is a free abelian group of rank r + s− 1.

Example 2.7.10 We return to the special case of a real quadratic number field
considered in Example 2.7.8. Then L = R2 and the logarithmic map is

l : R2 → R2, (z1, z2) 7→ (log(|z1|), log(|z2|)).

The linear subspace H ⊂ L is the plane given by the equation z1 + z2 = 0.
In Figure 5 we see the position of H ⊂ L and, for OK = Z[

√
2], the lattice

Λ = λ(O×K) = 〈γ1〉Z, with generator

γ1 := λ(1 +
√

2) ∼ (0.881,−0.881).

By Proposition 2.4.22 (i) the following lemma proves that Λ ⊂ H is a lattice
(but not yet that it is complete).

Lemma 2.7.11 The subgroup Λ ⊂ H is a discrete subgroup.
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Figure 5: Looking for the units of Z[
√

2] in logarithmic space

Proof: For the proof we may also consider Λ as a subgroup of the vector
space L containing H. The subset

U := {(xi) ∈ L | |xi| ≤ 1 ∀i } ⊂ L

is a neighborhood of 0 ∈ L. Its inverse image via the logarithmic map is

W := l−1(U) = {(zi) ∈ KR | e−1 ≤ |zi| ≤ e}.

This is a compact subset of KR. Since j(OK) ⊂ KR is a lattice and hence a
discrete subset, it follows that W ∩j(OK) is a finite set. We conclude that U ∩Λ
is a finite set as well. This shows that Λ ⊂ L is a discrete subgroup. 2

To finish the proof of Theorem 2.7.3 we have to show that the lattice Λ ⊂ H is
complete. This is the hardest part of the proof; it consists in showing that there
exists as many units as possible. Indeed, the fact that Λ ⊂ H is a lattice shows
that EK = OK/µ(K) is a free abelian group of rank ≤ r+ s− 1. Completeness
of the lattice Λ means that the previous inequality is in fact an equality.

The general idea of the proof is the following. Our goal is produce a large
supply of units ε ∈ OK . Let C > 0 be some positive constant. Suppose we have
a method to produce an infinite set of elements α ∈ OK with |NK/Q(α)| < C.
Then the corresponding principal ideals (α) � OK satisfy N((α)) < C. By
Exercise 2.5.7 there are only finite many ideals with this property. It follows
that there exist infinitely many pairs of distinct nonzero elements α1, α2 ∈ OK
which generate the same principal ideal, i.e. (α1) = (α2). This means that
ε := α1/α2 ∈ O×K is a unit.

To make this idea work we use Minkowski’s theorem (Theorem 2.6.16) in a
similar way as we did in the proof of the finiteness of the class number (see §2.6,
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in particular Lemma 2.6.17). We choose positive constants c1, . . . , cn > 0 such
that

C :=
∏
i

ci > CK =
( 2

π

)s√
|dK |. (99)

Recall that the subgroup S ⊂ K×R contains the elements y = (yi) such that∏
i|yi| = 1.

Lemma 2.7.12 For all y = (yi) ∈ S there exists an element α ∈ OK such that
α 6= 0 and

|σi(α)| < |yi|ci,

for i = 1, . . . , n. In particular, we have

|NK/Q(α)| =
∏
i

|σi(α)| < C.

Proof: Let
X := {(zi) ∈ KR | |zi| < ci ∀i}. (100)

This is a convex and centrally symmetric subset of KR with

vol(X) = 2r+sπsC > 2n
√
|dK | = 2nvol(j(OK)),

see (82). So Minkowski’s theorem applies to X. More generally, for any y =
(yi) ∈ S we consider the set

y ·X = {(zi) ∈ KR | |zi| < |yi|ci ∀i}.

It is of the same shape as X, and since
∏
i|yi|ci = C we have vol(y ·X) = vol(X).

As in the proof of Lemma 2.6.17 one shows that there exists α ∈ OK , α 6= 0,
such that j(α) ∈ y ·X. This means that |σi(α)| < |yi|ci for all i. 2

By Exercise 2.5.7 there are at most finitely many ideals a�OK with N(a) <
C. Let (α1), . . . , (αN ) � OK be a complete list of all nonzero principal ideals
with this property. Then αj 6= 0 and

|NK/Q(αj)| < C, (101)

for j = 1, . . . , N , by Proposition 2.5.8. Moreover, for any α ∈ OK\{0} with
|NK/Q(α)| < C there exists an index j such that (α) = (αj).

Lemma 2.7.13 Set

T := S ∩
( N⋃
j=1

j(α−1
j ) ·X

)
.

Then T is a bounded subset of S such that

S =
⋃
ε∈O×K

j(ε) · T. (102)
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Proof: By definition, T is a finite union of bounded subsets of S and there-
fore itself bounded. Also, for every unit ε ∈ O×K we have j(ε) ∈ S and hence
j(ε) · T ⊂ S. To prove the inclusion ⊂ in (102) we fix an element y = (yi) ∈ S.
By Lemma 2.7.12 there exists α ∈ OK , α 6= 0, such that |σi(α)| < yici for all i.
This is equivalent to

j(α) ∈ y ·X, (103)

and it implies
|NK/Q(α)| < C. (104)

Therefore, (α) = (αj) for some index j ∈ {1, . . . , N}. It follows that

αj = εα, ε ∈ O×K . (105)

By (103) we can write j(α) = y · x, with x ∈ X. Using (105) we conclude that

y = j(α−1) · x = j(εα−1
j ) · x = j(ε) · j(α−1

j ) · x ∈ j(ε) · T.

This proves (102) and completes the proof of the lemma. 2

We can now finish the proof of Theorem 2.7.3. We have already shown that
Λ ⊂ H is a lattice. We assume that Λ is not a complete lattice. This means
that Λ is contained in a proper linear subspace H ′ ( H.

Consider the bounded subset T ⊂ S from Lemma 2.7.13. Its image l(T )
under the logarithmic map is a bounded subset of H. Since l|S : S → H is
surjective, (102) shows that

H = l(S) =
⋃
γ∈Λ

(
γ + l(T )

)
. (106)

Let v ∈ (H ′)⊥ be a vector in H which is orthogonal to H ′ and such that
||v|| > ||w|| for all w ∈ l(T ). Then we also have

||v + γ|| ≥ ||v|| > ||w|| (107)

for all γ ∈ Λ and w ∈ l(T ) (we have used v ⊥ γ). This shows that v+ γ 6∈ l(T ),
for all γ ∈ Λ, contradicting (107). We conclude that Λ ⊂ H is a complete
lattice, and Theorem 2.7.3 is proved. 2

Exercises

Exercise 2.7.1 Compute the fundamental unit ε1 = x1 + y1

√
d of K = Q[

√
d],

for d = 3, 6, 7, 10, 11.

Exercise 2.7.2 Let d > 0 be a squarefree integer, d ≡ 2, 3 (mod 4), and let
K := Q[

√
d] ⊂ R. Assume that the Pell equation

x2 − dy2 = ±1

has at least one nontrivial solution. Under this assumption, reprove Theorem
2.7.3 for K, via the following steps.
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(i) Show that the Pell equation has infinitely many solutions.

(ii) Show that the minimum

ε1 := min{ε ∈ O×K | ε > 1}

exists.

(iii) Show that every unit ε ∈ O×K with ε > 1 is of the form ε = εk1 , for a unique
positive integer k ∈ N.
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3 Cyclotomic fields

3.1 Roots of unity

For n ∈ N we let �n ⊂ C denote the group of nth roots of unity,

�n = {ζ ∈ C | ζn = 1}.

Clearly, �n is a cyclic group of order n, generated by ζn := e2πi/n = cos(2π/n)+
i · sin(2π/n). Note that every element ζ ∈ �n is an algebraic integer, because it
satifies the integral equation ζn − 1 = 0.

Definition 3.1.1 The number field Kn := Q[ζn] is called the nth cyclotomic
field.

Our first goal is to find the minimal polynomial of ζn and thereby compute
the degree [Kn : Q]. An element ζ ∈ �n is called a primitive nth root of unity
if the order of ζ in the group �n is equal to n. This means that ζd 6= 1 for
all proper divisors d | n. The corresponding subset of �n is written as �×n . An
elementary argument shows that for a ∈ Z the element ζan ∈ �n is a primitive
root of unity if and only if ggT(a, n) = 1. Hence we obtain a bijection

(Z/nZ)×
∼−→ �×n , a 7→ ζan. (108)

In particular, we have
|�×n | = φ(n),

where φ(n) denotes the nth value of Euler’s φ-function.
The nth cycloctomic polynomial is defined as

Φn :=
∏
ζ∈�×n

(x− ζ) ∈ C[x].

Note that Φn is a monic polynomial of degree φ(n).

Lemma 3.1.2 (i) We have

xn − 1 =
∏
d|n

Φd.

(ii) The polynomial Φn has integral coefficients, i.e. Φn ∈ Z[x].

(iii) The polynomial Φn is irreducible over Q.

Proof: The first statement follows from the decomposition

xn − 1 =
∏
ζ∈�n

(x− ζ)
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and the fact that every element ζ ∈ �n lies in �×d , for a unique divisor d | n.
The second statement follows from the first by induction, as follows. Clearly,
Φ1 = x − 1, so the claim is true for n = 1. For n > 1, we may assume that
Φd ∈ Z[x] for all proper divisors d | n. Then (i) shows that

Φn =
xn − 1∏
d|n,d<n Φd

. (109)

The denominator on the right hand side of (109) is a monic integral polynomial
by the induction hypothesis. Since the left hand side (109) is a poylnomial (a
priori with complex coefficients), the polynomial division algorithm shows that
Φn ∈ Z[x]. This proves (ii).

We now prove (iii). Let f ∈ Z[x] be the minimal polynomial of ζn. Then
f | Φn in Z[x], i.e. Φn = f · g for some monic polynomial g ∈ Z[x]. To prove
f = Φn it suffices to show that f(ζan) = 0 for all a ∈ Z which is prime to n.
More generally, for a prime to p we let Pa denote the statement

∀ζ ∈ �×n :
(
f(ζ) = 0 ⇒ f(ζa) = 0

)
.

Then Pa and Pb together imply Pa·b. Therefore, it suffices to prove Pp for all
prime numbers p which are prime to n.

Let us fix p as above, and let Φ̄n, f̄ , ḡ ∈ Fp[x] denote the reduction of Φn, f, g.
We assume that there exists ζ ∈ �×n such that f(ζ) = 0 and f(ζp) 6= 0. Then
g(ζp) = 0. Since f is the minimal polynomial of ζ we conclude that f | g(xp).
This implies

f̄ | ḡ(xp) = ḡp. (110)

Let h̄ be an irreducible factor of f̄ . Then (110) shows that h̄2 | f̄ · ḡ = Φ̄n, i.e.
Φ̄n is not separable. On the other hand, using p - n we see that

ggT(Φ̄n, Φ̄
′
n) = ggT(xn − 1, n̄xn−1) = 1,

i.e. Φ̄n is separable. The contradiction finishes the proof of the lemma. 2

Remark 3.1.3 The proof of Part (iii) of the lemma is a bit mysterious. We
will give a more conceptual proof later. For both proofs (and for significant
parts of algebraic number theory), the heart of the matter is the existence of
the Frobenius endomorphism: if R is a commutative ring of characteristic p > 0
(e.g. R = Fp[x]) then the map

ϕp : R→ R, a 7→ ap,

is a ring homomorphism. In particular, (a+ b)p = ap + bp.8

Corollary 3.1.4 The cyclotomic polynomial Φn is the minimal polynomial of
ζn (in fact, of every element of �×n ). We have

[Kn : Q] = φ(n).

8This formula is also called freshman’s dream .
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Example 3.1.5 (i) Using (109) we can compute Φn for small values of n:

Φ1 = x− 1, Φ2 = x+ 1,

Φ3 = x2 + x+ 1, Φ4 = x2 + 1,

Φ5 = x4 + x3 + x2 + x2 + x+ 1, Φ6 = x2 − x+ 1.

(ii) If p is a prime number, then

Φp =
xp − 1

x− 1
= xp−1 + . . .+ x+ 1.

(iii) More generally, if p is prime and k ≥ 1 then

Φpk =
xp

k − 1

xk−1 − 1
= x(p−1)pk−1

+ . . .+ xp
k−1

+ 1 = Φp(x
pk−1

).

See Exercise 3.1.1.

The Galois group of Q[ζn]/Q

We briefly recall the definition of a Galois extension and its most useful
characterization. See [1] for more details.

Definition 3.1.6 Let L/K be a finite field extension. An automorphism of
L/K is a field automorphism σ : L

∼−→ L which fixes every element of K. The
group of all automorphisms of L/K is written as Aut(L/K). The extension
L/K is called a Galois extension if

|Aut(L/K)| = [L : K].

If this is the case, then Gal(L/K) := Aut(L/K) is called the Galois group of
L/K.

Theorem 3.1.7 A finite field extension L/K is a Galois extension if and only
if L/K is the splitting field of a separable polynomial f ∈ K[x].

Theorem 3.1.8 (i) The extension Kn/Q is a Galois extension.

(ii) For σ ∈ Gal(Kn/Q) we have

σ(ζn) = ζan,

where a ∈ Z is prime to n. The resulting map

Gal(Kn/Q)
∼−→ (Z/nZ)×, σ 7→ a+ n · Z,

is an isomorphism of groups.
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Proof: We have already observed that Kn/Q is the splitting field of the
separable polynomial xn − 1. By Theorem 3.1.7, Kn/Q is a Galois extension,
proving (i).

Let σ ∈ Gal(Kn/Q). Since σ is a field automorphism, it acts on the subgroup
�n ⊂ K×n as a group automorphism. But �n = 〈ζn〉 is a cyclic group of order
n, and hence any automorphism is of the form ζ 7→ ζa, for a unique a ∈
(Z/nZ)×. It follows that the map σ 7→ a is an injective group homomorphism
from Gal(L/K) to (Z/nZ)×. It is also surjective, because by Corollary 3.1.4
and the fact that L/K is Galois we have

|Gal(L/K)| = [LK ] = φ(n) = |(Z/nZ)×|.

This completes the proof of the theorem. 2

Example 3.1.9 Let n = 5. The minimal polynomial of ζ5 is Φ5 = x4 + x3 +
x2 + x+ 1 (Example 3.1.5). In particular, we have the identity

1 + ζ5 + ζ2
5 + ζ3

5 + ζ4
5 = 0,

whose truth can also be seen geometrically in Figure ??. It follows from Theorem
3.1.8 that Q[ζ5]/Q is a Galois extension whose Galois group is cyclic of order 4:

Gal(Q[ζ5]/Q) ∼= (Z/5Z)× ∼= Z/4Z.

Let H ⊂ Gal(Q[ζ5]/Q) be the unique subgroup of order 2. Clearly, H is gener-
ated by the element σ−1. Since σ−1(ζ) = ζ−1 = ζ̄ for all ζ ∈ �5, σ−1 is equal to
complex conjugation, restricted to the subfield Q[ζ5] ⊂ C.

By the Main Theorem of Galois Theory, the fixed field K := Q[ζ5]H is a
quadratic number field. To describe K explicitly, we set

α := ζ5 + ζ4
5 , α′ := ζ2

5 + ζ3
5 .

Almost by definition,

σ−1(α) = α, σ−1(α′) = α′.

It follows that α, α′ ∈ K. Note that

α = 2 cos(2π/5), α′ = 2 cos(4π/5).

Note also that

Φ5 = (x− ζ5)(x− ζ4
5 )(x− ζ2

5 )(x− ζ3
5 ) = (x2 − αx+ 1)(x2 − α′x+ 1). (111)

If we expand the product on the right end of (111) and compare coefficients, we
find the identities

α+ α′ = −1, αα′ = −1. (112)

96



This means that α, α′ are the two roots of the polynomial

x2 + x− 1 = (x− α)(x− α′).

Since α > 0 and α′ < 0 (see Figure ??) we conclude that

α =
−1 +

√
5

2
, α′ =

−1−
√

5

2
.

It follows that K = Q[
√

5].

Exercises

Exercise 3.1.1 (i) Let p be a prime number and k ≥ 1. Compute Φpk .

(ii) Compute Φ12 and Φ24.

Exercise 3.1.2 (i) Let α := ζ7+ζ6
7 . Show that K1 := Q[α] is a cubic number

field and that K1 = Q[ζ7] ∩ R.

(ii) Find an imaginary quadratic number field K2 ⊂ Q[ζ7]. (Hint: by Galois

theory, there should be an element β =
∑6
k=1 akζ

k
7 such that

σa(β) =

{
β, a ≡ 1, 2, 4 (mod 7),

−β, a ≡ 3, 5, 6 (mod 7).

Find coefficents ak such that this holds, and then compute β2.)

3.2 The decomposition law for primes in Q[ζn]

Let n ∈ N and p be a prime number. In this section we study the decomposition
of p into prime ideals of Kn = Q[ζn]. Our main result is that the decomposition
behaviour of p in the extension Kn/Q only depends on the residue class of p in
Z/nZ. This is our first reciprocity law. In the next section we will see that it
implies, for instance, the quadratic reciprocity law of Gauss.

We start with a brief remainder on the structure of finite fields.

Theorem 3.2.1 Let p be a prime number and n ∈ N. Set q := pn. Then
there exists, up to isomorphism, a unique field Fq with q elements. It has the
following properties.

(a) Fq/Fp is the splitting field of the polynomial xq − x, and we have

xq − x =
∏
α∈Fq

(x− α).
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(b) Fq/Fp is a Galois extension. The Galois group is cyclic of order n, gener-
ated by the Frobenius automorphism

ϕp : Fq
∼−→ Fq, α 7→ αp.

(c) The multiplicative group F×q is cyclic of order q − 1.

Proof: See [1], Chapter 13, Theorem 6.4. 2

Corollary 3.2.2 Let p be a prime number and n,m ∈ N. Then Fpm ⊂ Fpn if
and only if m | n. If this is the case then

Fpm = {α ∈ Fpn | αp
m

= α}.

To illustrate the power of finite fields, we prove the following special case of
quadratic reciprocity. The argument can be easily extended to prove the general
case.

Proposition 3.2.3 Let p 6= 5 be a prime number. Then(
5

p

)
= 1 ⇔ p ≡ ±1 (mod 5).

Let Φ̄5 = x4 + x3 + x2 + x + 1 ∈ Fp[x] denote the reduction of Φ5 modulo
5. Let n ∈ N denote the order of p + Z · 5 in (Z/5Z)×. In other words, n is
minimal with the property

q := pn ≡ 1 (mod 5).

Let Fq be the field with q elements, given by Theorem 3.2.1. Since 5 | q− 1 and
F×q is a cyclic group of order q − 1, there exists an element ζ ∈ F×q of order 5,

i.e. a primitive 5th root of unity. It follows that Φ̄5 splits over Fq, as follows:

Φ̄5 = (x− ζ)(x− ζ2)(x− ζ3)(x− ζ4).

In fact, Fq is the splitting field of Φ̄5 because it is the smallest extension of Fp
which contains ζ.

The trick is now to write Φ̄5 as a product of two quadratic polynomials, as
in Example 3.1.9:

Φ̄5 = f · g, f := (x− ζ)(x− ζ4), g := (x− ζ2)(x− ζ3). (113)

Then

f = x2 − αx+ 1, with α := ζ + ζ4,

g = x2 − α′x+ 1, with α′ := ζ2 + ζ3.
(114)

Combining (113) with (114) we find the relations

α+ α′ = −1, αα′ = −1. (115)
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These relations are equivalent to an explicit quadratic equation satisfied by α
and α′:

x2 + x− 1 = (x− α)(x− α′). (116)

Note that these calculations are the same as in Example 3.1.9, with the only
difference that we have replaced the complex numbers by the finite field Fq.

Proposition 3.2.3 follows from Claim 1 and Claim 2 below.

Claim 1: α ∈ Fp if and only if p ≡ ±1 (mod 5).

We use Corollary 3.2.2 for m = 1 and the calculation

αp = ζp + ζ−p =

{
ζ + ζ−1 = α, p ≡ ±1 (mod 5),

ζ2 + ζ3 = α′, p ≡ 2, 3 (mod 5).
.

Since α 6= α′ by (115), we see that

α ∈ Fp ⇔ αp = α ⇔ p ≡ ±1 (mod 5),

proving Claim 1.

Claim 2: α ∈ Fp if and only if
(

5
p

)
= 1.

To prove Claim 2, we set β := 2α+ 1. Clearly, α ∈ Fp if and only if β ∈ Fp.
Moreover, the quadratic equation (116) satisfied by α shows that

β2 = 4α2 + 4α+ 1 = 5.

This shows that
(

5
p

)
= 1 if β ∈ Fp. Conversely, if

(
5
p

)
= 1 then there exists

γ ∈ Fp with γ2 = 5 and then β = ±γ ∈ Fp. This completes the proof of Claim
2 and of Proposition 3.2.3. 2

The ring of integers of Q[ζn]

Theorem 3.2.4 Let n ∈ N and Kn := Q[ζn]. Then OKn = Z[ζn].

Lemma 3.2.5 Assume that n = pk is a prime power. We write ζ := ζn and
set λ := 1− ζ ∈ OKn

.

(i) The principal ideal (λ) � OKn is a prime ideal with N((λ)) = p, and we
have

(p) = (λ)(p−1)pk−1

.

(ii) The discriminant of the lattice Z[ζ] ⊂ OKn is

d(Z[ζ]) = ±ps, s := pk−1(kp− k − 1).
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Proof: By Example 3.1.5 (iii) we have

Φn = x(p−1)pk−1

+ . . .+ xp
k−1

+ 1 =
∏
a

(x− ζa),

where a runs over (Z/nZ)×. Substituting x := 1 we obtain the identity

p =
∏
a

(1− ζa). (117)

The quotient

εa :=
1− ζa

1− ζ
= 1 + ζ + . . .+ ζa−1 ∈ OKn

is clearly integral. But so is its inverse,

ε−1
a =

1− ζ
1− ζa

=
1− (ζa)b

1− ζa
= 1 + ζa + . . .+ ζa(b−1) ∈ OKn

(here b ∈ N is chosen with ab ≡ 1 (mod n)). It follows that εa ∈ O×Kn
is a unit

and hence (117) shows that

(p) = (λ)(p−1)pk−1

.

But (p − 1)pk−1 = [Kn : Q] by Corollary 3.1.4. Now the fundamental equality
(71) implies that (λ) is a prime ideal with N((λ)) = p. This proves (i).

The cyclotomic polynomial Φn is the minimal polynomial of ζ. Therefore,
by Remark 2.4.14 and Exercise 2.3.1 we have

d(Z[ζ]) = ∆(Φn) = NKn/Q(Φ′n(ζ)). (118)

To compute the right hand side of (118) we start with the identity

Xpk − 1 = Φn · (Xpk−1

− 1), (119)

see Example 3.1.5 (iii). Computing the derivative of both sides of (119) and
substituting x := 1 we obtain

pkζ−1 = Φ′n(ζ) · (ξ − 1), (120)

where ξ := ζp
k−1

. Note that ξ ∈ �×p is a primitive pth root of unity. This means
that

Φp = xp−1 + . . .+ x+ 1 =

p−1∏
a=1

(x− ξa).

Again substituting x := 1 we see that

p =

p−1∏
a=1

(1− ξa) = NQ[ξ]/Q(1− ξ). (121)
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Using (120), (121) and the multiplicativity of the norm we get

NKn/Q(Φ′n(ζ)) =
NKn/Q(pkζ−1)

NKn/Q(ξ − 1)
=
±pk(p−1)pk−1

±ppk−1 = ±ps, (122)

with s := k(p − 1)pk−1 − pk−1. Combining (118) and (122) yields the desired
formula. This completes the proof of the lemma. 2

We start with the proof of Theorem 3.2.4. First we assume that n = pk is a
prime power. Then by Lemma 3.2.5 we have

d(1, ζn, . . . , ζ
φ(n)−1
n ) = ±ps,

for some s ≥ 1. Using Lemma 2.4.15 we conclude that

psOKn
⊂ Z[ζn] ⊂ OKn

. (123)

Lemma 3.2.5 also shows that the element λ := 1− ζn ∈ Z[ζn] generates a prime
ideal of OKn

of norm p, i.e. OKn
/(λ) ∼= Z/pZ. It follows that

OKn = Z[λ] + (λ). (124)

Multiplying both sides of (124) with λ and substituting the result into the right
hand side of (124) we obtain

OKn = Z[λ] + λ · Z[ζn] + (λ2) = Z[λ] + (λ2). (125)

Iterating this argument we see that

OKn
= Z[λ] + (λt), (126)

for all t ≥ 1. In particular, for t = s(p−1)pk−1 we obtain, by combining Lemma
3.2.5 with (123) and (126),

OKn
= Z[ζn] + psOKn

= Z[ζn].

This proves Theorem 3.2.4 in case where n = pk is a prime power. The gen-
eral case follows from this special cases, applying iteratively Lemma 3.2.6 and
Lemma 3.2.7 below. 2

Lemma 3.2.6 Let n,m ∈ N be relatively prime. Then

Q[ζnm] = Q[ζn] ·Q[ζm]

and
Q[ζn] ∩Q[ζm] = Q,

as subfields of C.
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Lemma 3.2.7 Let K,K ′ ⊂ C be number fields with integral basis (αi) and
(α′j), respectively. We assume that K ∩K ′ = Q and that the discriminants dK
and dK′ are relatively prime. Then (αiα

′
j) is an integral basis for L := K ·K ′,

and dL = dK · dK′ .

Proof: See [6], Kapitel I, Satz 2.11. 2

Here is the main result of this section. It describes the decomposition of a
prime number p in the cyclotomic extension Kn = Q[ζn]/Q.

Theorem 3.2.8 Let n ∈ N and p be a prime number. Write n = pkm with
p - m, and let f ∈ N be the smallest positive integer such that pf ≡ 1 (mod m).
Set r := φ(m)/f . Then

(p) = (p1 · . . . · pr)φ(pk),

where p1, . . . , pr �OKn are pairwise distinct prime ideals with N(pi) = pf , for
all i.

Corollary 3.2.9 (i) A prime p is ramified in Kn/Q if and only if p | n (with
the exception of p = 2, which is ramified if and only if 4 | n).

(ii) Assume p 6= 2. Then p is totally split in the extension Kn/Q if and only
if p ≡ 1 (mod n).

Example 3.2.10 Let n = 3. Then K3 = Q[ζ3] = Z[
√
−3]. Corollary 3.2.9 (ii)

says that a prime p splits in K3, i.e.

(p) = p · p̄, with p̄ 6= p,

if and only if p ≡ 1 (mod 3). But we have see before that this happens if and
only if

(−3
p

)
= 1, and then

p := (p,
√
−3− a), with a2 ≡ −3 (mod p).

We conclude that (
−3

p

)
=

{
1, if p ≡ 1 (mod 3),

−1, if p ≡ −1 (mod 3).

This is a special case of the Quadratic Reciprocity Law (Theorem 1.3.6).

Proof: By Theorem 3.2.4 we have OKn
= Z[ζn], and by Corollary 3.1.4 we

know that Φn is the minimal polynomial of ζn. Therefore, the prime factoriza-
tion of p in OKn

corresponds to the decomposition of Φ̄n ∈ Fp[x] into irreducible
factors, see Theorem 2.5.22. More precisely, we have to show that

Φ̄n = (ḡ1 · . . . · ḡr)φ(pk), (127)

102



where ḡi ∈ Fp[x] are irreducible polynomials of degree f . To prove (127) we
first assume that n = m is prime to p. Let q := pf . The field Fq is the smallest
extension of Fp which contains a primitive nth root of unity ζ, by the choice of
f . It follows that Fq is the splitting field of Φ̄n and that

Φ̄n =
∏

a∈(Z/nZ)×

(x− ζa).

Let ϕp : Fq
∼−→ Fq denote the Frobenius automorphism, ϕp(α) = αp. By The-

orem 3.2.1, φp generates the Galois group Gal(Fq/Fp). It follows that φp per-
mutes the roots of Φ̄n and that the irreducible factors of Φ̄n over Fp correspond
to the orbits of this permutation. More explicitly, let a1, . . . , ar ∈ (Z/nZ)× be
a set of representatives for the cosets of the subgroup 〈p̄〉 ⊂ (Z/nZ)×. Then

(Z/nZ)× = {aipl + nZ | i = 1, . . . , r, l = 0, . . . , f − 1}

and

ḡi :=

f−1∏
l=0

(x− ζaip
l

) ∈ Fp[x]

is an irreducible factor of Φ̄n. This proves (127) if n = m is prime to p.
Now assume that n = pkm with k ≥ 1. We have to show that

Φ̄n = Φ̄ϕ(pk)
m . (128)

We use induction over m and k. For k = 0 the claim is already proved. For
m = 1 we have

Φ̄pk =
xp

k − 1

xpk−1 − 1
=

(x− 1)p
k

(x− 1)pk−1 = (x− 1)(p−1)pk−1

= Φ̄
ϕ(pk)
1 ,

so (128) holds as well. We may therefore assume m > 1 and k ≥ 1. By (109)
we have

Φ̄n =
xp

km − 1∏
d|pk,d<pkm Φ̄d

=
(xm − 1)p

k∏
d|pk,d<pkm Φ̄d

. (129)

We write the divisor d | pkm as d = pld′, with 0 ≤ l ≤ k and d′ | m. Then
d < pkm if and only if l < k or d′ < d. Therefore, the denominator in (129) can
be rewritten, using the induction hypothesis, as

∏
d|pk,d<pkm

Φ̄d =
( k−1∏
l=0

·
∏
d′|m

Φ̄pld′
)
·
( ∏
d′|m,d′<m

Φ̄pkd′
)

=

k−1∏
l=0

(xm − 1)ϕ(pl) ·
( ∏
d′|m,d′<m

Φ̄d′
)ϕ(pk)

= (xm − 1)p
k−1

·
( ∏
d′|m,d′<m

Φ̄d′
)ϕ(pk)

.

(130)
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In the last step we have used the equality

k−1∑
l=0

ϕ(pl) = pk−1,

which we leave as an exercise. Combining (129) and (130) we obtain

Φ̄n =
( xm − 1∏

d′|m,d′<m Φ̄d′

)ϕ(pk)

= Φ̄ϕ(pk)
m .

proving (128). This completes the proof of Theorem 3.2.8. 2

3.3 Dirichlet characters, Gauss sums and Jacobi sums

We start with the abstract theory of characters of finite abelian groups. This
theory should be seen as a finite version of Fourier theory.

Definition 3.3.1 Let (A, ·) be a finite abelian group. A character on A is a
group homomorphism

χ : A→ C×.

The set of all characters on A is called the dual group and is denoted by Â. The
principal character is the element ε ∈ Â with ε(a) = 1 for all a ∈ A.

Remark 3.3.2 (i) The set Â is again an abelian group with respect to mul-
tiplication of characters, defined as follows:

(χ1 · χ2)(a) := χ1(a) · χ2(a),

for χ1, χ2 ∈ Â. The principal character is the neutral element of Â.

(ii) Let n := |A| be the order of A. Then an = 1 for all a ∈ A. Therefore,
χn(a) = χ(an) = 1 for all a ∈ A and χ ∈ Â. It follows that a character
χ ∈ Â can actually be seen as a group homomorphism

χ : A→ �n.

Moreover, every character has exponent n, i.e. χn = ε.

(iii) For χ ∈ Â and a ∈ A we have

χ(a−1) = χ(a)−1 = χ(a).

Proposition 3.3.3 Let A be a finite abelian group. Then |A| = |Â|. Moreover,
for every a ∈ A, a 6= 1, there exists a character χ ∈ Â, χ 6= ε, with χ(a) 6= 1.
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Proof: We assume first that A is cyclic of order n, and we fix a generator
a0 ∈ A. Then

χ0 : A→ �n, ak0 7→ ζkn,

is a character on A of order n. It has the property that χ0(a) = 1 if and only
if a = 1. Moreover, for any character χ ∈ Â we have χ(a0) = ζkn, for some
k ∈ Z/nZ, and then χ = χk0 . It follows that Â is cyclic of order n, generated
by χ0. In particular, |A| = |Â|. This proves the proposition in case that A is
cyclic.

The proof in the general case uses essentially the same argument as before.
We leave the details to the reader, noting only that one has to use the structure
theorem of finite abelian groups (see [1], Chapter 12, Theorem 6.12). It says
that there exists elements a1, . . . , ar ∈ A, of order n1, . . . , nr, such that

Z/n1Z× . . .× Z/nrZ
∼−→ A, (k1, . . . , kr) 7→ ak11 · . . . · akrr ,

is an isomorphism. 2

Remark 3.3.4 The proof of Proposition 3.3.3 shows that A ∼= Â are isomorphic
as abelian groups. However, the isomorphism that comes up depends on the
choice of the generators a1, . . . , ar of A (resp. a0 in the cyclic case). Since there
is no canonical choice of such generators, there is also no canonical choice of the
isomorphism A ∼= Â.

Theorem 3.3.5 Let A be a finite abelian group.

(i) For every χ ∈ Â we have

∑
a∈A

χ(a) =

{
|A|, χ = ε,

0, χ 6= ε.

(ii) For every a ∈ A we have

∑
χ∈Â

χ(a) =

{
|A|, a = 1,

0, a 6= 1.

Proof: If χ = ε then the statement (i) is obvious. Suppose that χ 6= ε and
choose b ∈ A such that χ(b) 6= 1. Since the map A → A, a 7→ ab, is bijective,
we have

χ(b) ·
∑
a∈A

χ(a) =
∑
a∈A

χ(ab) =
∑
a∈A

χ(a).

It follows that
∑
a∈A χ(a) = 0, proving (i). The proof of (ii) is very similar and

left to the reader (hint: use Proposition 3.3.3). 2

Corollary 3.3.6 (Orthogonality relations)
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(i) For χ1, χ2 ∈ Â we have

1

|A|
∑
a∈A

χ1(a) · χ2(a) =

{
1, χ1 = χ2,

0, χ1 6= χ2.

(ii) For a1, a2 ∈ A we have

1

|A|
∑
χ∈Â

χ(a1) · χ(a2) =

{
1, a1 = a2,

0, a1 6= a2.

Remark 3.3.7 The name orthogonality relation is easily explained. If we order
the elements of A as a1, . . . , an and the elements of Â as χ1, . . . , χn, then the
matrix M := (χi(aj))i,j is orthogonal in the sense that

M t ·M = n · En.

Another way to formulate (ii) is that the set of characters Â is an orthogonal
basis of the vector space of all functions f : A→ C, endowed with the hermitian
scalar product

〈f, g〉A :=
1

|A|
∑
a∈A

f(a)g(a).

Example 3.3.8 Let’s consider the group A := (Z/5Z)×. It is a cyclic group
of order 4, generated for instance by the residue class of 2. Using the proof of
Proposition 3.3.3 we see that Â is cyclic of order 4, generated by the character χ
which is determined by χ(2̄) := i. So the character table of the group (Z/5Z)× =
{1̄, 2̄, 3̄, 4̄} looks as follows.

1̄ 2̄ 3̄ 4̄

ε 1 1 1 1

χ 1 i −i −1

χ2 1 −1 −1 1

χ3 1 −i i 1

The reader should check by hand that the orthogonality relations of Corollary
3.3.6 hold.

Dirichlet characters

Definition 3.3.9 A function χ : Z → C is called a Dirichlet character if there
exists a positive integer n ∈ N such that the following holds.
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(a) χ(ab) = χ(a)χ(b) for all a, b ∈ Z.

(b) χ(a) depends only on the residue class of a in Z/nZ.

(c) χ(a) = 0 if and only if ggT(a, n) 6= 1.

For a given Dirichlet character χ any positive integer n which satisfies (b) and
(c) is called a modulus of χ. Clearly, there exists a smallest modulus for χ.

It is clear from the definition that χ(1) = 1, for all Dirichlet characters χ.
There is a unique Dirichlet character ε of modulus 1 which is called the trivial
character. Note that ε(a) = 1 for all a ∈ Z. Note also that for all Dirichlet
characters χ 6= ε we have χ(0) = 0.

A Dirichlet character modulo n is called principal if it assumes only the
values 0 and 1. We usually write ε for the unique principal character modulo n.
Note that ε is not the trivial character unless n = 1.

Let n ∈ N and d | n. If χ is a Dirichlet character modulo d then

χ∗ : Z→ C, a 7→

{
χ(a), ggT(a, n) = 1,

0, ggT(a, n) = 0,

is a Dirichlet character modulo n, called the induced character. A Dirichlet
character modulo n is called primitive if it is not induced from a Dirichlet
character modulo d for a proper divisor d | n.

A Dirichlet character χ modululo n gives rise to a character

χ : (Z/nZ)× → C×.

Conversely, every character on the group (Z/nZ)× comes from a unique Dirichlet
character modulo n. Another possible convention is to associate to a character
χ on (Z/nZ)× the unique primitive Dirichlet character which agrees with χ on
all invertible residue classes modulo n. We will decide from case to case which
convention will be more convenient. Apart from this sublety we will use the
notions Dirichlet character modulo n and character on (Z/nZ)× interchangeably.

Example 3.3.10 Let p be an odd prime. Then the Legendre symbol (see Def-
inition 1.3.2)

(
a

p

)
:=


1, p - a and a is a quadratic residue mod p,

−1, p - a and a is a quadratic nonresidue mod p,

0, p | a.

is a primitive Dirichlet character modulo p. It corresponds to the unique element
of order 2 in the character group of F×p .

More generally, for every odd squarefree integer n = p1 · . . . · pr we have the
Jacobi symbol (

a

n

)
:=

r∏
i=1

(
a

p

)
.

It is a primitive quadratic Dirichlet character modulo n, see [5], §5.2.
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Gauss sums

Let us fix an odd prime number p. A Dirichlet character modulo p is now
regarded as a function χ : Fp → C. We use the convention that all Dirichlet
characters are supposed to be primitive. In the current setting this just means
that the Dirichlet character ε corresponding to the unit element in the character
group of F×p is the trivial Dirichlet character, i.e. the function ε : Fp → C with
ε(a) = 1 for all a ∈ Fp. For all Dirichlet characters χ 6= ε we have χ(0) = 0.

Definition 3.3.11 Let p be an odd prime and χ be a Dirichlet character mod-
ulo p. For all a ∈ Fp we define the Gauss sum for χ with respect to a as the
complex number

ga(χ) :=
∑
x∈Fp

χ(a)ζaxp .

Example 3.3.12 Let p = 5 and χ =
( ·

5

)
be the Legendre symbol modulo 5.

Then
g1(χ) = ζ5 − ζ2

5 − ζ3
5 + ζ4

5 .

Using Example 3.1.9 one sees that

g1(χ) =
√

5.

Proposition 3.3.13 Let χ be a Dirichlet character modulo p and a ∈ Fp. We
have

ga(χ) =


p, a = 0, χ = ε,

0, a = 0, χ 6= ε,

0, a 6= 0, χ = ε,

χ(a)g1(χ), a 6= 0, χ 6= ε.

(131)

Proof: Suppose that a 6= 0 and χ 6= ε. Then

χ(a)ga(χ) =
∑
x

χ(ax)ζaxp =
∑
x

χ(x)ζxp = ga(χ),

as claimed. We leave the other three cases as easy exercises. 2

Proposition 3.3.14 Let p be an odd prime number and χ :=
( ·
p

)
the Legendre

symbol, i.e. the unique Dirichlet character modulo p of order 2. Then

g1(χ)2 = p∗ :=

{
p, p ≡ 1 (mod 4),

−p, p ≡ −1 (mod 4).
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Proof: Using the definition of g1(χ) we obtain

g1(χ)2 =
∑
x,y

χ(xy)ζx+y
p , (132)

where x, y run over F×p . The trick is to substitute y := xz (which only permutes
the summands) and use the fact that χ(x2) = 1. We get

g1(χ)2 =
∑
x,z

χ(x2z)ζx(z+1)
p =

∑
z 6=0

χ(z)
(∑
x6=0

ζx(z+1)
p

)
. (133)

The inner sum is equal to p−1 if z = −1 and equal to ζp+ ζ2
p + . . .+ ζp−1

p = −1
for z 6= 0,−1. Using Theorem 3.3.5 (i) we get

g1(χ)2 = (p− 1)χ(−1)−
∑

z 6=0,−1

χ(z)

= (p− 1)χ(−1) + χ(−1) = χ(−1)p.

(134)

Finally, by Lemma 1.3.3 we have

χ(−1) =

(
−1

p

)
=

{
1, p ≡ 1 (mod 4),

−1, p ≡ −1 (mod 4).
(135)

Combining (134) and (135) proves the proposition. 2

The proposition says that g1(χ) = ±
√
p∗. Since g1(χ) is, by definition, an

element of Q[ζp] we obtain the following result.

Corollary 3.3.15 The quadratic number field Q[
√
p] is contained in the cyclo-

tomic field Q[ζp].

Remark 3.3.16 Proposition 3.3.14 determines the quadratic Gauss sum g1(χ)
only up to sign. The computation of the sign is more difficult, but the result is
very simple:

g1(χ) =

{√
p, if p ≡ 1 (mod 4),

i
√
p, if p ≡ −1 (mod 4).

See [5], §6.4, Theorem 1.

3.4 Abelian number fields

We start with a quite general setup. Let L/K be a Galois extension of number
fields, with Galois group G = Gal(L/K). We also fix a prime ideal p�OK and
look at the set of prime ideals P�OL with P | p,

Sp := {P�OL | P | p}.

Note that a prime ideal P�OL lies in Sp if and only if P∩OK = p. It follows
that for an element σ ∈ G of the Galois group we have σ(P) ∈ Sp. This means
that the group G acts on the set Sp (from the left).
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Lemma 3.4.1 The action of G on Sp is transitive.

The stabilizer
GP := {σ ∈ G | σ(P) = P}

is called the decomposition group of p. Lemma ?? and the orbit-stabilizer-
formula imply that

|Sp| =
|G|
|GP|

. (136)

It is clear that
σGPσ

−1 = Gσ(P).

Therefore, the lemma implies that all decomposition groups GP for P ∈ Sp are
conjugate subgroups of G. In particular, if G is an abelian group, then GP is
actually independent of P ∈ Sp. We may then write Gp := GP and call it the
decomposition group of p in the extension L/K.

Let us fix P ∈ Sp. Let FP := OL/P and Fp := OK/p denote the residue
fields of P and p. These are finite fields with N(P) resp. N(p) elements. Since
p = OK ∩P, we have a natural embedding Fp ↪→ FP. It follows that FP/Fp is
a finite field extension and that

N(P) = N(p)[FP:Fp]. (137)

The degree fp := [FP : Fp] is called the inertia degree of p in L/K. It follows
from Lemma 3.4.1 that fp is independent of the choice of P ∈ Sp.

As a finite extension of finite fields, FP/Fp is automatically a Galois exten-
sion (see Theorem ??). Moreover, every element σ ∈ GP induces an element
σ̄ ∈ Gal(FP/Fp) defined by

σ̄(ᾱ) := σ(α)

(where α ∈ OL and ᾱ denotes the image of α in FP). A routine verification
shows that we obtain a group homomorphism

GP → Gal(FP/Fp), σ 7→ σ̄. (138)

Proposition 3.4.2 The homomorphism (138) is surjective. It is an isomor-
phism if and only if p is unramified in the extension L/K.

Recall from Theorem ?? that the Galois group Gal(FP/Fp) is cyclic, gener-
ated by the element ϕ determined by

ϕ(ᾱ) = ᾱN(Fp).

Therefore, Proposition 3.4.2 implies the following statement.

Corollary 3.4.3 Assume that p is unramified in the extension  L/K. Then for
every P ∈ Sp there exists a unique element FrobP ∈ GP such that

FrobP(α) ≡ αN(p) (mod P) (139)
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Definition 3.4.4 The element FrobP ∈ GP is called the Frobenius element of
G for the prime ideal P. Alternatively, it is also called a Frobenius element
above p.

Remark 3.4.5 It is easy to check that

Frobσ(P) = σ FrobP σ
−1,

for all σ ∈ G and P ∈ Sp. Therefore, all Frobenius elements above p are
conjugate, by Lemma 3.4.1.

If, moreover, G is abelian then this shows that FrobP only depends on p
but not on the choice of P ∈ Sp. If this is the case we write Frobp := FrobP

and call it the Frobenius element for p. The statement of Corollary 3.4.3 is now
considerably stronger: we have

FrobP(α) ≡ αN(p) (mod P)

for all P ∈ Sp.

Definition 3.4.6 A number field K/Q is called abelian if K ⊂ Kn = Q[ζn] for
some n ∈ N.

Recall from §?? that Kn/Q is a Galois extension, with abelian Galois group
Gal(Kn/Q) ∼= (Z/nZ)×. In the following we will identify the two groups
Gal(Kn/Q) and (Z/nZ)× via the isomorphism a (mod n) 7→ σa from ??. If
K is an abelian number field, contained in Kn, then the Main Theorem of Ga-
lois Theory says that K = KH

n for a unique subgroup H ⊂ (Z/nZ)×. Moreover,
we have a canonical isomorphism

(Z/nZ)×/H
∼−→ Gal(L/Q), pH 7→ σa|K . (140)

In particular, we see that an abelian number field K is a Galois extension of
Q with abelian Galois group.

Remark 3.4.7 The famous Kronecker-Weber-Theorem asserts that every Ga-
lois extension of Q with abelian Galois group is in fact an abelian extension.

Theorem 3.4.8 Let K = KH
n be an abelian number field, and let p be a prime

number such that p - n. Then p is unramified in K/Q. Furthermore, the
Frobenius element Frobp ∈ Gal(K/Q) corresponds, via the isomorphism (140),
to the image of pH, i.e. we have

Frobp = σp|K .

Corollary 3.4.9 With K = KH
n and p be as in the theorem. Then the prime

factorization of (p) �OK is of the form

(p) = p1 · . . . · pr,
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where p1, . . . , pr � OK are pairwise distinct prime ideals of norm N(pi) = pf ,
and where f is the minimal positive integer such that

pf + nZ ∈ H.

In particular, a prime p splits completely in K/Q if and only if p+ nZ ∈ H.

We can also apply Theorem 3.4.8 to a relative extension of abelian number
fields. Let K = KHK

n and L = KHL
n be abelian number fields corresponding to

nested subgroups
HL ⊂ HK ⊂ (Z/nZ)×.

Then K ⊂ L and L/K is a Galois extension with abelian Galois group

Gal(L/K)
∼−→ HK/HL.

For a ∈ HK we let σa ∈ Gal(L/K) denote the element corresponding to the
class aHL.

Let p be a prime number, p - n, and let p � OK be a prime ideal above p.
Then we have a well defined Frobenius element Frobp ∈ Gal(L/K).

Corollary 3.4.10 We have
Frobp = σpf ,

where pf = N(p).

Quadratic reciprocity

We are now going to show that the law of quadratic reciprocity is an easy
and direct consequence of Theorem 3.4.8. In the next section we will use similar
but more involved arguments to prove the law of cubic reciprocity.

Let p be an odd prime, and set

p∗ :=

(
−1

p

)
p =

{
p, if p ≡ 1 (mod 4),

−p, if p ≡ 3 (mod 4).

Then Q[
√
p∗] ⊂ Q[ζp] by Corollary 3.3.15. This means that the quadratic

number field K := Q[
√
p∗] is an abelian number field. More precisely, K =

Q[ζp]
H , where H ⊂ (Z/pZ)× is a subgroup of index 2. Since (Z/pZ)× is a

cyclic group of order p−1, which is even, there exists in fact a unique subgroup
H of index 2, namely the kernel of the unique quadratic Dirichlet character( ·
p

)
: (Z/pZ)× → �2. Hence

H = {a ∈ (Z/pZ)× |
(
a

p

)
= 1}.
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Now let ` be another prime, different from 2 and p. By Corollary 3.4.9, `
splits completely in K = Q[ζp]

H if and only if `+ pZ ∈ H, i.e. if and only if(
`

p

)
= 1.

On the other hand, we know from ??? that ` splits completely in K = Q[
√
p∗]

if and only if (
p∗

`

)
.

We conclude that (
`

p

)
=

(
p∗

`

)
. (141)

This identity is just a reformulation of the law of quadratic reciprocity.

Exercises

Exercise 3.4.1 Show (without using Quadratic Reciprocity!) that for primes
p 6= 3 we have (

3

p

)
= 1 ⇔ p ≡ ±1 (mod 12).

Hint: do something similar as in the proof of Proposition 3.2.3.

3.5 The law of cubic reciprocity

Let d ∈ Z be a squarefree integer. The law of quadratic reciprocity shows that
the set of primes p - 2d for which the congruence

x2 ≡ d (mod p)

has a solution in Fp is itself given by a congruence condition of the form

p ≡ a1, . . . , ar (mod N).

Here N = d or N = 4d, and a1, . . . , ar are certain integers which only depend
on d. In fact, by Exercise ?? the integers a1, . . . , ar are representatives of the
subgroup

H = {a ∈ (Z/NZ)× |
(
a

d

)
= 1}.

It is a very obvious question whether there is a similar rule for higher powers
xn with n > 2. For instance, for which primes p does the congruence

x3 ≡ 2 (mod p)
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have a solution in Fp? As we will see, the law of cubic reciprocity does answer
this question, but the answer is more complicated than for squares. See Corol-
lary 3.5.13 and Remark 3.5.14. In fact, the set of primes for which 2 is a cubic
residue mod p is not given by a congruence condition on p.

We start by defining the nth power residue symbol, which generalize the
Legendre symbol. We fix an integer n ≥ 2 and a number field K such that all
n-th roots of unity are contained in K. More precisely, K ⊂ C and �n ⊂ K.

Let p be a prime number prime to n and let p�OK be a prime ideal of OK
dividing p. Then Fp := OK/p is a finite field with q := N(p) elements.

Proposition 3.5.1 For every α ∈ OK with α 6≡ 0 (mod p) there exists a
unique nth root of unity ζ ∈ �n such that

α(q−1)/n ≡ ζ (mod p).

Moreover, ζ = 1 if and only if there exists β ∈ OK such that

βn ≡ α (mod p).

Proof: We have seen in the proof of .. that the polynomial xn − 1 ∈ Fp[x]
is separable. This shows that the natural map

�n → F×p (142)

is injective. Since F×p is a cyclic group of order q − 1, the image of (142) is the
unique subgroup of F×p of order n. We conclude that n | q − 1. Moreover, for
ᾱ ∈ F×p we have (

ᾱ(q−1)/n
)3

= ᾱq−1 = 1.

This means that ᾱ(q−1)/n lies in the image of (142), i.e. there exists a unique
element ζ ∈ �n such that ζ ≡ α(q−1)/n (mod p). We have ζ = 1 if and only if
ᾱ lies in the unique subgroup H ⊂ F×p of index n. But H consists precisely of
the nth powers (this sort of argument was already used in the proof of Lemma
1.3.3). It follows that ζ = 1 if and only if there exists β ∈ OK with βn ≡ α
(mod p). 2

Definition 3.5.2 For α ∈ OK , α 6≡ 0 (mod p) we write
(
α
p

)
n

:= ζ for the

nth root of unity ζ ∈ �n from Proposition ??. For α ≡ 0 (mod p) we set(
α
p

)
n

:= 0 ∈ C. The resulting map(
·
p

)
n

: OK → C

is called the nth power residue symbol with respect to the prime ideal p�OK .

Remark 3.5.3 By its definition, the nth power residue symbol has the follow-
ing properties.

114



(i) If α ≡ α′ (mod p) then (
α

p

)
n

=

(
α′

p

)
n

.

(ii) For α, β ∈ OK we have (
αβ

p

)
n

=

(
α

p

)
n

(
β

p

)
n

.

(iii) Suppose α 6≡ 0 (mod p). Then
(
α
p

)
n

= 1 if and only if the congruence

xn ≡ α (mod p)

has a solution x = β ∈ OK .

(iv) We have (
α

p

)
n

≡ α(q−1)/2 (mod p).

By (i) and (ii) we may regard the nth power residue symbol as a group homo-
morphism (

·
p

)
n

: F×p → �n ⊂ C×,

i.e. as a character on F×p . This character has order n.

Example 3.5.4 For K = Q and p an odd prime number the 2nd power residue
symbol is equal to the Legendre symbol

( ·
p

)
(Definition 1.3.2).

For the rest of this section we set n = 3 and K := K3 = Q[ω], where
ω := ζ3 = (−1 +

√
−3)/2. Let p 6= 3 be a prime number. First we assume that

p ≡ 1 (mod 3). Then p is totally split in the extension K/Q, i.e. (p) = pp̄, with
p 6= p̄. Since OK = Z[ω] is a principal ideal domain, p = (π) and p̄ = (π̄) for a
prime element π ∈ Z[ω] with NK/Q(π) = ππ̄ = p. If we write π = a+ bω, then
p = ππ̄ = a2 − ab+ b2. Since Z[ω]/p = Fp, the power residue symbols

χπ :=

(
·
π

)
3

, χπ̄ :=

(
·
π̄

)
3

: F×p → �3

are cubic Dirichlet characters modulo p.

Lemma 3.5.5 We have χπ̄ = χ−1
π . Hence χπ, χπ̄ are precisely the two distinct

cubic Dirichlet characters modulo p.

Proof: The characters χπ and χπ̄ are determined by their values on the
intergers. For a ∈ Z, a 6≡ 0 (mod p) we have

χπ(a) ≡ a(p−1)/3 (mod π),
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by definition. Applying complex conjugation we obtain

χπ(a) ≡ a(p−1)/3 (mod π̄).

We conclude that χπ̄ = χπ = χ−1
π , proving the lemma. 2

Let us now assume that p ≡ 2 (mod 3). Then (p) � Z[ω] is a prime ideal
with N((p)) = p2. The residue field Fp2 := Z[ω]/(p) is a field with p2 ele-
ments. Therefore, the power residue symbol gives us a canonical choice of a
cubic character

χp :=

(
·
p

)
: F×p2 → �3.

Remark 3.5.6 If p ≡ 2 (mod 3), then the restriction of χp to the field Fp is
the principal character, i.e. χp(a) = 1 for all a ∈ Fp. To see this, note that

a(p2−1)/3 = (ap−1)(p+1)/3 ∼= 1 (mod p),

by Fermat’s little theorem.

Definition 3.5.7 An element α ∈ Z[ω] is called primary if α ≡ 2 (mod 3).

Lemma 3.5.8 Let α ∈ Z[ω] be a nonunit, relatively prime to 3. Then exactly
one of the six associates of α is primary. In other words: the principal ideal
(α) � Z[ω] has a unique primary generator.

Proof: The six associates of α are

±α,±ωα,±ω2α.

Let us write α = a+ bω. Then α is relatively prime to 3 if and only if

NK/Q(α) = a2 − ab+ b2 6≡ 0 (mod 3).

Since (a+ b)2 ≡ a2−ab+ b2 (mod 3), it follows that a 6≡ −b (mod 3). Consider
the three associates

α = a+ bω, ωα = −b+ (a− b)ω, ω2α = (b− a)− aω.

Since a 6≡ −b (mod 3), exactly one of the three numbers b, a − b,−a is ≡ 0
(mod 3). Therefore, exactly one of the three associates α, ωα, ω2α is ≡ c
(mod 3) for an integer c ∈ Z. Then c ≡ ±1 (mod 3), and hence exactly one of
the six associates of α is primary. 2

As an elementary consequence we have the following variant of Theorem
1.3.1 (iii).

Corollary 3.5.9 Let p be a prime number. Then p ≡ 1 (mod 3) if and only if
there exist integers A,B such that

4p = A2 + 27B2.
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Proof: Let π = a + bω be a prime element of Z[ω] with norm p. By the
lemma we may assume that π ≡ 2 (mod 3), which means that a ≡ −1 (mod 3)
and b ≡ 0 (mod 3). Therefore,

2π = (2a− b) + b
√
−3 = A+ 3B

√
−3,

with A := 2a − b, B := b/3. Taking the norm on both sides we obtain the
identity 4p = A2 + 27B2. This proves one direction of the corollary. The other
direction is obvious. 2

Theorem 3.5.10 (Law of cubic reciprocity) Let π, λ ∈ Z[ω] be two pri-
mary prime elements. Assume that N(π) 6= N(λ) and that N(π), N(λ) 6= 3.
Then (

λ

π

)
3

=

(
π

λ

)
3

.

Proof: The prime elements π, λ can be rational or complex primes. By
symmetry, there are three cases to consider.

In the first case π = p and λ = ` are both rational primes. Then p, ` ≡ 2
(mod 3). By Remark 3.5.6, (

p

`

)
3

=

(
`

p

)
3

= 1.

So the theorem is true in this case.
We may therefore assume that one of the two prime elements, say π, is not

rational. Then p := ππ̄ is a prime number, ≡ 1 (mod 3). Write χπ :=
( ·
π

)
3

:
F×p → �3; this is a cubic Dirchlet character modulo p.

Lemma 3.5.11 Let g(χπ) =
∑
x χπ(x)ζxp be the cubic Gauss sum associated

to χπ.

(i) We have
g(χπ)3 = pπ.

(ii) Let L := K[g(χπ)] be a extension of K generated by g(χπ). Then L is an
abelian number field. More precisely,

L = Q[ζ3p]
H ,

where
H ⊂ {a ∈ (Z/3pZ)× | a ≡ 1 (mod 3), χπ(a) = 1}.

(iii) Let a ∈ (Z/3pZ)× be given, with a ≡ 1 (mod 3). Let σa ∈ Gal(L/Q)
denote the corresponding element. Then

σa(g(χπ)) = χπ(a)−1 · g(χπ).
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Remark 3.5.12 We note that the relative extension L/K is also a Galois ex-
tension with abelian Galois group. In fact,

Gal(L/K) ∼= F×p /H ′,

where
H ′ = {a ∈ F×p | χπ(a) = 1}.

We may therefore apply Corollary 3.4.10 to the extension L/K. As usual, we
will write σa ∈ Gal(L/K) for the element corresponding to aH ′ ∈ F×p /H.

Let us now assume that ` ≡ 2 (mod 3). Then l := (`)�OK is a prime ideal
with N(l) = l2. Therefore, by Corollary 3.4.10, we have

Frobl = σ`2 .

Combined with Lemma 3.5.11 (iii), this shows that

χπ(`2)−1g(χπ) = Frobl(g(χπ)) ≡ g(χπ)`
2

(mod `). (143)

Dividing by g(χπ) and using Lemma 3.5.11 (i) yields

χπ(`2)−1 ≡ g(χπ)`
2−1 ≡ (pπ)(l2−1)/3 ≡

(
pπ

`

)
3

(mod `). (144)

Since χπ =
( ·
π

)
3

is a cubic character, we deduce the identity(
`

π

)
3

= χπ(`2)−1 =

(
pπ

`

)
3

=

(
p

`

)
3

(
π

`

)
3

. (145)

It follows from Remark ?? that
(
p
`

)
3

= 1. Therefore, (145) shows that(
`

π

)
3

=

(
π

`

)
3

,

proving the law of cubic reciprocity in this where π is a complex and λ = ` is a
rational prime.

It remains to consider the case where both π and λ are complex primes.
Then ` := λλ̄ is a rational prime, ` ≡ 1 (mod 3). Since (λ) � OK is a prime
ideal with N((λ)) = `, Corollary 3.4.10 shows that

Frobλ = σ`.

By the same argument as in the previous case (see (143)–(145)) we obtain the
identity (

`

π

)−1

3

=

(
p

λ

)
3

(
π

λ

)
3

. (146)
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Reversing the roles of λ and π we obtain(
p

λ

)−1

3

=

(
`

π

)
3

(
λ

π

)
3

. (147)

Combining (146) and (147) we get(
`

π

)
3

=

(
p

λ

)−1

3

(
π

λ

)−1

3

=

(
`

π

)
3

(
λ

π

)
3

(
π

λ

)−1

3

. (148)

Rearranging and dividing by
(
`
π

)
3

we conclude that(
λ

π

)
3

=

(
π

λ

)
3

.

The proof of the theorem is now complete. 2

Corollary 3.5.13 A prime number p is of the form

p = x2 + 27y2, x, y ∈ Z,

if and only if p ≡ 1 (mod 3) and 2 is a cubic residue modulo p (i.e. the congru-
ence x3 ≡ 2 (mod p) is solvable in Z).

Proof: We may assume that p 6= 3. By Theorem 1.3.1 (iii) we know that p
is of the form p = x2 + 3y2 if and only p ≡ 1 (mod 3). Hence we may assume
that p ≡ 1 (mod 3), and then all we have to show is that y ≡ 0 (mod 3) if and
only if 2 is a cubic residue modulo p.

Let π = a+ bω be a primary prime divisor of p. As in the proof of Corollary
3.5.9, we have

4p = A2 + 27B2,

where A := 2a− b and B := b/3. We see that p can be written as p = x2 + 27y2

if and only if A and B are even.
By Remark 3.5.14 (iii), 2 is a cubic residue modulo p if and only if

(
2
π

)
3

= 1.
Applying Theorem 3.5.10 we see that 2 is a cubic residue modulo p if and only
if (

π

2

)
3

=

(
2

π

)
3

= 1. (149)

By Remark 3.5.14 (iv) this holds if and only if

π ≡ 1 (mod 2),

i.e. a ≡ 1, b ≡ 0 (mod 2). This equivalent to A = 2a − b and B = b/3 being
even. The proof is now complete. 2
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Remark 3.5.14 For a prime p with p ≡ 2 (mod 3), every integer a prime to p
is a cubic residue modulo p. Therefore, Corollary 3.5.13 may be reformulated
as follows. For p 6= 3, 2 is a cubic residue modulo p if and only if one of the
following conditions hold:

(a) p ≡ 2 (mod 3), or

(b) p ≡ 1 (mod 3), and p is of the form p = x2 + 27y2.

It can be shown that (b) is not a ‘congruence condition’. More precisely, there
does not exist an integer N such that (b) only depends on the residue class of
p modulo N .
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4 Zeta- and L-functions

4.1 Riemann’s ζ-function

For s ∈ C with <(s) > 1 we set

ζ(s) :=

∞∑
n=1

n−s. (150)

If σ = <(s) ≥ 1 + δ, with δ > 0, then∑
n≥1

|n−s| ≤
∑
n≥1

n−1−δ <∞.

Therefore, the series defining ζ(s) converges absolutely and locally uniformly on
the domain {s ∈ C | <(s) > 1}. Hence ζ(s) is an analytic function, called the
Riemann ζ-function.

This function has first been studied by Euler because of its connection with
the distribution of prime numbers. The connection to prime numbers is made
via the following Euler product formula. This formula encodes the Fundamental
Theorem of Arithmetic by an analytic identity, enabling us to use analytic tools
to study prime numbers.

Lemma 4.1.1 We have the following product formula for ζ(s):

ζ(s) =
∏
p

1

1− p−s
.

Here p runs over all prime numbers.

Proof: We first show that the infinite product

E(s) :=
∏
p

1

1− p−s

converges absolutely for <(s) > 1. To see this, we compute its logarithm:

logE(s) =
∑
p

− log(1− p−s) =
∑
p

∑
k≥1

p−ks

k
. (151)

For <(s) ≥ 1 + δ, the series on the right hand side has∑
p

∑
k≥1

p−1−δ =
∑
p

1

p1+δ − 1
≤ 2

∑
p

1

p1+δ

as a convergent majorant, proving our claim.
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Fix a positive integer N and let p1, p2, . . . , pr be the prime numbers p ≤ N .
Then the Fundamental Theorem of Arithmetic shows that∏

p≤N

1

1− p−s
=
∏
p≤N

(1 + p−s + p−2s + . . .)

=
∑

k1,...,kr≥0

(pk11 · . . . · pkrr )−s =
∑′

n
n−s,

(152)

where
∑′
n is the sum over all positive integers n all of whose prime factors are

≤ N . It follows that

|ζ(s)−
∏
p≤N

1

1− p−s
| ≤

∑
n>N

n−σ. (153)

Since the series defining ζ(s) converges absolutely, the right hand side of (153)
tends to 0 for N →∞. We conclude that

ζ(s) = lim
N→∞

∏
p≤N

1

1− p−s
=
∏
p

1

1− p−s
.

2

It is well known that the series ζ(1) =
∑
n n
−1 diverges. The following

lemma gives us some control over the divergence.

Lemma 4.1.2 Assume that s > 1. Then

lim
s→1

(s− 1)ζ(s) = 1.

Proof: Since t−s is strictly decreasing for t > 0, we have

(n+ 1)−s <

∫ n+1

n

t−sdt < n−s,

for all n ≥ 1. Summing over all n shows that

ζ(s)− 1 <

∫ ∞
1

t−sdt = (s− 1)−1 < ζ(s).

Multipliplying with (s− 1) gives

(s− 1)ζ(s)− s+ 1 < 1 < (s− 1)ζ(s),

and the lemma follows immediately. 2

Theorem 4.1.3 (Euler) The series∑
p

1

p

diverges.
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Proof: If f and g are two continous functions on R>1 then we shall write
f ∼ g if |f(s)−g(s)| remains bounded for s→ 1. We first look at the logarithm
of the Euler product and obtain (as in the proof of Lemma 4.1.1)

log ζ(s) =
∑
p

∑
k≥1

p−ks

k
=
∑
p

p−s +R(s),

where

R(s) =
∑
p

p−2s
∑
k≥0

p−ks

k + 2
≤
∑
p

p−2s
∑
k≥0

p−ks ≤ 2
∑
p

p−2s.

Since the series
∑
p p
−2 converges, R(s) remains bounded for s→ 1. Therefore,

log ζ(s) ∼
∑
p p
−s. On the other hand, Lemma 4.1.2 implies that ζ(s) ∼ (s −

1)−1. Therefore, ∑
p

p−s ∼ log ζ(s) ∼ − log(s− 1)

tends to infinity for s→ 1. We conclude that the series
∑
p p
−1 diverges. 2

For the rest of this section we give a few hints at why the Riemann ζ-
functions plays such an important role in analytic number theory. We will not
give any proofs, which may be found in any book on analytic number theory.

As a very special corollary of Theorem 4.1.3 we get a new proof of the well
known fact that there exist infinitely many primes. But actually, we get a much
stronger, qualitative result about the density of the primes inside the natural
numbers. For instance, since the series

∑
n n

2 converges, Theorem 4.1.3 says
that ‘there are more primes numbers than squares’.

A much more precise result is the Prime Number Theorem.

Theorem 4.1.4 Let π(x) denote the number of primes p ≤ x. Then

π(x) ∼ x

log x
,

meaning that the function π(x) log(x)/x tends to 1 for x→∞.

A useful heuristic interpretation of the Prime Number Theorem is to say
that ‘the probability that a randomly chosen large integer n is prime is equal
to 1/ log(n)’. Indeed, using this heuristic one may predict that the number of
primes p ≤ x is roughly equal to

Li(x) :=

∫ x

2

dt

log t
,

and it is easy to see that

Li(x) ∼ x

log x
.
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In fact, the function Li(x) gives an even better asymptotics for π(x) than
x/ log(x).

The Prime Number Theorem was conjectured by Gauss on the basis of nu-
merical evidence. It took over ?? years until the first proof was given by
Hadamard in ??, but the main strategy of the proof was devised by Riemann.
In his famous paper [?] he studies the distribution of the prime numbers using
ζ(s). Among other things, he proved the following result.

Theorem 4.1.5 The function ζ(s) has an analytic continuation to C − {1},
with a simple pole at s = 1. Moreover, ζ(s) satisfies the functional equation

ζ(1− s) = 2(2π)−sΓ(s) cos(πs/2)ζ(s). (154)

Here

Γ(s) :=

∫ ∞
0

e−yys
dy

y

is Euler’s Γ-function, defined for <(s) > 0.

Because of the Euler product (Lemma 4.1.1), ζ(s) 6= 0 for <(s) > 1. Since
Γ(s) 6= 0 for <(s) > 1 as well, the functional equation (154) shows that

ζ(−2k) = 0, k = 1, 2, . . . .

These are the so-called trivial zeroes of ζ(s). The same argument shows that
all nontrivial zeroes lie in the critical strip

{s ∈ C | 0 ≤ <(s) ≤ 1}.

Moreover, if ρ is a nontrivial zero, then 1− ρ is a zero as well.
Using methods from complex analysis, Riemann proved his explicit formula

relating the distribution of the prime numbers to the nontrivial zeroes of ζ(s).
From this formula one sees that the prime number theorem holds if and only if
ζ(s) 6= 0 if <(s) = 1, i.e. if no zero lies on the boundary of the critical strip. It
is in this way that the Prime Number Theorem was finally proved.

In the same paper, Riemann formulated the following conjecture, which
remains open and is generally considered as the most famous problem in math-
ematics.

Conjecture 4.1.6 (The Riemann Hypothesis) All nontrivial zeroes of ζ(s)
have real part <(s) = 1/2.

4.2 Dirichlet series

The Riemann ζ-function is just the prototype of a class of functions which we
will now discuss.
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Definition 4.2.1 Let (an)n≥1 be a sequence of complex numbers. Then the
series

F (s) :=
∑
n≥1

an
ns
, s ∈ C,

is called the Dirichlet series attached to (an).

Lemma 4.2.2 Assume that F (s0) converges for some s0 ∈ C. Then F (s)
converges uniformly on every region of the form <(s− s0) ≥ 0, arg(s− s0) ≤ α,
with α < π/2.

Proof: We note that

F (s− s0) =
∑
n≥1

ns0an
ns

=
∑
n≥1

ãn
ns

is again a Dirichlet series. Therefore, we may assume that s0 = 0. Now our
assumption means that the sum

∑
n an converges. We set

AN :=

N∑
n=1

, AM,N :=

N∑
n=M

an

for 1 ≥M ≤ N . Partial summation shows that

N∑
n=M

ann
−s =

N−1∑
n=M

AM,n(n−s − (n+ 1)−s) +AM,NN
−s. (155)

Let ε > 0 be given. Since the sum
∑
n an converges, there exists N0 such that

|AM,N | < ε, for all N ≥M ≥ N0.

So (155) shows that for <(s) ≥ 0 we have

|
N∑

n=M

ann
−s| ≤ ε

N−1∑
n=M

|n−s − (n+ 1)−s|+ ε. (156)

Write σ = <(s). Then

|n−s − (n+ 1)−s| = |s|
∫ n+1

n

dx

xσ+1

and therefore

N−1∑
n=M

|n−s − (n+ 1)−s| = |s|
∫ N

M

dx

xσ+1
≤ |s|

σ
(M−σ −N−σ) ≤ 2

|s|
σ
.

Plugging this estimate into (156) we obtain

|
N∑

n=M

ann
−s| ≤ ε(2 |s|

σ
+ 1).
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Since |s|/σ is bounded on every region of the form σ = <(s) ≥ 0, arg(s) ≤ α,
with α < π/2, the lemma follows. 2

Corollary 4.2.3 The domain of convergence of F (s) contains a maximal open
half plan {s ∈ C | <(s) > σc}, for some σc ∈ [−∞,∞]. Moreover, F (s) defines
a holomorphic function on this region.

Definition 4.2.4 We call σc the abscissa of convergence and {s ∈ C | <(s) >
σc} the half plane of convergence of the Dirichlet series F (s). (If σ = −∞ (resp.
σc =∞) we mean that F (s) converges everywhere (resp. nowhere).)

The abscissa of convergence of the Dirichlet series
∑
n|an|n−s is called the

abscissa of absolute convergence. We denote it by σa.

Example 4.2.5 The Riemann ζ-function ζ(s) =
∑
n n
−1 is a Dirichlet series

with σc = σa = 1.

Lemma 4.2.6 Suppose that the partial sums

AM,N =

N∑
n=M

an

are bounded, independently of M,N . Then σc ≤ 0, i.e. F (s) converges for
<(s) > 0.

Proof: Let C > 0 be a constant such that |AM,N | ≤ C, and let s > 0. Using
partial summation as in the proof of Lemma 4.2.2 we see that

|
N∑

n=M

ann
−s| ≤ C

N−1∑
n=M

(n−s − (n+ 1)−s) + CN−s = CM−s.

For a fixed s > 0, this converges to zero if M goes to infinity. Therefore, F (s)
converges for all s > 0. By Lemma 4.2.2 it follows that F (s) converges in the
half plane <(s) > 0. 2

Example 4.2.7 The Dirichlet η-function is defined by the series

η(s) :=
∑
n≥1

(−1)n−1

ns
= 1− 1

2s
+

1

3s
− 1

4s
+ . . . .

Using Lemma 4.2.6 it is easy to see that η(s) converges on the half plane <(s) >
0. On the other hand, the series

η(0) = 1− 1 + 1− 1 + . . .

is divergent. It follows that the abscissa of convergence is σc = 0. Note that the
convergence of η(s) is not absolute unless <(s) > 1.
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The function η(s) is closely related to Riemann’s ζ(s). In fact, for <(s) > 1
we have

η(s) =
(

1 +
1

2s
+

1

3s
+

1

4s
+ . . .

)
− 2
( 1

2s
+

1

4s
+

1

4s
+ . . .

)
= (1− 21−s)ζ(s).

(157)

Since η(s) is convergent for <(s) > 0,

ζ(s) := (1− 21−s)−1η(s)

defines an analytic continuation of ζ(s) to the half plane <(s) > 0, with a simple
pole at s = 1. In particular, this gives a new proof of Lemma 4.1.2.

Definition 4.2.8 A series (an)n∈N is called multiplicative if

amn = aman

holds for all pairs of relatively prime integers n,m ∈ N. If it holds for all pairs
of integers, then we call (an) strongly multiplicative.

Proposition 4.2.9 Let (an)n∈N be a bounded series of complex numbers and
F (s) =

∑
n ann

−s the associated Dirichlet series.

(i) If (an) is multiplicative, then we have an Euler product formula

F (s) =
∏
p

Fp(s),

valid for <(s) > 1, where

Fp(s) :=
∑
k≥0

apk

pks
.

(ii) If, moreover, (an) is strongly multiplicative, then

Fp(s) =
1

1− app−s
.

Proof: (cf. the proof of Lemma 4.1.1) Since (an) is bounded, the series F (s)
converges absolutely for <(s) > 1. Then the series Fp(s), being a subseries of
F (s), is absolutely convergent as well. Let S be a finite set of prime numbers,
and let N(S) denote the set of integers n all of whose prime divisors lie in S.
Using the assumption that (an) is multiplicative, we see that∏

p∈S
Fp(s) =

∏
p∈S

∑
k≥0

apk

pks
=

∑
n∈N(S)

an
ns
.
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As S increases, the right hand side tends to F (s). This proves (i). If (an) is
strongly multiplicative, then apk = akp. So the boundedness of an implies that
|ap| ≤ 1 and then

Fp(s) =
∑
k≥0

(apn
−s)k =

1

1− app−s
.

2

Dirichlet L-series

Recall from Definition 3.3.9 that a function

χ : Z→ C

is called a Dirichlet character with modulus m ∈ N if the following conditions
hold.

(a) χ is strongly multiplicative, i.e. χ(ab) = χ(a)χ(b) for all a, b ∈ Z.

(b) χ(a) depends only on the residue class of a in Z/mZ,

(c) χ(a) = 0 if and only if gcd(a, nm) 6= 1.

Recall also that a Dirichlet character modulo m is uniquely determined by a
character χ : (Z/mZ)× → C×.

Definition 4.2.10 The Dirichlet series

L(χ, s) :=
∑
n≥1

χ(n)

ns

is called the L-series of the Dirichlet character χ.

Since the (χ(n))n∈N is bounded and strongly multiplicative, we have the
Euler product formula

L(χ, s) =
∏
p

1

1− χ(p)p−s
, (158)

valid for <(s) > 1, by Proposition 4.2.9. If χ = ε is the principal character
modulo m, then

L(ε, 1) =
∑

gcd(n,m)=1

1

n

diverges. On the other hand, if χ 6= ε, then χ(1) + . . .+ χ(m) = 0 by Theorem
3.3.5 (i). It follows that

AN =

N∑
n=1

χ(n) = bN
m
c ·

m∑
a=1

χ(a) +

r∑
a=1

χ(a) =

r∑
a=1

χ(a),
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with 0 ≤ r < m. In particular, AN is bounded. By Lemma 4.2.6 this shows
that L(χ, s) converges for <(s) > 0. In particular, the value

L(χ, 1) =
∑
n≥1

χ(n)

n

is well defined.

Example 4.2.11 Let χ be the unique quadratic character modulo 4, i.e.

χ(n) =


1, n ≡ 1 (mod 4),

−1, n ≡ 3 (mod 4),

0, n ≡ 0 (mod 2).

Then

L(χ, s) = 1− 1

3s
+

1

5s
− 1

7s
+ . . .

converges for <(s) > 0, and for <(s) > 1 we have the Euler product

L(χ, 1) =
1

(1 + 3−s)(1− 5−s)(1 + 7−s)(1 + 11−s) · · ·
.

A well known result due to Leibniz says that

L(χ, 1) = 1− 1

3
+

1

5
− 1

7
+ . . . =

π

4
.

We will prove this formula in the next section.

The ζ-function of a number field

Definition 4.2.12 Let K be an algebraic number field. The Dedekind ζ-
function of K is defined as the series

ζK(s) :=
∑
a

1

N(a)s
,

where a�OK runs over all nonzero ideals of OK .

Clearly, if K = Q then ζQ(s) = ζ(s) is simply the Riemann ζ-function. In
general, we can rewrite ζK(s) as a Dirichlet series

ζK(s) =
∑
n≥1

an
ns
,

where
an := |{a�OK | N(a) = n}|

is the number of ideals with norm n. This works because an is a finite number,
see Exercise 2.5.7.
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Theorem 4.2.13 The series ζK(s) converges on the half plane <(s) > 1, and
in this region we have an Euler product formula like so:

ζK(s) =
∏
p

1

1−N(p)−s
.

Here p�OK runs over all nonzero prime ideals of OK .

Proof: The proof has two crucial ingredients. The first is Theorem 2.5.14
which says that every nonzero ideal a � OK has a unique factorization as a
product of prime ideals,

a = pk11 · . . . · pkrr . (159)

So at least formally, we can prove the Euler product formula exactly as for ζ(s):

∏
p

1

1−N(p)−s
=
∏
p

∑
k≥0

N(p)−ks =
∑

p1,...,pr
k1,...,kr≥1

r∏
i=1

N(pi)
−kis

=
∑

p1,...,pr
k1,...,kr≥1

N(pk11 · . . . · pkrr )−s
(159)
=
∑
a

N(a)−s = ζK(s).

To see that this formal manipulation makes sense for <(s) > 1, it suffices to
show that the infinite product over all prime ideals converges absolutely. To
do this, it suffices to show that the following sum converges absolutely (cf. the
proof of Lemma 4.1.1):

log

(∏
p

1

1−N(p)−s

)
= −

∑
p

∑
k≥1

N(p)−ks

k
. (160)

Now we have to use the second main ingredient. The fundamental equality (72)
implies that for a fixed prime number p, there at most N := [K : Q] prime
ideals p | p, and for such a p we have N(p) ≥ p. This shows that the sum

N log ζ(s) = N
∑
p

∑
k≥1

p−ks

k

is an absolutely convergent majorant for the sum (160). The theorem is now
proved. 2

Remark 4.2.14 It is intersting to compare Theorem 4.2.13 with Proposition
4.2.9. The unique prime factorization in OK shows that the sequence (an),
where an is the number of ideals of OK with norm n, is multiplicative. By
Proposition 4.2.9 we have an Euler product formula

ζK(s) =
∏
p

Fp(s),
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valid in the half plane of absolute convergence. Theorem 4.2.13 is much more
precise. It shows that ζK(s) is absolutely convergent for <(s) > 1, but it also
says that

Fp(s) =
∏
p|p

1

1−N(p)−s
.

We see that in general, the local Euler factor at p is not of the form 1/(1−app−s),
as in Proposition 4.2.9.

Example 4.2.15 Let K = Q[i] be the field of Gaussian numbers. There are
three kinds of prime ideals in OK = Z[i]:

(i) p2 = (1 + i) is the unique prime ideal dividing 2. In fact, (2) = p2
2, so

N(p2) = 2.

(ii) For a prime number p such that p ≡ 1 (mod 4) we have (p) = pp̄, and p, p̄
are two prime ideals with norm p.

(iii) For a prime number p such that p ≡ 3 (mod 4), (p) is a prime ideal with
norm p2.

Now we see that

ζK(s) =
1

1− 2−s

∏
p≡1 (4)

1

(1− p−s)2

∏
p≡3 (4)

1

1− p−2s

= ζ(s)
∏

p≡1 (4)

1

1− p−s
∏

p≡3 (4)

1

1 + p

= ζ(s) · L(χ, s),

(161)

where χ is the quadratic Dirichlet character modulo 4, see Example 4.2.11. This
remarkable formula is a special case of Theorem 4.2.16 below.

By the way, if we write ζK(s) as a Dirichlet series, we get

ζK(s) =
∑
n≥1

an
ns

= 1 + 2−2 + 4−s + 5−s + 8−s + 9−s + ..,

where an is the number of ideals a � Z[i] of norm n. Since Z[i] is a principal
ideal domain, every ideal of norm n is of the form a = (x+yi), where (x, y) ∈ Z
is a solution of the quadratic equation x2 + y2 = n. The generator x + yi of
a is unique up to multiplication with a unit, and he unit group has order 4,
Z[i]× = {±1,±i}. It follows that

an =
1

4
|{(x, y) | x2 + y2 = n}|

is the number of representations of n as a sum of two squares, divided by 4.
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The ζ-function of an abelian number field

Our main theorem in this section expresses the Dedekind ζ-function of an
abelian number field as the product of Dirichlet L-functions. This translates
our previous results about the splitting of primes in abelian number field (our
main reciprocity law) into the analytic language of Dirichlet series. It will be
our main tool to prove Dirichlet’s prime number theorem.

Let K be an abelian number field. Recall that this means that K ⊂ Q[ζn],
for some n ∈ N. By the main theorem of Galois theory, K = Q[ζn]H , where

H ⊂ Gal(Q[ζn]/Q) ∼= (Z/nZ)×

is a subgroup of the Galois group of Q[ζn]/Q. In the following, we will identify
the two groups (Z/nZ)× and Gal(Q[ζn]/Q) via the isomorphism that sends a
to the Galois automorphism σa determined by σa(ζn) = ζan (see §??). Since
Gal(Q[ζn]/Q) is abelian, H is a normal subgroup and hence K/Q is a Galois
extension, with Galois group

G := Gal(K/Q) ∼= Gal(Q[ζn]/Q)/H.

Let Ĝ denote the group of characters χ : G → C×. Composing χ with the
natural projection morphism

π : (Z/nZ)× → G (162)

gives a character χ◦π on the group (Z/nZ)×. The map χ 7→ χ◦π is an injective
group homomorphism

Ĝ ↪→ ̂(Z/nZ)×.

We shall consider Ĝ from now on as a subgroup of ̂(Z/nZ)× via this map. Since
H is the kernel of π, a Dirichlet character modulo n is of the form χ ◦ π if and
only if its restriction to H is trivial. In this way we obtain an identification

Ĝ = { χ ∈ ̂(Z/nZ)× | χ(a) = 1 ∀a ∈ H}.

Recall that a character χ ∈ ̂(Z/nZ)× may be extended to a Dirichlet character
χ : Z→ C×. In the following theorem we use the convention that this extension
is chosen to be primitive, see ??.

Theorem 4.2.16 With the notation introduced above we have

ζK(s) =
∏
χ∈Ĝ

L(χ, s).

Proof: The functions ζK(s) and L(χ, s) have an Euler product (Theorem
4.2.13 and ??). Therefore it suffices to prove, for every prime number p, the
following identity: ∏

p|p

1

1−N(p)−s
=
∏
χ∈Ĝ

1

1− χ(p)p−s
. (163)
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We shall first assume that p does not divide n. In this case the proof is simpler
and more transparent, for the following reason. The image

ϕp := π(p+ nZ) ∈ G

of the residue class of p in G via the projection (162) is the Frobenius element
for the prime p with respect to the abelian extension K/Q. Furthermore, by
Corollary 3.4.9 the prime factorization of (p) �OK is of the form

(p) = p1 · . . . · pr,

where p1, . . . , pr � OK are pairwise distinct prime ideals of norm N(pi) = pf ,
and where f is the order of ϕp in G. The fundamental equality then shows that
r = |G|/f . Therefore, the left hand side of (163) can be written as∏

p|p

1

1−N(p)−s
=

1

(1− p−fs)r
. (164)

Note that the denominator of the right hand side of (164) is a polynomial in
p−s. Now (163) follows from (164) and the following lemma.

Lemma 4.2.17 Let G be a finite abelian group, σ ∈ G an arbitrary element
and f := ordG(σ) the order of σ. Then∏

χ∈Ĝ

(1− χ(σ)x) = (1− xf )r,

as an identity in the poylnomial ring C[x] and with r := |G|/f .

Proof: The map
φ : Ĝ→ �f , χ 7→ χ(σ), (165)

is clearly a group homomorphism. The proof of Proposition 3.3.3 shows that
there exists χ ∈ Ĝ such that χ(σ) is a primitive fth root of unity. In other
words, φ is surjective and hence induces an isomorphism

Ĝ/ ker(φ) ∼= �f .

It follows that ∏
χ∈Ĝ

(1− χ(σ)x) =
∏
ζ∈�f

(1− ζx)r, (166)

where r := |ker(φ)| = |G|/f . On the other hand, it is clear that∏
ζ∈�f

(1− ζx) = 1− xf .

Together with (166) this proves the lemma. 2
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So far we have proved the identity (163) only for p - n. For the general case
we write n = pkm such that p - m. We may assume that k ≥ 1, because we
have already dealt with the case k = 0. Now the problem is that the Frobenius
element ϕp is not an element of G but of a certain quotient group, defined as
follows. By the Chinese Remainder Theorem we have a natural isomorphism

(Z/nZ)× ∼= (Z/pkZ)× × (Z/mZ)×.

We consider the first factor (Z/pkZ)× as a subgroup and the second factor
(Z/mZ)× as a quotient of the group (Z/nZ)×. Let Ip ⊂ G denote the image
under the projection map (162) of the subgroup (Z/pkZ)×. We obtain a natural
and surjective homomorphism

(Z/mZ)× → G/Ip, a+mZ 7→ σaIp.

We define the Frobenius element with respect to p and the extension K/Q as the
element ϕp := σpIp ∈ G/Ip. The statement of Corollary 3.4.9 can be extended
as follows. Let f denote the order of ϕp in G/Ip. Then the prime factorization
of (p) �OK is of the form

(p) = (p1 · . . . · pr)e (167)

where p1, . . . , pr are pairwise distinct prime ideals of norm N(pi) = pf , and
where e = |Ip| and r = |G|/ef . It follows that (164) holds as before – we just
had to be more careful with the definition of f and r.

To finish the proof we have to analyse the right hand side of (163). The
subtle point is somewhat hidden by our notation. Given a character χ ∈ Ĝ we
temporarily denote its extension to a primitive Dirichlet character by χ̃ : Z→ C.
Note also that we have an injective group homomorphism

Ĝ/Ip ↪→ Ĝ

which maps a character χ : G/Ip → C× to its composition with the projection

G→ G/Ip. We shall consider Ĝ/Ip as a subgroup of Ĝ via this homomorphism.

Claim: We have χ̃(p) 6= 0 if and only if χ ∈ Ĝ/Ip.

The claim may aslo be formulated as follows. Given χ ∈ Ĝ, there are two
cases. In the first case χ̃(p) = 0, and then the corresponding term in (163) is
equal to one and can be ignored. In the second case we have χ̃(p) = χ(ϕp)
where ϕ ∈ G/Ip is the Frobenius element. Therefore we can rewrite the right
hand side of (163) as ∏

χ∈Ĝ/Ip

1

1− χ(ϕp)p−s
.

Applying Lemma 4.2.17 to the group G/Ip and the element ϕ ∈ G/Ip we see
that ∏

χ∈Ĝ/Ip

1

1− χ(ϕp)p−s
=

1

(1− p−fs)r
,
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where f, r are defined by (167). This proves the identity (163) for all prime
numbers p and concludes the proof of Theorem 4.2.16. 2

Exercises

Exercise 4.2.1 Let η(s) be the Dirichlet η-function from Example 4.2.7. For
<(s) > 1 we can use the absolute convergence of η(s) to see that

η(s) =
1

2
+

1

2

∑
n≥1

(−1)n(n−s − (n+ 1)−s). (168)

(i) Use (157) and (168) to define an analytic continuation of η(s) and ζ(s) to
the half plane <(s) > −1.

(ii) Compute η(0) and

η(−1) := lim
s>−1

η(s), ζ(−1) := lim
s>−1

ζ(s).

With the last part of the exercise we have, in some sense, computed a value for
the divergent series

1 + 2 + 3 + 4 + . . .!

4.3 Dirichlet’s prime number theorem

4.4 The class number formula
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5 Outlook: Class field theory

5.1 Frobenius elements

5.2 The Artin reciprocity law
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